Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If `A+B=90^(@)` then prove that `1+(tanA)/(tanB)=sec^(2)A.`

Answer» `A+B=90^(@)impliesB=90^(@)-A`
`:.1+(tanA)/(tanB)=1+(tanA)/(tan(90^(@)-A))`
`=1+(tanA)/(cotA)=1+tanA.tanA`
`=1+tan^(2)A=sec^(2)A`.
Hence `1+(tanA)/(tanB)=sec^(2)A.`
2.

If `A+B=90^(@)andtanA=(3)/(4),` then value of cot B isA. `(3)/(4)`B. `(4)/(3)`C. `(3)/(5)`D. `(4)/(5)`

Answer» Correct Answer - A
Given that `A+B=90^(@)or,A=90^(@)-B`
`:.tanA=(3)/(4)impliestan(90^(@)-B)=(3)/(4)impliescot=(3)/(4)`
3.

If `A+B=90^(@)`, then the value of `sin^(2)A+sin^(2)B=`A. `-1`B. 0C. 1D. `(1)/(sqrt2)`

Answer» Correct Answer - C
`A+B=90^(@)impliesB=90^(@)-A`
Now, `sin^(2)+A+sin^(2)B`
`=sin^(2)A+cos^(2)A=1`
4.

If A and B are acute angles such that `sin A =cos B`, prove that `(A+B)=90^@`.

Answer» `sin A=cos B rArr sin A =sin (90^@-B)`
`rArr A=90^@-B [because A and (90^@-B) "are acute"]`
`rArr A+B=90^@`.
5.

AOB is a diameter of a circle with centre O and C is any point on the circle, joining A, C, B, C, and O, C, prove that `cosec^(2)angleCAB-1=tan^(2)angleABC`.

Answer» since AOB is a diameter and C is any point on the circle,
`:.angleACB` is a semicircular angle.
`:.angleACB=90^(@)`
`:.` AB is a hypotenuse of the right-angled triangle ABC.
Again, since `angleACB=90^(@),:.angleBAC+angleCBA=90^(@)`.
`cosec^(2)angleCAB-1`
`=cot^(2)angleCAB`
`=cot^(2)(90^(@)-angleABC)`
`=tan^(2)angleABC`.
Hence `cosec^(2)angleCAB-1=tan^(2)angleABC`.
6.

Find the value of `sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+.............+sin^(2)90^(@)`.

Answer» `sin^(2)5^(@)+sin^(2)10^(@)sin^(2)15^(@)+.............sin^(2)90^(@)`.
`=(sin^(2)5^(@)sin^(2)85^(@))+(sin^(2)10^(@)+sin^(2)80^(@))+(sin^(2)15^(@)+sin^(2)75^(@))+(sin^(2)20^(@)+sin^(2)70^(@))+(sin^(2)25^(@)+sin^(2)65^(@))+(sin^(2)30^(@)+sin^(2)60^(@))+`
`(sin^(2)35^(@)+sin^(2)55^(@))+(sin^(2)40^(@)+sin^(2)50^(@))+sin^(2)45^(@)+sin^(2)90^(@)`
`={sin^(2)5^(@)+sin^(2)(90^(@)-15^(@))}+...................sin^(2)45^(@)+sin^(2)90^(@)`
`=(sin^(2)5^(@)+cos^(2)5^(@))+(sin^(2)10^(@)+cos^(2)15^(@))+...................+sin^(2)45^(@)+sin^(2)90^(@)`
`=1+1+1+...............` (upto 8 terms) `+((1)/(sqrt(2)))^(2)+1`
`=8+(1)/(2)+1=9(1)/(2)`.
Hence the required value `=9(1)/(2)`
7.

If `sec 5A=cosec (A-30^@)`, where 5A is an acute angle then find the value of A.

Answer» `sec 5A=cosec (A-30^@)`
`rArr cosec (90^@-5A)=cosec(A-30^@) [because sec theta =cosec (90^@-theta)]`
`rArr 90^@-5A =A-30^@rArr 6A=120^@rArr A =20^@`.
Hence, `A=20^@`.
8.

If`s in3A" "=" "cos(A 26o)`,where 3A is an acute angle, find the value of A.

Answer» Correct Answer - `A=29^@`
`sin 3A=cos(A-26^@)rArr (90^@-3A)=cos (A-26^@)rArr 90^@-3A=A-26^@`.
9.

If `sin (theta+34^@)=cos theta and (theta +34^@)` is acute show that `theta =28^@`.

Answer» `sin (theta +34^@)=cos theta`
`rArr sin (theta +34^@)=sin (90^@-theta) [because cos theta =sin (90^@-theta)]`.
`rArr theta + 34^@=90^@-theta rArr 2 theta =(90^@-34^@)=56rArr theta =28^@`.
Hence,`theta =28^@`.
10.

If `sin 3A =cos(A-10^(@))` where 3A is an acute angle , then find the value of A.

Answer» `sin 3A=cos (A-10^@)`
`rArr (90^@-3A)=cos(A-10^@)[because sin theta =cos (90^@0theta)]`
` rArr 90^@-3A =A -10^@rArr 4A=100^@rArr A=25^@`.
Hence, `A=25^@`.
11.

Without using trigonometric tables, evaluate each of the following:`(cos^2 20^0+cos^2 70^0)/(sec^2 50^0-cot^2 40^0)+2cos e c^2 58^0-2cot58^0tan32^0-4tan13^0tan37^0tan45^0tan53^0tan77^0`

Answer» Given expression
`(cos ^2 20+cos^2 70^@)/(sec^2 50^@-cot ^2 40^@)+2cosec ^2 58^@-2cot58^@tan 32^@-4tan 13^@tan 37^@tan 45^@tan 53^@tan 77^@`.
` =(cos^2 20^@+[cos (90^@-20^@)]^2)/(sec^2 50^@-[cot(90^@-50^@)]^2)`
`+2[cosec ^2 58^@-cot 58^@tan(90^@-58^@)]`
` -4 (tan 13^@tan 77^@)(tan 37^@tan 53^@)tan 45^@`
`=(cos^2 20^@+sin^2 20^@)/(sec^2 50^@-tan^2 50^@)+2[cosec^2 58^@-cot^2 58^@]`
` -4tan 13^@tan(90^@-13^@).tan 37^@tan (90^@-37^@).tan 45^@ [because cos (90^@-theta)=sin theta, cot (90^@-theta) = tan theta and tan (90^@-theta )=cot theta ]`
` =(1)/(1) +(2xx 1) -4(tan 13^@cot 13^@).(tan 37^@ cot 37^@).1`
`[because cos^2 theta +sin^2 theta -tan^2 theta=1, cosec^2 theta -cot^2 theta =1]`
`=(3-4xx1xx1xx1)=(3-4)=-1`.
12.

The value of `(sin43^(@)cos47^(@)+cos43^(@)sin47^(@))` is

Answer» Correct Answer - B
`sin43^(@)cos47^(@)+cos43^(@)sin47^(@)`
`=sin43^(@)cos(09^(@)-43^(@))+cos43^(@)sin(90^(@)-43^(@))`
`=sin43^(@)sin43^(@)+cos43^(@)cos43^(@)`
`=sin^(2)43^(@)+cos^(2)43^(@)=1`.
13.

Evaluate : `(2sin^2 63^@+1+2sin^2 27^@)/(3 cos ^2 17^@-2+3cos^2 73^@)`

Answer» Given exrpession
`(2sin^2 63^@+1+2sin^2 27^@)/(3 cos ^2 17^@-2+3cos^2 73^@)=(2(sin^2 63^@+sin^2 27^@)+1)/(3(cos^2 17^@+cos^2 73^@)-2)`
`=(2[sin^2 63^@+sin^2 (90^@-63^@)]+1)/(3[cos^2 17^@+cos^2 (90^@-17^@)]-2)`
`=(2[sin^2 63^@+cos^2 63^@]+1)/(3[cos^2 17^@+sin^2 17^@]-2)`
`[because sin (90^@-theta)=cos theta and cos (90^@-theta )=sin theta ]`
`=((2xx1)+1)/((3xx1)-2)=(2+1)/(3-2)=(3)/(1)=3`.
14.

Find the value of `(2sin^(2)63^(@)+1+2sin^(2)27)/(3cos^(2)17^(@)-2+3cos^(2)73^(@))`

Answer» We have, `(2sin^(2)63^(@)+1+2sin^(2)27)/(3cos^(2)17^(@)-2+3cos^(2)73^(@))`
`=(2sin^(2)63^(@)+2sin^(2)(90^(@)-63^(@))+1)/(3cos^(2)17^(@)-2+3cos^(2)(90^(@)-17^(@)))=(2sin^(2)63^(@)+2cos^(2)63^(@)+1)/(3cos^(2)17^(@)-2+3sin^(2)17^(@))`
`=(2(sin^(2)63^(@)+cos^(2)63^(@))+1)/(3(cos^(2)17^(@)+sin^(2)+17^(@))-2)=(2xx1+1)/(3xx1-2)`
`=(2+1)/(3-2)=(3)/(1)=3`.
Hence the required value is 3.
15.

`sec70^(@)sin20^(@)+cos20^(@)cosec70^(@)=2`

Answer» `sec70^(@)sin(90^(@)-70^(@))+cos20^(@)cosec(90^(@)-20^(@))`
`=sec70^(@)cos70^(@)+cos20^(@)sec20^(@)`
`=(1)/(cos70^(@)).cos70^(@)+cos20^(@).(1)/(cos20^(@))`
=1+1=2.
Hence `sec70^(@)sin20^(@)+cos20^(@)cosec70^(@)=2`.
16.

If `sin51^(@)=(a)/sqrt(a^(2)+b^(2))` then find the value of `tan39^(@)`

Answer» `sin51^(@)=(a)/sqrt(a^(2)+b^(2))orsin^(2)51^(@)=(a^(2))/(a^(2)+b^(2))`
or, `sin^(2)(90^(@)-39^(@))=(a^(2))/(a^(2)+b^(2))or,cos^(2)39^(@)=(a^(2))/(a^(2)+b^(2))`
or, `sec^(2)39^(@)(a^(2)+b^(2))/(a^(a))or,1+tan^(2)39^(@)=(a^(2)+b^(2))/(a^(2))`
`tan^(2)39^(@)=(a^(2)+b^(2))/(a^(2))-1`
`tan^(2)39^(@)=(a^(2)+b^(2)-a^(2))/(a^(2))ortan^(2)39^(@)=(b^(2))/(a^(2))`
or, `tan39^(@)=(b)/(a)`
Hence `tan39^(@)=(b)/(a)`.
17.

If `sin17^(@)=(x)/(y)` then prove that `sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))`

Answer» `LHS=sec17^(@)-sin73^(@)`
`(1)/(cos17^(@))-sin(90^(@)-17^(@))`
`=(1)/(cos17^(@))-cos17^(@)=(1-cos^(2)17^(@))/(cos17^(@))`
`=(sin^(2)17^(@))/(sqrt(1-sin^(2)17^(@)))=(((x)/(y))^(2))/(sqrt(1-((x)/(y))^(2)))`
Hence `sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))`
18.

Prove that `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)=(1)/(sqrt3)`

Answer» `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)`
`=(cot12^(@)cot78^(@))(cot38^(@)cot52^(@))cot60^(@)`
`={cot12^(@)cot(90^(@)-12^(@))}{cot38^(@)cot(90^(@)-38^(@))}cot60^(@)`
`=(cot12^(@)tan12^(@))(cot38^(@)tan38^(@))cot60^(@)`.
`=1xx1xx(1)/(sqrt3)=(1)/(sqrt3)`
Hence `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)=(1)/(sqrt3)`
19.

`tan 1^@ tan2^@...tan 89^@=`

Answer» We have
`tan 1^@ tan 2^@ tan 3^@.....tan 89^@`
`=tan 1^@tan 2^@.....tan44^@tan 45^@tan 46^@.....tan tan 88^@tan 89^@`
` =(tan 1^@tan 89^@)(tan 2^@.tan 2^@.tan 88^@).....(tan 44^@.tan 46^@).tan 45^@`
`={tan 1^@.tan (90^@-1^@)}.{tan 2^@.tan (90^@-2)}.....{tan 44^@.tan (90^@-44^@)}.tan 45^@`
`=tan 1^@.cot 1^@)(tan 2^@.cot 2^@)......(tan 44^@cot 44^@).1 [because tan (90^@-theta) =cot theta and tan 45^@=1]`
` =1xx1 xx....xx 1 xx 1=1`.
20.

Prove that `cosec^(2)22^(@)cot^(2)68^(@)=sin^(2)22^(@)+sin^(2)68^(@)+cot^(2)68^(@)`.

Answer» `cosec^(2)22^(@)cot^(2)68^(@)=cosec^(2)(90^(@)-68^(@))cot^(2)68^(@)`
`=sec^(2)68^(@)cot^(2)68^(@)=(1+tan^(2)68^(@))cot^(2)68^(@)`
`=cot^(2)68^(@)+tan^(2)68^(@)cot^(2)68^(@)`
`=cot^(2)68^(@)+tan^(2)68^(@)cot^(2)68^(@)`
`=cot^(2)68^(@)+tan^(2)68^(@).(1)/(tan^(2)68^(@))`
`=cot^(2)68^(@)+1`
`=cot^(2)68^(@)+sin^(2)22+cos^(2)(90^(@)-68^(@))`
`=cot^(2)68^(@)+sin^(2)22+sin^(2)68^(@)`
`=sin^(2)22^(@)+sin^(2)68^(@)+cot^(2)68^(@)`.
Hence `cosec^(2)22^(@)cot^(2)68^(@)=sin^(2)22^(@)+sin^(2)68^(@)+cot^(2)68^(@)`
21.

Evaluate: ` (cos 58^@)/(sin 32^@)+(sin 22^@)/(cos 68^@)-(cos 38^@cosec 52^@)/(tan 18^@tan 35 ^@ tan 60^@tan 72^@tan 55^@)`.

Answer» Given expression
` (cos 58^@)/(sin 32^@)+(sin 22^@)/(cos 68^@)-(cos 38^@cosec 52^@)/(tan 18^@tan 35 ^@ tan 60^@tan 72^@tan 55^@)`.
` =(cos 58^@)/(sin(90^@-58^@))+(sin 22^@)/(cos (90^@-22^@))-(cos 38^@cosec(90^@-38^@))/((tan 18^@tan 72^@)(tan 35^@tan 55^@)tan 60^@)`
` =(cos 58^@)/(cos 58^@)+(sin 22^@)/(sin 22^@)`
` -(cos 38^@sec 38^@)/({tan 18^@tan(90^@-18^@)}{tan 35^@-tan(90^@-35^@)}tan 60^@)`
`=(1+1)-(1)/((tan 18^@cot 18^@)(tan 35^@cot 35^@)sqrt(3))`
` =(2-(1)/(sqrt(3)))=(2sqrt(3)-1)/(sqrt(3))=(2sqrt(3)-1)/(sqrt(3))xx (sqrt(3))/(sqrt(3))=(1)/(3)(6-sqrt(3))`.
22.

`(sin52^(@)+cos38^(@))/(sin38^(@)+cos52^(@))`A. `cot52^(@)`B. `sin52^(@)`C. `cossec52^(@)`D. `tan52^(@)`

Answer» Correct Answer - d
23.

Find the value of `cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(tan73^(@)sec^(2)68^(@)))`

Answer» `cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(tan73^(@)sec^(2)68^(@)))`
`=cot17^(@)(cot73^(@)cos^(2)22^(@)+cot73^(@)cos^(2)68^(@))`
`=cot(90^(@)-73^(@)){cot73^(@)cos^(2)22^(@)+cot73^(@)cos^(2)(90^(@)-22^(@))}`
`=tan73^(@).cot73^(@)(cos^(2)22^(@)+sin^(2)22^(@))`
`=tan73^(@).(1)/(tan73^(@))xx1=1xx1=1`.
Hence the required value =1.
24.

The value of `cos54^(@)andsin36^(@)` are equal.

Answer» since `cos54^(@)=cos(90^(@)-36^(@))=sin36^(@)`
25.

The values of `sin72^(@)andcos108^(@)` are equal.

Answer» since `sin72^(@)=sin(180^(0)-108^(@))=sin108^(@)`
26.

The simplified value of `(sin12^(@)-cos78^(@))` is 1.

Answer» since `(sin12^(@)-cos78^(@))`
`=sin12^(@)-cos(90^(@)-12^(@))`
`=sin12^(@)-sin12^(@)=0`
27.

The value of `(sin12^(@)xxcos18^(@)xxsec78^(@)xxcosec72^(@))` is _______

Answer» We have, `sin12^(@)xxcos18^(@)xxsec78^(@)xxcosec72^(@)`
`=sin12^(@)xxcos18^(@)xxsec(90^(@)-12^(@))xxcosec(90^(@)xx18^(@))`
`=sin12^(@)xxcos18^(@)xx(1)/(sin12^(@))=1xx1=1`.
28.

If A and B are complementary to each other, then sin A ______

Answer» cos B , since A and B are complementary, then `A+B=90^(@)or,A=90^(@)-B`
`impliessinA=sin(90^(@)-B)=cosB`
29.

`cos72^(@)-sin18^(@)=` ________

Answer» 0 , since `cos72^(@)-sin18^(@)`
`=cos72^(@)-sin(90^(@)-72^(@))`
`=cos72^(@)-cos72^(@)=0`
30.

If `sin10theta=cos8thetaand10theta` is a positive acute angle, then find the value of `tan9theta`.

Answer» Given that `sin10theta=cos8thetaand10theta` is acute.
`:.sin10theta=sin(90^(@)-8theta)`
`implies10theta=90^(@)-8theta`
`implies10theta+8theta=90^(@)`
`implies18theta=90^(@)`
`impliestheta=(90^(@))/(18)`
`impliestheta=5^(@)`
`implies9theta=9xx5^(@)=45^(@)`
`impliestan9theta=tan45^(@)`
`impliestan9theta=1`
Hence the value of `tan9theta=1`
31.

Expresss each of the following in terms of T-ratios of angles lying between `0^theta and 45^@`. (i) `sin 67^@+cos 75^@` (ii) ` cot 65^@+tan 49^@` (iii) ` sec 78^@+cosec 56^@` (iv) `cosec 54^@+sin 72^@`.

Answer» Correct Answer - `(i) cos 23^@+sin 15^@`
`(ii) tan 25^@+cot 41^@`
`(iii) cosec 12^@+sec34^@`
`(iv) sec 36^@+cos 18^@`
`(i) sin 67^@+cos 75^@=sin (90^@-23^@)+cos (90^@-15^@)=cos23^@+sin 15^@`.
`(ii) cot 65^@+tan 49^@=cot (90^@-25^@)+tan (90^@-41^@)=tan 25^@+cot 41^@`.
32.

If A, B, C are the angles of a triangle then `tan ((B+C)/2)=`A. `sin""(A)/(2)`B. `cot""(A)/(2)`C. `cos""(A)/(2)`D. `sec""(A)/(2)`

Answer» Correct Answer - b