1.

II. 30b2 + 56b + 10 = 01). a < b2). a > b3). a ≤ b4). a ≥ b

Answer»

I. 16a2 - 52a + 22 = 0

⇒ 16a2 - 8a - 44a + 22 = 0

⇒ 8a(2A - 1) - 22(2a - 1) = 0

⇒ (8a - 22) (2a - 1) = 0

Then, a = 22/8 or a = 1/2

II. 30b2 + 56b + 10 = 0

⇒ 30b2 + 6B + 50b + 10 = 0

⇒ 6b(5b + 1) + 10(5b + 1) = 0

⇒ (6b + 10) (5b + 1) = 0

Then, b = (-10/6) or b = (-1/5)

So, when a = (22/8), a > b for b = (-10/6) and a > b for b = (-1/5)

And when a = (1/2), a > b for b = (-10/6) and a > b for b = (-1/5)

∴ we can observe that a > b.


Discussion

No Comment Found