1.

II. 4b2 - 9b + 2 = 01). a < b2). a > b3). a ≤ b4). a ≥ b

Answer»

I. 8a2 - 6a + 1 = 0

⇒ 8a2 - 4A - 2A + 1 = 0

⇒ 4a(2a - 1) - 1(2a - 1) = 0

⇒ (4a - 1) (2a - 1) = 0

Then, a = 1/4 or a = 1/2

II. 4b2 - 9b + 2 = 0

⇒ 4b2 - 8b - b + 2 = 0

⇒ 4b(b - 2) - 1(b - 2) = 0

⇒ (4b - 1) (b - 2) = 0

Then, b = (1/4) or b = 2

So, when a = (1/4), a = b for b = (1/4) and a < b for b = 2

And when a = (1/2), a > b for b = (1/4) and a < b for b = 2

∴ the relationship cannot be determined.


Discussion

No Comment Found