Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

`vec(r)=2that(i)+3tvec(2)hat(j)`. Find `vec(v)` and `vec(a)` where `vec(v)=(dvec(r))/(dr) , vec(a)=(dvec(v))/(dt)`

Answer» `vec(v)=(dvec(r))/(dt)=2hat(i)+6that(j)m//s`
`vec(a)=(dvec(v))/(dt)=0+6hat(j) m//s^(2)`
2.

`0.4hat(i)+0.8hat(j)+chat(k)` represents a unit vector, when c is :-A. 0.2B. `sqrt(0.2)`C. `sqrt(0.8)`D. 0

Answer» Correct Answer - B
Let `vec(A)=0.4hat(i)+0.8hat(j)+Chat(k)` is a unit vector
then `" " |vec(A)|=1`
`rArr" " sqrt(0.16+0.64+C^(2))=1`
`rArr " " 0.80+c^(2)=1^(2)`
`rArr " " C^(2)=0.2` ltbr. C=sqrt(0.2)`
` " " C=sqrt(0.2)`
3.

A force of `(-3hat(i)-hat(j)+2hat(k))` N displaced the body from a point (4, -3, -5) m to a point (-1, 4, 3) m in a staight line. Find the work done by the force.

Answer» `vec(A)=(4hat(i)-3hat(j)-5hat(k)),vec(B)=-hat(i)+4hat(j)+3hat(k)`
`vec(AB)=vec(B)-vec(A)=(-5hat(i)+7hat(j)+8hat(k))`
`W=vec(F).vec(AB)=(-3hat(i)-hat(j)+2hat(k)).(-5hat(i)+7hat(j)+8hat(k))=24"joule"`.
4.

If `hat(i)+2hat(j)+nhat(k)` is perpendicular to `4hat(i)+2hat(j)+2hat(k)` then find the value of n ?

Answer» `(1hat(i) +2hat(j)+nhat(k)).(4hat(i)+2hat(j)+ 2hat(k))=0`
`4+4+n(2)=0rArrn=-4`
5.

Calculate the dimensional formula of energy from the equation `E= 1/2 mv^2`.

Answer» Dimensionally, `E="mass" xx ("velocity")^(2)`.
Since `(1)/(2) ` is a number and has no dimention.
or , `[E]=M xx((L)/(T))^(2)=ML^(2)T^(-2)`.
6.

If force, time and velocity are treated as fundamental quantities then dimensional formula of energy will beA. [FTV]B. `FT^(2)V]`C. `FTV^(2)`D. `[FT^(2)V^(2)]`

Answer» Correct Answer - A
`[E]=ML^(2)T^(-2)=(MLT^(-2)).(L.T^(-1))(T)=[FTV]`
7.

If `x=k sin (k l t)`, where x is displacement and t is time then dimensional formula for l will be ` (k, l="constant")`A. `[M^(0)L^(0)T^(0)]`B. `[M^(0)L^(1)T^(0)]`C. `[M^(0)L^(-1)T^(-1)]`D. `[ML^(-1)T^(-1)]`

Answer» Correct Answer - C
`[k]=L`
`[klt]=L^(0)T^(0)`
`L[l]T=L^(0)T^(0)rArr[l]=L^(-1)T^(-1)`
8.

The position vectors of two balls are given by `vec(r)_(1)=2hat(i)+7hat(j) , vec(r)_(2)=-2hat(i)+4hat(j)` What will be the distance between the two balls?

Answer» `vec(r)=vec(r_(2))-vec(r_(1))`
`vec(r)=-4hat(i)-3hat(j)`
Distance `=sqrt(4^(2)+3^(2))=5`
9.

A body constrained to move in y direction is subjected to a force given by `vec(F)=(-2hat(i)+15hat(j)+6hat(k))` N . What is the work done by this force in moving the body through a distance of `10 m` along y-axis ?

Answer» Correct Answer - `150J`
`hat(r)=10hat(j)`
`w=vec(F).vec(r)=150 "Joule"`
10.

What displacement must be added to the displacement `25hat(i)-6hat(j)`m to give a displacement of 7.0 m pointing in the x-direction ?A. `18hat(i)-6hat(j)`B. `32hat(i)-13hat(j)`C. `-18hat(i)+6hat(j)`D. `-25hat(i)+13hat(j)`

Answer» Correct Answer - C
Let `vec(X)` the requred displacement
We have ` " " 25hat(i)-6hat(j)+vec(X)=7hat(i)`
`rArr " " vec(X)=-18hat(i)+6hat(j)`
11.

If velocity of a particle is given by `v=3t^(2)-6t +4`. Find its displacement from `t=0` to `3 secs`.

Answer» Correct Answer - `12m`
(i) ` underset(x_(1))overset(x_(2))intdx=underset(0)overset(3)int(3t^(2)-6t+4)dt`
`"displacement"=(t^(3)-3t^(2)+4t)_(0)^(3)=27-27+12m=12m`
12.

Suppose displacement `y(t)` (that is, y as a function of t ) is given by `y(t)=t^(3)`

Answer» Find velocity `(dy//dt)` at `t = 3 sec`.
Displacement at `t+Deltat` is
`y(t+Deltat)=(t+Deltat)^(3)`
`=(t^(3)+3t^(2)Deltat+3t Deltat^(2)+Deltat^(3))`
hence displacement from t to `t+Deltat` is `Deltay`
`Deltay=y(t+Deltat)-y(t)=(3t^(2)Deltat+3tDeltat^(2)+Deltat^(3))`
Substituting this into Equation (i) gives
`(dy)/(dt)=underset(Deltararr0)(lim)(Deltay)/(Deltat)=underset(Deltatrarr0)(lim)[3t^(2)+3tDeltat+Deltat^(2)]`
Here we can see that if we take very small value of `Deltat` then value of `dy//dt` will approach `3t^(2)` as all other terms will become negligible and impossible to measure by any instrument available in this world.
hence, `" " (dy)/(dt)=3t^(2) rArr (dy)/(dt)=v(at " " t =3sec)=3(3)^(2)=27 m//s`
13.

Suppose `A=B^(n)C^(m)` , where A has dimensions LT, B has dimensions `L^(2)T^(-1)`, and C has dimensions `LT^(2)` , Then the exponents n and m have the values: (A) `2//3,1//3 " "` (B) `2,3 " "` (C)`4//5,-1//5 " "` (D) `1//5,3//5` `(E)`1//2,1//2`

Answer» `LT=[L^(2)T^(-1)]^(n)[LT^(2)]^(m)`
`LT=L^(2n+m)T^(2m-n)`
`{:(2n+m=1 " " ...(i)),(-n+2m=1 " "...(ii)):}`
` "On sovling" n=(1)/(5), m=(3)/(5)`
14.

A vector perpendicular to `(hat(i)+hat(j)+hat(k))` and `(hat(i)-hat(j)-hat(k))` is :-A. `hat(i)+hat(j)+hat(k)`B. `hat(i)+hat(k)`C. `-1hat(i)+hat(j)+hat(k)`D. `hat(j)+hat(k)-2hat(i)`

Answer» Correct Answer - C
Let the vector be `(xhat(i)+yhat(j)+xhat(k))`
`(xhat(i)+yhat(j)+ zhat(k)).(hat(i)-hat(j)-hat(k))=0`
`x+y-z=0" " `........(1)
`(xhat(i)+yhat(j)+zhat(k)).(hat(i)-hat(j)-hat(k))=0`
`x-y-z=0 " "`.......(2)
Subtracting (1)& (2)
`rArr y=0`
`& " " x=z`
Hence possible vector is Ans.B
15.

The diameter of the sun is expressed as `13.9xx 10^(9) m`. Find the order of magnitude of the diameter ?

Answer» Diameter `=13.9xx10^(9) m`
Diameter `=1.39xx10^(10) m`
order of magnitude is 10 .
16.

The value of a unit vector in the direction of vector `vec(A)=5hat(i)-hat(j) ` is ________________ ?

Answer» `|vec(A)|=sqrt(5^(2)+12^(2))=13`
`hat(A)=(vec(A))/(|vec(A)|)=(5hat(i)-12hat(j))/(13)`
17.

Which of the following experssions has magnitude unity.A. `(vec(a)+vec(b))/(|vec(a)+vec(b)|)`B. `|hat(a)+hat(b)|` when angle between `vec(a)`and `vec(b)` is `120^(@)`C. `(vec(a)-vec(b))/(|vec(a)-vec(b)|)`D. `|hat(a)-hat(b)|` when angle between `vec(a)` and `vec(b)` is `60^(@)`

Answer» Correct Answer - A::B::C::D
18.

Find minimum value `y=25x^(2)-10x+5`.

Answer» For maximum/ minimum value `(dy)/(dx)=0 rArr50x-10rArrx=(1)/(5)`
Now at `x=(1)/(5),(d^(2)y)/(dx^(2))=50`, which is positive
So `y_(min)=25((2)/(5))^(2)-10((1)/(5))+5=1-2+5=4`
19.

Mark correct statement(s) for `vec(a) , vec(b)` and `vec(c)` shown in above diagram : A. `-vec(a)-vec(b)=vec(c)`B. `vec(a)+vec(c)=vec(-b)`C. `vec(a)+vec(c)=vec(b)`D. `vec(b)-vec(c)=vec(-a)`

Answer» Correct Answer - B::D
From triangle law :m
` " "vec(a)+vec(b)=-vec(c)`
`rArr " " -vec(a)-vec(b)= vec(c)" " "Hence(A)" `
`rArr " " vec(a)=vec(c)=-vec(b) " " "Hence (B)" `
`rArr " " vec(b)+vec(c)=-vec(a) " " "Hence (D)`
20.

Express the given vector `vec(A)` (shown graphically ) in unit vector notation.

Answer» (i) `vec(A)=3(cos 30hat(i)+sin 30hat(j))" "` (ii)`vec(A)=3(cos 30hat(i)-sin 30hat(j))` (iii)`vec(A)=3(-cos 30hat(i)-sin 30hat(j))`
`vec(A)=3(-cos 30hat(i)+sin 30hat(j))`
21.

Express the vector in unit - vector notation.

Answer» Correct Answer - `2hat(i)`
22.

Three forces `(vec(F)_(1), vec(F)_(2), vec(F)_(3))` are acting an a particle moving vertically up with constant speed. Two force `vec(F)_(1)=-10hat(j)N`, and `vec(F)_(1)=-6hat(i)=8hat(j)` , N are acting an particle on acting on particle respectively find `vec(F)_(3)`.

Answer» `Sigma_(vec(F))=vec(0) i.e`
`vec(F_(1))+vec(F_(2))+vec(F_(3))=vec(0)`
`vec(F_(3))=-(vec(F_(1))+vec(F_(2)))`
`=-(-6hat(i)-2hat(j))`
`vec(f_(3))=6hat(i)+2hat(j) N`
23.

Figure shows three vectors a, b and c. If `RQ=2PR`, which of the following relations is co-rest ? A. `2a+c=3b`B. `a+3c=2b`C. `3a+c=2b`D. `a+2c=3b`

Answer» Correct Answer - D
`(a+2b)/(3)=b`
24.

From the v versus t graph of figure (a) the time (s) at which the particle is at rest (b) at what time, if any does the particle reverse the direction of its motion? (c) The distance and displacement of the particle from `t=0`s to `t=6` s.

Answer» (a) `t=0,3 sec` , (b) `t=3 sec`
(c) displacement `=-(1)/(2)(3xx4)+(1)/(2)(3+2)(4)`
`=-6+10=4m`
distance `=|-(1)/(2)(3xx4)|+|(1)/(2)(3+2)(4)|`
`=6+10 =16m`
25.

It `x=sin^(2)theta`, then find `(dx)/(dt)` where `(d theta)/dt)=omega`

Answer» `(dx)/(d theta)=2(sin theta)(costheta)=sin2theta`
`(dx)/(dt)=(dx)/(d theta).(d theta)/ (dt)`
`(dx)/(dt)=sin 2 theta.omega`
26.

The radius of a circle is increasing at a rate `((dr)/(dt))=alpha` . Find the rate at which its area is increasing when radius is equal to 3 m.

Answer» area of cricle (A)`=pir^(2)`
`(dA)/(dt)=pi(2r)(dr)/(dt)=2pir((dr)/(dt))=2pir(alpha)`
`((dA)/(dt))_(atr=3m)=6pi alpham^(2)//sec`.
27.

A bird moves from point `(1, -2)` to `(4, 2)` . If the speed of the bird is `10m//sec`, then find the velocity vector of the bird ?

Answer» Correct Answer - `6hat(i)+8hat(j)`
`vec(r)=(4-1)hat(i)+(2+2)hat(j)=3hat(i)+4hat(j)`
`hat(r)=(vec(r))/(|hat(r)|)=(3hat(i)+4hat(j))/(5)`
`vec(v)=|vec(v)| hat(r)=10 ((3hat(i)+4hat(j))/(5))=6hat(i)+8hat(j)`
28.

Two forces P and Q are in ratio `P:Q=1:2`. If their resultant is at an angle `tan^(-1)((sqrt3)/(2))` to vector P, then angle between P and Q is :A. `tan^(-1)((1)/(2)) `B. `45^(@) `C. `30^(@)`D. `60^(@)`

Answer» Correct Answer - A
`tan alpha =(Q sin theta)/(P+Q cos theta) `
`sqrt(3)/2 =(sin theta )/((P)/(Q)+cos theta ) rArrsqrt(3)/(2) =(sin theta )/((1//2)+cos theta ) rArr (3)/4=((2 sin theta )/(1+2 cos theta ))^(2)`
`rArr 3(1+2 cos theta )^(2)=16 sin ^(2) theta `
`rArr 3(1+4cos^(2) theta +4cos theta)= 16(1-cos ^(2) theta)`
`rArr3+12cos ^(2) theta +12 cos theta =16-16 cos ^(2) theta`
`rArr 28cos^(2)theta +12 cos theta -13=0 rArr " " cos theta = (1)//(2), -0.92`
29.

If `E , M , J , and G` , respectively , denote energy , mass , angular momentum , and gravitational constant , then `EJ^(2) //M^(5) G^(2)` has the dimensions ofA. lengthB. angleC. massD. time

Answer» Correct Answer - B
`(ML^(2)T^(-2)(MLT^(-1)L)^(2))/(M^(5)(M^(-1)L^(3)T^(-2)))=M^(0)L^(0)T^(0)`
30.

If two numerical equal forces P and P acting at a point produce a resultant force of magnitude P itself, then the angle between the two original forces is :-A. `0^(@)`B. `60^(@)`C. `90^(@)`D. `120^(@)`

Answer» Correct Answer - D
We have `P^(2)=P^(2)+P^(2)+2P^(2) cos q`
`rArr " " cos theta =-(1)/(2)`
`theta=120^(@)`
31.

If `vec(A)` and `vec(B)` denote the sides of a parallelogram and its area is AB/2 , the angle between `vec(A)` and `vec(B)` is :-A. `(pi)/(2)`B. `pi`C. `(pi)/(6)`D. `(pi)/(3)`

Answer» Correct Answer - C
`|vec(A)xxvec(B)| =|AB sin theta|`
`(AB)/(2)=AB sin theta`
`rArr sin theta=(1)/(2)`
` rArr theta=60^(@)`
32.

Two vectors `vec(A)` and `vec(B)` are such that `|vec(A)+vec(B)|=|vec(A)-vec(B)|` then what is the angle between `vec(A)`and `vec(B)` :-A. `0^(@)`B. `90^(@)`C. `60^(@)`D. `180^(@)`

Answer» Correct Answer - B
`10(cos 30^(@)hat(i)+sin 30^(@)hat(j))=(5sqrt(3)hat(i)+ 5hat(j))`
33.

If `vec(a)` be a unit vector, then :-A. direction of `vec(a)` is constantB. magnitude of `vec(a)` is constantC. both (A) and (B)D. any one of direction or magnitude is constant .

Answer» Correct Answer - C
34.

The vector -`vec(A) is : `A. greater than `vec(A) ` in magnitudeB. less than `vec(A) ` in magnitudeC. in the same direction as `vec(A) `D. in the direction opposite to `vec(A) `

Answer» Correct Answer - D
35.

The resultant of two vectors of magnitude 3 units 4 units is 1 unit. What is the value of their dot product. ?A. `-12` unitsB. `-7` unitsC. `-1` unitsD. zero

Answer» Correct Answer - A
we have `1^(2)=3^(2)+4^(2)+2xx3xx4 cos theta`
`rArr " " cos theta =(-24)/(24)=-1`
`rArr " " theta =pi`
` vec(A).vec(B)=3xx4 cos theta =-12 units`
36.

Two vectors `vec(P) & vec(Q)` are arranged in such a way that they form adjacent sides of a parallelogram as shown in figure Which of the following options have correct relationshipA. `vec(Q)=vec(R)+vec(S)`B. `vec(R)=vec(P)+vec(Q)`C. `vec(R)=vec(P)+vec(S)`D. `vec(S)=vec(Q)+vec(P)`

Answer» Correct Answer - B::D
37.

Two vectors `vec(A)` & `vec(B)` are given such that angle between `(vec(A)+vec(B))` and `(vec(A)-vec(B))` is `90^(@)` then find the value of `(|vec(A)|)/(2|vec(A)|+|vec(B)|)` ?

Answer» Correct Answer - `1//3`
`(vec(A)+vec(B)).(vec(A)-vec(B))=0`
`|vec(A)|=|vec(B)|`
`(|vec(A)|)/(2|vec(A)|+|vec(B)|)=(1)/(3)`
38.

The magnitude of the vector `hat(i)+xhat(j)+3hat(k)` is half of the magnitude of vector `4hat(i)+(4x-2)hat(j)+2hat(k)` . The values of x are ?

Answer» Correct Answer - `-2//3, 2`
`(1)/(2)sqrt(1^(2)+x^(2)+3^(2))=sqrt(4^(2)(4x-)^(2)+2^(2))`
`x=-(2)/(3),2`
39.

A wave is represented by - `y=a sin (At-Bx+C)` where A, B, C are constants. The Dimensions of A, B, C areA. `T^(1),L,M^(0)L^(0)T^(0)`B. `T^(-1),L^(-1),M^(0)L^(0)T^(0)`C. T,L,MD. `T^(-1),L^(-1), M^(-1)`

Answer» Correct Answer - B
`[A]=T^(-1), [B]=L^(-1),[C]=M^(0)L^(0)T^(0)`
40.

Which of the following physical quantities do not have the same dimensionsA. Pressure, Youngs modulus, stressB. Electromotive froce, voltage, potentialC. Heat, Work, EnergyD. Electric dipole, electic field, flux

Answer» Correct Answer - D
Flux`" " phi=vec(E)xxvec(A)`
so `" "[phi]!=[E]`
& `" " vec(p)=qvec(d)`
so `" " [p]!=[E]`
41.

Derive an expression for time period (t) of a simple penduleum, which may depend upon : mass of bob (m), length of pendulum (I) and acceleration due to gravity(g).

Answer» Let (i) `t prop m^(a) " "`(ii) `t prop l^(b) " "` (iii) `t prop g^(c)`
Combining all the three factors, we get
`t prop m ^(a)l^(b) g^(c) " "` or ` " " t=Km^(a)l^(b) g^(c) `
where K is a dimensionless constant of proportionality .
Writing down the dimensions on either side of equation (i) , we get
`[T] = [M^(a)] [L^(b)] [LT^(-2)]^(c) = [M^(a) L^(b+c)T^(-2c)]`
Comparing dimensions, `a=0 ,b+c=0 ,-2c=1 `
`:. a=0, c=-1//2, b=1//2 `
From equation (i) `t=Km^(0)l^(1//2)g^(-1//2)) " " ` or ` " "t=K((l)/(g))^(1//2) =K sqrt((l)/(g))`
42.

The frequency of vibration of string depends on the length `L` between the nodes, the tension `F` in the string and its mass per unit length `m`. Guess the expression for its frequency from dimensional analysis.

Answer» Correct Answer - `(k)/(L)sqrt((F)/(m))`
Frequency `prop L^(a)F^(b) (m)^(c)=L^(a)F^(b)((M)/(L))^(c)`
`(1)/(T)=kL^(a)(MLT^(-2))^(b)((M)/(L))^(c) " " [krarr"Proporsionality constant"]`
`T^(-1)=kL^(a+b-c)M^(b+c)T^(-2c)`
On comparing `c=-(1)/(2), b=+(1)/(2),a=1`
frequency `(k)/(L)sqrt((F)/(m))`
43.

Find the dimensions of (a) the specific heat capacity c, (b) the coefficient of linear expansion `alpha` and (c) the gas constant R. Some of the equations these quantities are `Q=mc(T_(2)-T_(1)) l_(t)=l_(0)[1+alpha (T_(2)-T_(1))]` and PV=nRT. (Where Q=heat enegry , m=mass, `T_(1)&T_(2)`= temperatures, `l_(1)` =length at temperature `t^(@)C`, `l_(0)=` length at temperature `0^(@) C`, P=Pressure, v = volume, n = mole)

Answer» Correct Answer - (a) `L^(2)T^(-2)K^(-1)` (b) `K^(-1)` (c)`ML^(2)T^(-2)K^(-1)(mol)^(-1)`
(a)`[c]=([Q])/([m][T_(2)-T_(1)])`
`[c] =L^(2)T^(-2)k^(-1)`
`[l_(t)]=[l_(0)]=[l_(0)alpha(T_(2)-T_(1))]`
`[alpha]=k^(-1)`
(c) `[R]=([pv])/([nT])=(ML^(-1)T^(-2)L^(3))/(mol K)=ML^(@)T^(-2)k^(-1)k^(-1) mol^(-1)]`
44.

The resistance force arising due to pressure difference at the front and rear sides of a body in a fluid stream depends upon the density of the fluid, the velocity of flow and the maximum area of cross-section perpendicular to the flow. Show that the force varies as the square of the velocity.

Answer» Correct Answer - `Fmuv^(2)`
`Fprop (rho)^(a) (v)^(b)(A)^(c)`
`k(rho)^(a)(v)^(b)(A)^(c) " " ]k rarr "Proposnality constant"]`
`rArr MLT^(-2)=k(ML^(-3))^(a)(LT^(-1))^(b)(L^(2))^(c)`
`rArr a=1,-3a-b+2c=0,rArr-b+2c=3`
& `-b=-2 rArrb=2`
`rArr F=(rho)(V)^(2)(A)^(1)`
`rArrF prop V^(2)`
45.

Evaluate indefinite integration. (i) `x=intdt " "` (ii) `int t dt " "` (iii) `x=int (2t) dt" "` (iv) `x=int (t^(2)) dt " "` (v) `x=int (-(2)/(t^3))dt`

Answer» (i) `x=t+c " "` (ii) `x=(t^(2))/(2)+c" "` (iii) `x=(2t^(2))/(2)+c=t^(2)+c`
(iv) `x=t^(3)/(3)+c" "` (v) `x=-2intt^(-3)dtrArrx=-2((t^(-2))/(-2))+c=t^(-2)+c`
46.

Find the value of definite integral:`int_(0)^(pi) ((pit)/(2)-(t^(2))/(2))dt`

Answer» `underset(0) overset(pi)int ((pit)/(2)-(t^(2))/(2))dt`
`=((pi)/(2)((t^(2))/(2))-(t^(3))/(6))_(0)^(pi)`
`=(pi^(3))/(4)-(pi^(3))/(6)=(pi^(3))/(12)`
47.

The distance covered by a particle in time t is given by `x=a+bt+ct^2+dt^3`, find the dimensions of a,b,c and d.A. `L, T^(-3)`B. `L,LT^(-3)`C. `L^(0), T^(3)`D. none of these

Answer» Correct Answer - B
`[a]=[x]=L`
`[x]=[dt^(3)]`
`[d]=LT^(-3)`
48.

Find `(dx)/(dt)` (derivative) of w.r.t. t). (i) `x=(t^(2)+1)^(3)` (ii) `x=sqrt(t)^(3)-3` (iii) `x=sin2t` (iv) `x=cos(2t+4)` (v)`x=sin^(3)t` (vi)`x=cos^(3)t`

Answer» Correct Answer - (i) ` 6t(t^(2)+1)^(2)` (ii)`(3t^(2))/(2)(t^(3)-3)^(-1//2)` (iii) `2cos 2t` (iv) `-2sin(2t+4)`(v)`3sin^(2)tcos t` (vi) `-3cos^(2) t sin t `
(i) `(dx)/(dt)=3(t^(2)+1)^(2)(2t)=6t(t^(2)+1)^(2)`
(ii)`(dx)/(dt)=(1)/(2)(t^(3)-3)^(-1/2)(3t^(2))=(3t^(2))/(2)(t^(3)-3)^(-1/2)`
(iii) `(dx)/(dt)=2 cos 2t`
(iv)`(dx)/(dt)=-sin(2t+4).2 =-2sin (2t+4)`
(v) `(dx)/(dt)=3sin ^(2)(cos t)=3 sin^(2) .cost`
vi) `(dx)/(dy)=3 cos^(2) t(-sin t)=-3 cos^(2) t sin t`
49.

The velocity of particle is given by `v=sqrt(gx)` . Find its acceleration.

Answer» `(dv)/(dt)=(1)/(2)(gx)^(-1//2) (g.(dx)/(dt))`
`=(1)/(2)gx^(-1//2)gv`
`=(1)/(2)g`
50.

Test if following equation is equation is dimensionally correct `v=(1)/(2pi)sqrt((mgl)/(1))` where, v = frequency, I =moment of inertia, m= mass, l= lengh, g= acc. Due to gravity.

Answer» Correct Answer - Equation is dimensionally correct
`[v]=T^(-1)`
`[(1)/(2pi)(sqrt((mgl)/(I))]=[sqrt((mgl)/(I))]=sqrt((mLT^(-2)L)/(ML^(2)))T^(-1)`
So. This equation is dimensionally correct.