1.

II. 3y2 + 20y + 33 = 01). If x > y2). If x < y3). If x ≥ y4). If x ≤ y

Answer»

2X2 + 9X + 10 = 0

⇒ 2x2 + 4x + 5X + 10 = 0

⇒ 2x(x + 2) + 5(x + 2) = 0

⇒ (2x + 5)(x + 2) = 0

x = -5/2, -2

3y2 + 20y + 33 = 0

⇒ 3y2 + 9Y + 11y + 33 = 0

⇒ 3y(y + 3) + 11(y + 3) = 0

⇒ (3y + 11)(y + 3) = 0

y = -11/3, -3

Thus, x = -5/2, -2 and y = -11/3, -3

Comparing these values of x and y, we get x > y


Discussion

No Comment Found