Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

In fig, if AB∥CD, find the value of x.

Answer»

It’s given that AB∥CD. 

Required to find the value of x.

We know that, 

Diagonals of a parallelogram bisect each other. 

So, 

\(\frac{AO}{CO}\) = \(\frac{BO}{DO}\) 

\(\frac{4}{(4x – 2)}\) = \(\frac{(x +1)}{(2x + 4)}\) 

4(2x + 4) = (4x – 2)(x +1) 

8x + 16 = x(4x – 2) + 1(4x – 2) 

8x + 16 = 4x2 – 2x + 4x – 2 

-4x2 + 8x + 16 + 2 – 2x = 0 

-4x2 + 6x + 8 = 0 

4x2 – 6x – 18 = 0 

4x2 – 12x + 6x – 18 = 0 

4x(x – 3) + 6(x – 3) = 0 

(4x + 6) (x – 3) = 0 

∴ x = – \(\frac{6}{4}\) or x = 3

102.

In fig, if AB∥CD, find the value of x.

Answer»

It’s given that AB∥CD. 

Required to find the value of x.

We know that, 

Diagonals of a parallelogram bisect each other 

So, 

\(\frac{AO}{CO}\) = \(\frac{BO}{DO}\) 

\(\frac{(6x – 5)}{(2x + 1)}\) = \(\frac{(5x – 3)}{(3x – 1)}\) 

(6x – 5)(3x – 1) = (2x + 1)(5x – 3) 

3x(6x – 5) – 1(6x – 5) = 2x(5x – 3) + 1(5x – 3) 

18x2 – 10x2 – 21x + 5 + x +3 = 0 

8x2 – 16x – 4x + 8 = 0 

8x(x – 2) – 4(x – 2) = 0 

(8x – 4)(x – 2) = 0 

x = \(\frac{4}{8}\) = \(\frac{1}{2}\) or x = -2 

∴ x = \(\frac{1}{2}\)

103.

In fig, ΔACB ∼ ΔAPQ. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.

Answer»

Given, 

ΔACB ∼ ΔAPQ 

BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm 

Required to find: CA and AQ

We know that, 

ΔACB ∼ ΔAPQ [given] 

\(\frac{BA}{AQ} = \frac{CA}{AP} = \frac{BC}{PQ}\) [Corresponding Parts of Similar Triangles] 

So, 

\(\frac{6.5}{AQ}\) = \(\frac{8}{4}\) 

AQ = \(\frac{(6.5 \times 4)}{8}\)

AQ = 3.25 cm 

Similarly, as 

\(\frac{CA}{AP}\) = \(\frac{BC}{PQ}\) 

\(\frac{CA}{2.8}\) = \(\frac{8}{4}\) 

CA = 2.8 x 2 

CA = 5.6 cm 

Hence, CA = 5.6 cm and AQ = 3.25 cm.

104.

In fig, if AB ∥ CD. If OA = 3x – 19, OB = x – 4, OC = x - 3 and OD = 4, find x.

Answer»

It’s given that AB∥CD. 

Required to find the value of x.

We know that, 

Diagonals of a parallelogram bisect each other 

So, 

\(\frac{AO}{CO}\) = \(\frac{BO}{DO}\) 

\(\frac{(3x – 19)}{(x – 3)}\)= \(\frac{(x–4)}{ 4}\) 

4(3x – 19) = (x – 3) (x – 4) 

12x – 76 = x(x – 4) -3(x – 4) 

12x – 76 = x2 – 4x – 3x + 12 

-x2 + 7x – 12 + 12x - 76 = 0 

-x2 + 19x – 88 = 0 

x2 – 19x + 88 = 0 

x2 – 11x – 8x + 88 = 0 

x(x – 11) – 8(x – 11) = 0 

∴ x = 11 or x = 8

105.

In Fig.AB II CD If OA = 3x – 19, OB = x – 4, OC = x – 3 and OD = 4, find x.

Answer»

AO/OC=BO/OD 

3X-19/X-3=X-4/4 

(x-3)(x-4)=4(3x-19) 

X2 -4x-3x+12=12x-76 

X2 -7x+12-12x+76=0 

X2 -19x+88=0 

X2 -11x-8x+88=0 

X(x-11)-8(x-11)=0 

(x-11)(x-8)=0 

x-11=0 

x=11 

or x-8=0 

x=8 

x=11 or 8

106.

In `Delta ABC, D and E` are the midpoint of AB and AC respectively. Find the ratio of the areas of `Delta ADE and Delta ABC`.

Answer» Correct Answer - `1:4`
Clearly `DE||BC`.
`:. Delta ADE~Delta ABC`.
`:. (ar (Delta ADE))/(ar (Delta ABC))=(AD^(2))/(AB^(2))=(AD^(2))/((2AD)^(2))=(1)/(4)`
107.

Fill in the blanks to make the statements true.In Fig. 6.27,(i) ∠ TPQ = ∠ _____ + ∠ _____ (ii) ∠ UQR = ∠ _____ + ∠_____ 

Answer»

(i) ∠ TPQ = ∠PQR + ∠ PRQ

(ii) ∠ UQR = ∠ QRP + ∠QPR

108.

In triangle, MN || AB, BC = 7.5 cm, AM = 4 cm and MC = 2 cm. Find the length BNA. `4` cmB. `3`cmC. `5` cmD. `6` cm

Answer» Correct Answer - C
109.

The sides of certain triangles are 1.6 cm, 3.8 cm, 4 cm. Determine of are right triangles.

Answer»

A given triangle to be right-angled, if it satisfies Pythagorean Theorem. That is, the sum of the squares of the two smaller sides must be equal to the square of the largest side.

1.6 cm, 3.8 cm, 4 cm

Longest side = 4 cm

(4)2 = 16

and (1.6)2 + (3.8)2 = 2.56 + 14.44 = 17.00 = 17

16 ≠ 17

It is not a right triangle.

110.

The sides of certain triangles are (a – 1) cm, 2√a cm, (a + 1) cm. Determine of are right triangles.

Answer»

A given triangle to be right-angled, if it satisfies Pythagorean Theorem. That is, the sum of the squares of the two smaller sides must be equal to the square of the largest side.

(a- 1) cm, 2√a cm, (a + 1) cm

Longest side = (a + 1) cm

(a + 1)2 = a2 + 2a + 1

and (a – 1)2 + (2 √a )2 = a2 – 2a + 1 + 4a = a2 + 2a + 1

a2 + 2a + 1 = a2 + 2a + 1

It is a right triangle.

111.

A man goes 24 m due west and then 10 m due north. How far is he from the starting point ?A. 34 mB. 17 mC. 26 mD. 28 m

Answer» Correct Answer - C
112.

The sides of certain triangles are given below. Determine which of them are right triangles. (i) a = 7 cm, b = 24 cm and c = 25 cm (ii) a = 9 cm, b = 16 cm and c = 18 cm (iii) a = 1.6 cm, b = 3.8 cm and c = 4 cm (iv) a = 8 cm, b = 10 cm and c = 6 cm

Answer»

(i) a = 7, b = 24, c =25 

Here a2 = 49, b2 = 576, c2 = 625 

= a2 + b2

= 49 + 576 

= 625= c2 

∴ So given triangle is a right angle

(ii) a=9, b=16, c= 18 

Here a2 = 81, b2 = 256, c2 = 324

= a2 + b2  

= 81 + 256 

= 337 ≠ c

So given Triangle is not a right angle. 

(iii) a =1.6, b =3.8, c = 4 

Here a2 = 2.56, b2 = 14.44, c2 = 16 

= a2 + b2 

= 2.56 +14.44 

=17 ≠ c2 

So given Triangle is not a right angle. 

(iv) a = 8, b =10, c = 6

Here a= 64, b2 =100, c2 = 36 

= a2 + c2 

= 64 +36 

= 100 = b

So given Triangle is a right angle.

113.

Diagonal of right angled triangle ABC is 8 cm, then its median BM =(A) 2 cm(B) 3 cm (C) 4 cm (D) 5 cm

Answer»

Correct option is: (C) 4 cm

114.

In a Δ ABC, D and E are points on the sides AB and AC respectively such that DE || BC. If AD = 4x – 3, AE = 8x – 7, BD = 3x – 1, and CE = 5x – 3, find the value of x.

Answer»

Given: AD = 4x – 3, BD = 3x – 1, AE = 8x – 7 and EC = 5x – 3 

Required to find x. 

By using Thales Theorem, [As DE ∥ BC] 

AD/BD = AE/CE 

So, (4x–3)/ (3x–1) = (8x–7)/ (5x–3) 

(4x – 3)(5x – 3) = (3x – 1)(8x – 7) 

4x(5x – 3) -3(5x – 3) = 3x(8x – 7) -1(8x – 7) 

20x2 – 12x – 15x + 9 = 24x2 – 29x + 7 

20x2 - 27x + 9 = 24x2 - 29x + 7 

⇒ -4x2 + 2x + 2 = 0 

4x2 – 2x – 2 = 0 

4x2 – 4x + 2x – 2 = 0 

4x(x – 1) + 2(x – 1) = 0 

(4x + 2)(x – 1) = 0 

⇒ x = 1 or x = -\(\frac{2}{4}\) 

We know that the side of triangle can never be negative. Therefore, we take the positive value. 

∴ x = 1

115.

In ΔABC, AB = 6 cm and DE || BC such that AE = `1/4` AC then the length of AD isA. 2 cmB. 1.2 cmC. 1.6 cmD. 1.5 cm

Answer» Correct Answer - D
116.

In the figure, D andE are points on AB and AC respectively such that DE||BC. If AD = 1/3 BD and AE = 4.5 cm, find ACA. `16`cmB. `17`cmC. `19`cmD. `18`cm

Answer» Correct Answer - D
117.

M and N are points on the sides PQ and PR respectively of a ΔPQR. For each of the following cases, state whether MN II QR.(i) PM = 4 cm, QM = 4.5 cm, PN = 4 cm, NR = 4.5 cm (ii) PQ = 1.28 cm, PR = 2.56 cm, PM = 0.16 cm, PN = 0.32 cm

Answer»

(i) we have PM=4cm, QM=4.5 cm,PN=4 cm and NR=4.5 cm 

Hence PM/QM=4/4.5=40/45=8/9 

PN/NR=4/4.5=40/45=8/9 

PM/QM= PN/NR 

by the converse of proportionality theorem 

MN∥QR 

(ii) we have PQ=1.28cm, PR=2.56 cm,PM=0.16 cm and PN=0.32 cm

Hence PQ/PR=1.28/2.56=128/256=1/2

PM/PN=0.16/0.32=16/32=1/2

PQ/PR = PM/PN

by the converse of proportionality theorem

MN∥QR

118.

ΔABC ~ ΔPQR, if AB = 6, BC = 4, AC = 8 and PR = 6, then PQ + QR = …………(A) 8(B) 10 (C) 7.5 (D) 9

Answer»

Correct option is (C) 7.5

Given that \(\triangle ABC \sim \triangle PQR \)

Then their corresponding sides are in the same ratio.

\(\therefore\) \(\frac{AB}{PQ}=\frac{AC}{PR}=\frac{BC}{QR}\) 

\(\because\) \(\frac{AB}{PQ}=\frac{AC}{PR}\)

\(\Rightarrow\) \(PQ=AB\times\frac{PR}{AC}\)

\(=6\times\frac68\)        \((\because AB=6,PR=6\;\&\;AC=8)\)

\(=\frac92=4.5\)

\(\frac{BC}{QR}=\frac{AC}{PR}\)

\(\Rightarrow\) \(QR=BC\times\frac{PR}{AC}\)

\(=4\times\frac68\)       \((\because BC=4,PR=6\;\&\;AC=8)\)

\(=\frac62=3\)

\(\therefore PQ+QR=4.5+3=7.5\)

Correct option is: (C) 7.5

119.

In ΔPQR, PQ = 5 cm, QR = 12 cm and PR = 13 cm, then PQR is A) an acute angled triangleB) a right angled triangle C) an obtuse angled triangle D) an equilateral triangle

Answer»

Correct option is (B) a right angled triangle

\(\because5^2+12^2\) = 25+144

= 169 \(=13^2\)

\(\therefore PQ^2+QR^2=PR^2\) which is a condition that \(\triangle PQR\) is a right angled triangle.

(By converse of Pythagoras theorem)

B) a right angled triangle

120.

Read the given data and answer the question:1. From the data given, in APQR, PQ + PR = …………….cm. A) 25 B) 19 C) 9.4 D) 10.42. The exterior angle at R in ΔPQR is A) 120°B) 60° C) 80° D) 100°3. Which are congruent in the given tri-angles? A) None of these B) ΔABC ≅ ΔXYZ C) ΔXYZ ≅ ΔPQR D) ΔABC ≅ ΔPQR4. In ΔXYZ the biggest angle is at which vertex ? A) X + Y + Z B) X C) Y D) Z5. ΔABC ≅ ΔPQR under which congruency criterion ?A) A. A. A B) S. S. S C) S. A. S D) A. S. A

Answer»

1. D) 10.4

2. C) 80°

3. D) ΔABC ≅ ΔPQR

4. B) X

5. A) A. A. A

121.

In Fig., PQ = PR, RS = RQ and ST || QR. If the exterior angle RPU is 140°, then the measure of angle TSR is (a) 55° (b) 40° (c) 50° (d) 45°

Answer»

(b) 40o

Consider the ΔPQR.

From the exterior angle property = ∠RPU – ∠PRQ + ∠PQR

∠RPU = ∠PRQ + ∠PQR

140O = 2 ∠PQR … [given PQ = PR]

∠PQR = 140/2

∠PQR = 70o

Given, ST || QR and QS is transversal.

From the property of corresponding angles, ∠PST = ∠PQR = 70o

Now, consider the ΔQSR

RS = RQ … [from the question]

So, ∠SQR – ∠RSQ = 70O

Then, PQ is a straight line.

∠PST + ∠TSR + ∠RSQ = 180o

70o + ∠TSR + 70o = 180o

140o + ∠TSR = 180o

∠TSR = 180o – 140o

∠TSR = 40o

122.

In a ∆XYZ, LM ║ YZ and bisectors YN and ZN of ∠Y & ∠Z respectively meet at N on LM then YL + ZM =  (A) YZ (B) XY (C) XZ (D) LM 

Answer» The correct option is (D).
123.

In Fig., AM ⊥ BC and AN is the bisector of ∠A. If ∠B = 65° and ∠C = 33°, find ∠MAN.

Answer»

Given,

AM perpendicular to BC

AN is bisector of ∠A

Therefore, ∠NAC = ∠NAB

In ΔABC

∠A + ∠B + ∠C = 180°

∠A + 65° + 33° = 180°

∠A = 180° – 98°

= 82°

∠NAC = ∠NAB = 41°(Therefore, AN is bisector of ∠A)

In ΔAMB

∠AMB + ∠MAB + ∠ABM = 180°

90° + ∠MAB + 65° = 180°

∠MAB + 155° = 180°

∠MAB = 25°

Therefore,

∠MAB + ∠MAN = ∠BAN

25° + ∠MAN = 41°

∠MAN = 41° – 25°

= 16°

124.

Which of the following triplets cannot be the angles of a triangle?(a) 67°, 51°, 62° (b) 70°, 83°, 27°(c) 90°, 70°, 20° (d) 40°, 132°, 18°

Answer»

(d) 40°, 132°, 18°

We now that, sum of angles of triangle is equal to 180o.

But, 40o + 132o + 18o = 190o

So, these triplets cannot be the angles of a triangle.

125.

In the ∆ABC, exterior angle at ∠C = 105° and ∠A = 65°. Find the other interior opposite angle.

Answer»

Given that, exterior angle at ∠C = 105°. 

One of the interior opposite angle ∠A = 65°. 

The other interior opposite angle is ∠B . ∠A + ∠B =105°(∵ Exterior angle property of a triangle) 

65° + ∠B = 105° 

⇒ ∠B = 105° – 65° = 40°

126.

The sum of any two sides of a triangle must be ……………… the third side.A) greater thanB) equal toC) less thanD) none

Answer»

Correct option is A) greater than

127.

State whether the statement are True or False.Sum of any two angles of a triangle is always greater than the third angle.

Answer»

False

Sum of any two angles of a triangle is either greater than the third angle or smaller than the third angle.

128.

Two angles of a triangle are equal and the third angle is greater than each one of them by 18°. Find the angles.

Answer»

Consider ∠A and ∠B in a triangle is xo

We know that the sum of all the angles in a triangle is 180o.

So we can write it as

∠A + ∠B + ∠C = 180o

By substituting the values

xo + xo + ∠C = 180o

By addition

2xo + ∠C = 180o ….. (1)

According to the question we get

∠C = xo + 18o ……. (2)

By substituting (2) in (1) we get

2xo + xo + 18o = 180o

On further calculation

3xo + 18o = 180o

By subtraction

3x= 180o – 18o

3x= 162o

By division

xo = 162/3

xo = 54o

By substituting the values of x

∠A = ∠B = 54o

∠C = 54o + 18o = 72o

Therefore, ∠A = 54o, ∠B = 54o and ∠C = 72o

129.

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle.

Answer»

Given that,

Two angles are equal and third angle is greater than each of those angles by 30°.

Let, x, x, x + 30° be the angles of the triangle.

We know that,

Sum of all angles of triangle is 180°

x + x + x + 30° = 180°

3x + 30° = 180°

3x = 180° – 30°

3x = 150°

x = 50°

Therefore,

The angles are:

x = 50°

x = 50°

x + 30° = 50° + 30°

= 80°

Therefore, the required angles are 50°, 50°, 80°.

130.

One of the exterior angles of a triangle is 125° and the interior opposite angles are in the ratio 2 :3. Find the angles of the triangle.

Answer»

Ratio of the interior opposite angles = 2 : 3 

Sum of the terms of the ratio = 2 + 3 = 5

Sum of the interior angles exterior angle = 125° 

∴ First angle = 2/5 x 125° = 500

Second angle = 3/5 x 125° = 75°

131.

The acute angles of a right triangle are in the ratio 2 : 3. Find the angles of the triangle.

Answer»

Given that ratio of acute angles = 2 : 3 

Sum of the terms of the ratio = 2 + 3 = 5 

Sum of the acute angles = 90° 

∴ 1st acute angle x 900 = 36° 

2nd acute angle = x 900 = 540 

∴ Angles of the triangle = 36°, 54° and 90° 

132.

In ΔABC, name all the interior and exterior angles of the triangle.

Answer»

Interior angles 

∠ABC, ∠BAC, ∠CAB 

Exterior angles

∠ACZ, ∠BAY and ∠CBX 

133.

If the measure of two angles of a triangle are 35°, 84°, then the third angle is ……………..? A) 51°B) 61°C) 69°D) 59°

Answer»

Correct option is B) 61°

Given two angles are 35° and 84°.

Let the third angle be x°

\(\because\) sum  of angles in a triangle is 180°

\(\therefore\) 35 + 84 + x = 180

⇒ x = 180 - (35 + 84)

 = 180 - 119

 = 61

\(\therefore\) Third angle is 61°.

134.

The angles of a triangle are (x + 10)°, (x – 20)° and (x + 40)°. Find the value of x and the measure of the angles.

Answer»

Given that the angles of the triangle are 

(x + 10)°, (x – 20)° and (x + 40)° 

(x + 10)° + (x – 20)° + (x + 40)° = 180°

⇒ x + 10° + x – 20° + x + 40° = 180° 

⇒ 3x + 30° = 180° 

⇒ 3x – 180° – 30° 

⇒ 3x = 150°

⇒ x = 150°/3 = 50°

The angles are, 

x + 10° = 50° + 10° = 60° 

x – 20° = 50° – 20° = 30° 

x + 40° = 50° + 40° = 90° 

∴ Measure of the angles are 60°, 30° and 90°.

135.

In a right-angled triangle, one of the acute angles measures `53^(@)`. Find the measure of each angle of the triangle.

Answer» Correct Answer - `53^(@),37^(@),90^(@)`
136.

Two angles of a triangle are equal and the third angle is greater than each one of them by `18^(@)`. Find the angles.

Answer» Correct Answer - `54^(@),54^(@),72^(@)`
137.

The angles of a triangle are in the ratio 4: 5: 6. Find the angles.

Answer» Let the required angles be `(4x)^(@),(5x)^(@)and(6x)^(@)`. We know that the sum of the angles of a triangle is `180^(@)`.
`:.4x+5x+6x=180implies15x=180`
`impliesx=12`.
So, the required angles are
`(4xx12)^(@),(5xx12)^(@)and(6xx12)^(@),i.e.,48^(@),60^(@)and72^(@)`.
138.

Which of the following is not a criterion for congruence of triangle ?A. SASB. ASAC. SSAD. SSS

Answer» Correct Answer - C
We know that,two triangle are congreunt,if the sides and angles of one triangle are equal to the corresponding sides and angles of the other triangle.
Also,criterion for congruence of triangle are SAS (side-angle-side),ASA (angle-side-angle),SSS(side-side-side) and RHS (right angle-hytenuse-side).
So.SSA is not a criterion for congruence of triangles.
139.

The sum of two angles of a triangle is `116^(@)` and their difference is `24^(@)`. Find the measure of each angle of the triangle.

Answer» Correct Answer - `70^(@),46^(@),64^(@)`
140.

In `DeltaABC,"if "3angleA=4angleB=6angleC`, calculate `angleA,angleBandangleC`.

Answer» Correct Answer - `angleA=80^(@),angleB=60^(@),angleC=40^(@)`
141.

In a `DeltaABC,"if "angleA-angleB=42^(@)andangleB-angleC=21^(@)" then "angleB=?`A. `32^(@)`B. `63^(@)`C. `53^(@)`D. `95^(@)`

Answer» Correct Answer - C
`angleA=angleB+42^(@)andangleC=(angleB-21^(@))`.
`A+B+C=180^(@)implies(B+42)+B+(B-21)=180`
`implies3B=159impliesB=53^(@)`
142.

In `aDeltaABC,2angleA=3angleB=6angleC,"then find "angleA,angleBandangleC`.

Answer» Let `2angleA=3angleB=6angleC=k` (say).
Then, `angleA=((k)/(2))^(@),angleB=((k)/(3))^(@)andangleC=((k)/(6))^(@)`
We know that the sum of the angles of a triangle is `180^(@)`.
`:.angleA+angleB+angleC=180^(@)`
`implies(k)/(2)+(k)/(3)+(k)/(6)=180`
`implies(3k+2k+k)=(180xx6)`
`implies6k=(180xx6)impliesk=180`.
`:.angleA=((k)/(2))^(@)=((180)/6)^(@)=90^(@),angleB=((k)/(3))^(@)=((180)/(3))^(@)=60^(@)`
and `angleC=((k)/(6))^(@)=((180)/(6))^(@)=30^(@)`
Hence, `angleA=90^(@),angleB=60^(@)andangleC=30^(@)`.
143.

In `DeltaABC,"if "angleA+angleB=180^(@)andangleB+angleC=130^(@),"find "angleA,angleBandangleC`.

Answer» Correct Answer - `angleA=50^(@),angleB=58^(@),angleC=72^(@)`
144.

In `DeltaABC,"if "angleA+angleB=125^(@)andangleA+angleC=113^(@),"find "angleA,angleBandangleC`.

Answer» Correct Answer - `angleA=58^(@),angleB=67^(@),angleC=55^(@)`
145.

Choose the correct one. In a right-angled triangle, the angles other than the right angle are (a) obtuse (b) right (c) acute (d) straight

Answer»

Correct answer is (c) acute

146.

A triangle in which one angle is 90°, other two sides are equal is called …………… triangle.A) Right angled B) Right angled IsoscelesC) IsoscelesD) Equilateral

Answer»

Correct option is B) Right angled Isosceles

B) Right Angled Isosceles
147.

In a `DeltaABC,"if " 3angleA=4angleB=6angleC" then " A:B:C=?`A. `3:4:6`B. `4:3:2`C. `2:3:4`D. `6:4:3`

Answer» Correct Answer - B
Let `3A=4B=6=k" Then, "A=(k)/(3),C=(k)/(6)`
`:.A:B:C=(k)/(3):(k)/(4):(k)/(6)=4:3:2`
148.

A triangle in which each angle is less than 90° is called …………. triangle.A) right angledB) an obtuse angledC) an acute angledD) None

Answer»

Correct option is C) an acute angled

149.

A triangle can have …………….. obtuse angles.A) 0B) 1C) 2D) 3

Answer»

Correct option is B) 1

150.

If one angle of a triangle is equal to the sum of the other two angles, then the triangle isA. An isosceles triangleB. An obtuse triangleC. An equilateral triangleD. A right triangle

Answer»

A right triangle