

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
51. |
The gas with the highest heat of combustion is `:`A. MethaneB. EthaneC. EtheneD. Ethyne |
Answer» Correct Answer - B Gas with highest number of `C` atoms and having all single bonds should have highest value of `DeltaH_(comb)`. |
|
52. |
One gram sample of `NH_(4)NO_(3)` is decomposed in a bomb calorimeter. The temperature of the calorimeter increases by `6.12K` . The heat capacity of the system is `1.23KJ//g//deg` . What is the molar heat of decomposition for `NH_(4)NO_(3)` ?A. `-7.53KJ//mol`B. `-398.1KJ//mol`C. `-16.1KJ//mol`D. `-602KJ//mol` |
Answer» Correct Answer - B Molecular weight of `NH_(4)NO_(3)=80` Heat evolved `=1.23xx6.12` `:.` Molar heat capacity `=1.23xx6.12xxC` |
|
53. |
the sing of `DeltaG` for the process of melting of ice at 273 K and 1 atm pressurme isA. positiveB. negaitiveC. neither negative nor positiveD. either negative or positive |
Answer» Correct Answer - c At 273 K water and ice are in equillibrium , hence` DeltaG=0` |
|
54. |
The sign of `DeltaG` for the process of melting of ice at `273K` and `1` atm pressure isA. positiveB. negativeC. neither positive nor negativeD. either positive nor negative |
Answer» Correct Answer - C Melting of ice is spontaneous above `273 K` at one atm pressure. At `273 K` and `1` atm, there is equilibrium `H_(2)O(s)hArrH_(2)O(l)` Hence, `DeltaG=0` |
|
55. |
`DeltaG`, in process of melting of ice at `-15^(@)C`,isA. `DeltaG=-ve`B. `DeltaG=+ve`C. `DeltaG=0`D. all of these |
Answer» Correct Answer - b becouse melting of ice at `-15^(@)C` is a non - spontaneous process. |
|
56. |
For a certain reaction `X`rarr`Y` the value of `DeltaH` and `DeltaS` are `50.50KJ mol^(-1)` and `100.03JK^(-1)` respectively. The temperature at which `DeltaG=0` isA. `505^(@)C`B. `232^(@)C`C. `252^(@)C`D. `450^(@)C` |
Answer» Correct Answer - A Given, `DeltaH=50.50KJ mol^(-1)` `DeltaS=100JK^(-1)=100xx10^(-3)=0.1KJK^(-1)` `:.` From `DeltaG=DeltaH-TDeltaS` `implies 0=DeltaH-TDeltaS` `implies T=(DeltaH)/(DeltaS)=(50.50)/(0.1)=505K` `:. T=505-273=232^(@)C` |
|
57. |
Which of the following processes process towards more disordered state? `I` Stretching the rubberII. Sublimation of dry ice `III` Crystallisation of salt from solution `IV` . Dissolution of sugar from solutionA. `I,II,IV`B. `I,III`C. `III,IV`D. `II,IV` |
Answer» Correct Answer - B In `I` and `IV` , entropy increaes due to increases in randomness. |
|
58. |
A reaction has `DeltaH=-33KJ` and `DeltaS=-58(J)/(H)` . This reaction would be:A. spontanceous at all temperaturesB. non-spontaneous at all temperaturesC. spontaneous above a certain temperatureD. spontaneous below a certain temperature |
Answer» Correct Answer - B `DeltaG=underset(-ve)undersetdarr((DeltaH))-Tunderset(-ve)undersetdarr((DeltaS))` Since both are `-ve` , the reaction would have a `-veDeltaG` below a temperature of `(33000)/(58)K(=569K)` . |
|
59. |
From the following bond energies `H-H` bond energy `431.37 kJ mol^(-1)` `C=C` bond energy `606.10 kJ mol^(-1)` `C-C` bond energy `336.49 kJ mol^(-1)` `C-H` bond energy `410.5 kJ mol^(-1)` Enthalpy for the reaction `overset(H)overset(|)underset(H)underset(|)(C )=overset(H)overset(|)underset(H)underset(|)(C )+H-HtoH-overset(H)overset(|)underset(H)underset(|)(C )-overset(H)overset(|)underset(H)underset(|)(C )-H` will beA. `553.6 kJ mol^(-1)`B. `1573.6 kJ mol^(-1)`C. `-243.6 kJ mol^(-1)`D. `-120.0 kJ mol^(-1)` |
Answer» Correct Answer - D `DeltaH-"reaction"=sum"Bond energies of reactants"-sum "Bond energies of products"` `=[BE(C=C+4xxBE(C-H)+BE(H-H)]-[BE(C-C)+6xxBE(C-H)]` `:. [606.10+1642.00+431.37]-[336.49+2463.49]` `=2679.47-2799.40=-120 kJ mol^(-1)` |
|
60. |
From the following bond energies: `H--H` bond energy: `431.37KJmol^(-1)` `C=C` bond energy: `606.10KJmol^(-1)` `C--C` bond energy: `336.49KJmol^(-1)` `C--H` bond energy: `410.50KJmol^(-1)` Enthalpy for the reaction will be: `overset(H)overset(|)underset(H)underset(|)(C)=overset(H)overset(|)underset(H)underset(|)(C)+H-H to Hoverset(H)overset(|)underset(H)underset(|)(C)-overset(H)overset(|)underset(H)underset(|)(C)-H`A. `553.0KJmol^(-1)`B. `1523.6KJmol^(-1)`C. `-243.6KJmol^(-1)`D. `-120.0KJmol^(-1)` |
Answer» Correct Answer - B For reaction `DeltaH_(r)=-[4xxBE_(C-H)+1BE_(H=-H)]` `-[6xxBE_(C-H)+1xxBE_(C-C)]` `=(4xx410.50+1xx606.10+1xx431.37)` `-[(6xx410.50)+(1xx336.49)]` `=-120.0KJmol^(-1)` |
|
61. |
What percentage `T_(1)` is of `T_(2)` for a `10%` efficiency of a heat engine? `T_(1)` is the temperature of sink and `T_(2)` is the temperature of heat reservoir.A. `T_(1)=90%` of `T_(2)`B. `T_(1)=T_(2)`C. `T_(2)=90%` of `T_(1)`D. `T_(1)=50%` of `T_(2)` |
Answer» Correct Answer - C Efficiency, `eta=(T_(2)-T_(1))/(T_(2)=1-(T_(1))/(T_(2))=0.1` or `T_(1)=0.9T_(2)` |
|
62. |
The difference between `DeltaH` and `Delta E` at constant voluem is equal toA. `R`B. `pDeltaV`C. `Vdeltap`D. `(3)/(2)R`. |
Answer» Correct Answer - C `H=E+PV` Taking `Delta` on both the sides `DeltaH=DeltaE+Delta(PV)=DeltaE+PDeltaV+VDeltaP` At constant volume, `DeltaV=0` `:. DeltaH=DeltaE+VDeltaP` or `DeltaH-DeltaE=VDeltaP` |
|
63. |
When ammonium chloride is dissolved in water, the solution becomes cold. The change isA. EndothermicB. ExothermicC. SupercoolingD. None of the above |
Answer» Correct Answer - A Endothermic because heat is absorbed. |
|
64. |
Warming ammonium chloride with sodium hydroxide in a test tube is an example of :A. Closed systemB. Isolated systemC. Open systemD. None of these |
Answer» Correct Answer - D An open system exchanges the mass and energy both. |
|
65. |
Heat of formation, `Delta H_(f)^(@)` of an explosive compound like `NCl_(3)` is -A. positiveB. negativeC. zeroD. positive or negative |
Answer» Correct Answer - A Since `DeltaH_(f)^(@)` is positive, it has greater heat content and is explosive. |
|
66. |
when ammonium chloride is dissoved in water , the sloution becomes cold. The change isA. endothermicB. exothermicC. supercoolingD. none of these |
Answer» Correct Answer - a the process is endothermic and takes up takes up heat from solution so that the solution becomes cold. |
|
67. |
`S_("rhombic")+O_(2)(g)toSO_(2)(g), DeltaH = -297 .5 kcal` `S_("monoclinic")+ O_(2)(g) to SO_(2)(g) , DeltaH = -300 kJ`A. rhombic sulphur is yellow in colorB. monoclinic sulphur has metallic lustreC. monoclinic sulphur is more stableD. `DeltaH_("translition")of S_(R) of S_(M)` is endothermic |
Answer» Correct Answer - d subtracting second equation from first , we get `S_((R))toS_((M))DeltaH=+2.5kJ`, endothermic |
|
68. |
At `0^(@)C` , ice and water are in reuilibrium and `DeltaS` and `DeltaG` for the conversion of ice to liquid water isA. `0,21.98JK^(-1)mol^(-1)`B. `-ve` , zeroC. `-ve,21.98JK^(-1)mol^(-1)`D. Zero, zero |
Answer» Correct Answer - C Since the given process is in equilibrium, i.e., `DeltaG=0` `DeltaG=DeltaH-TDeltaS` or, `0=Delta-TDeltaS` or `DeltaH=TDeltaS` or, `DeltaS=(DeltaH)/(T)=(6)/(273)xx10^(3)JK^(-1)K^(-1)` `=21.98JK^(-1)mol^(-1)` |
|
69. |
Combustion of sucrose is used by aerobic oranisms for providing energy for the life sustaining processes. If all the capturing of energy from reaction is done through electrical process (non `P-V` work), then calculate maximum available energy which can be captured by combustion of `34.2g` of sucrose. Given, `DeltaH_("combustion")("surrose") =-6000KJ mol^(-1)` `DeltaS_("combustion")=180J//K-mol` and body temperatuire is `300K`A. `600KJ`B. `594.6KJ`C. `5.4KJ`D. `605.4KJ` |
Answer» Correct Answer - D No. of moles of sucrose `=(34.2)/(342)=0.1` `-(DeltaG)T,P` =useful work done by the system `-DeltaG=-DeltaH+TDeltaS=+(6000xx0.1)+(180xx0.1xx300)/(1000)` `=605.4KJ` |
|
70. |
At `0^(@)C` , ice and water are in equilibrium and `DeltaS` and `DeltaG` for the conversion of ice to liquid water isA. `0,21.98JK^(-1)mol^(-1)`B. `-ve` , zeroC. `+ve,21.98JKk^(-1)mol^(-1)`D. All of these |
Answer» Correct Answer - D Since the given process is in equilibrium, i.e., `DeltaG=0` `DeltaG=DeltaH-TDeltaS` or, `0=DeltaH-TDeltaS` or `DeltaH=TDeltaS` or, `Delta=(DeltaH)/(T)=(6)/(273)xx10^(3)` `JK^(-1)mol^(-1)=21.98JK^(-1)mol^(-1)` |
|
71. |
The standard heat of formation of `U_(3)O_(8)` is -853.5 kcl//mol and the standard heat of the reaction `3UO_(2) +O_(2) rarr U_(3)O_(8)` is -76.01 Kcal. The standard heat of formation of `UO_(2)` isA. `-1083KJmol^(-1)`B. `-108.3KJmol^(-1)`C. `-10.83KJmol^(-1)`D. `-1.083KJmol^(-1)` |
Answer» Correct Answer - C `3U O_(2) + O_(2) rarr U_(3)O_(8)` `Delta H^(@) = Delta H_(f)^(@) (U_(3)O_(8)) - Delta H_(f)^(@) (O_(2)) - 3 Delta H_(f)^(@) (U O_(2))` `implies 3DeltaH_(f)^(@) (UO_(2))=-DeltaH^(@) + DeltaH_(f)^(@)(U_(3)O_(8)) - DeltaH_(f)^(@)(O_(2))` or `Delta H_(f)^(@) (UO_(2)) = (-(-76.0) + (-583.5)-0)/(3)` `=-259.17` Kcal `=-1083.33` KJ/mol |
|
72. |
Heat of neutralisation is least whenA. `NaOH` is neutralised by `CH_(3)COOH`B. `NaOH` is neutralised by `HNO_(3)`C. `NaOH` is neutralised by `HCL`D. `NaOH` is neutralised by `H_(2)SO_(4)` |
Answer» Correct Answer - A `Delta H` is least when weak acid or base in neutralized by weak base or acid, ww |
|
73. |
For the raction `B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(2)(s)+3H_(2)O(l)` `DeltaE=-2143.2KJ` Calculate `DeltaH` for the reaction at `25^(@)C`A. `-2148.2KJmol^(-1)`B. `-2138.6KJmol^(-1)`C. `-2133.2KJmol^(-1)`D. `-2143.2KJmol^(-1)` |
Answer» Correct Answer - C For `B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(l)` `DeltaE=-2143.2KJ` `Deltan=0-2=-2` Now from `DeltaH=DeltaE+DeltanRT` `-2143.2+(-2)xx8.314xx10^(-3)xx298` `=-2148.2KJ mol^(-1)` |
|
74. |
Standard enthalpy and standard entropy changes for the oxidation of ammonia at `298 K` are `-382.64 kJ mol^(-1)` and `-145.6 jK^(-1)mol^(-1)` respectively. Standard Gibbs energy change for the same reaction at `298 K` isA. `-523.2 kJ mol^(-1)`B. `-22.1 kJ mol^(-1)`C. `-339.3 kJ mol^(-1)`D. `-439.3 kJ mol^(-1)` |
Answer» Correct Answer - C `NH_(3)(g)+(3)/(4)O_(2)(g)to(1)/(2)N_(2)(g)+(3)/(2)H_(2)O(l)` `T=298 K` `DeltaH=-382.64 kJ mol^(-1)` `DeltaS=-145.6 JK^(-1) mol^(-1)` `=-0.1456 kJ K^(-1) mol^(-1)` `DeltaG=DeltaH-TDeltaS` `=-382.64 kJ mol^(-1)-(298 K)xx(0.1456 k JK^(-1)mol^(-1))` `=-382.64 kJ mol^(-1)+43.3888 kJ mol^(-1)` `=-339.25 kJ mol^(-1)` |
|
75. |
Standard enthalpy and standard entropy change for the oxidation of `NH_(3)` at `298K` are `-382.64KJ mol^(-1)` and `145.6Jmol^(-1)` respectively. Standard free energy change for the same reaction at `298K` isA. `-221.1KJmol^(-1)`B. `-339.3KJmol^(-1)`C. `-439.3KJmol^(-1)`D. `-523.2KJmol^(-1)` |
Answer» Correct Answer - A `DeltaH^(@)=-382.64KJmol^(-1)` Given that, `DeltaS^(@)=-145.6JK^(-1)mol^(-1)` `=-145.6xx10^(-3)KJK^(-1)` or `DeltaG^(@)=-382.64-(298xx1-145.6xx10^(3))` `=-339.3KJmol^(-1)` . |
|
76. |
For the reaction, `X_(2)O_(4)(l)rarr2XO_(2)(g),DeltaE=2.1Kcal` , `DeltaS=20cal//K` at `300K` . Hence `DeltaG` isA. `2.7Kcal`B. `-2.7Kcal`C. `9.3Kcal`D. `-9.3Kcal` |
Answer» Correct Answer - B From `DeltaH=DeltaE+DeltanRT` `DeltaH=2.1+2xx(2xx10^(-3))xx300` `3.3` Now from `DeltaG=DeltaH-TDeltaS` `=3.3-300xx(20xx10^(-3))` `=-2.7Kcal` |
|
77. |
Molar heat capacity of water in equilibrium with ice at constant pressure isA. ZeroB. Infinity `(oo)`C. `40.45KJK^(-1)mol^(-1)`D. `75.48JK^(-1)mol^(-1)` |
Answer» Correct Answer - C By definition `C_(p,m)=(dq_(p))/(dT)` For `h_(2)O(l)` Temperature does not change if some heat is given to the system. Hence, `C_(p,m)=(+ve)/(zero)=oo` |
|
78. |
The molar heat capacity of water at constant pressure, `C_(P)` , is `75 JK^(-1) mol^(-1)`. When `1.0 kJ` of heat is supplied to `100 g` of water which is free to expand, the increase in temperature of water isA. `6.6 K`B. `1.2 K`C. `2.4 K`D. `4.8 K` |
Answer» Correct Answer - C `Q=1 kJ=1000 J` `m=100 g=(100g)/(18g mol^(-1))=5.55 mol` `Q=mC.Delta t` `Delta t=(Q)/(m.C.)=(1000J)/(5.55molxx75 JK^(-1)mol^(-1))` `=2.4 K` |
|
79. |
If for an ideal gas, the ratio of pressure and volume is constant and is equal to 1 atm `L^(-1)` , the molar heat capacity at constant pressure would beA. `(3)/(2)R`B. `2R`C. `(5)/(2)R`D. zero |
Answer» Correct Answer - C By definition, `H=E+PV` `((dH)/(dT))_(P)=((dE)/(dT))_(P)+P((dV)/(dT))_(p)=C_(p),m` For the given ideal gas, we will have `PV=RT` or `V^(2)=RT` or `2V((dV)/(dT))_(P)=R` or `((dV)/(dT))_(P)=(R)/(2V)` `E=(3RT)/(2)` or `((dE)/(dT))_(P)=(3)/(2)R=C_(v),m` `C_(P),m=(3)/(2)R+Pxx(R)/(2V)=((3)/(2)+(1)/(2))R=2R` |
|
80. |
Heat exchanged in a chemical reaction at constant temperature and pressure is calledA. entropy changeB. enthalpy changeC. internal energy changeD. free energy change |
Answer» Correct Answer - B Enthalpy change is the heat exchanged at constant tempertaure and pressure. |
|
81. |
The law formulated by Nernst isA. First law of thermodynamicsB. Second law of thermodynamicsC. Third law of thermodynamicsD. Both `A` and `B` |
Answer» Correct Answer - C Third law of thermodynamics was put forward by Nernst. |
|
82. |
For a melting of a solid at `25^(@)C`, the fusion process requires energy equivalent to` 2906`joules o be added to system considering the process to be reversible at fusion point, the entropy change of the process isA. `9.75 JK^(-1)`B. `11.272 JK^(-1)`C. `2.33 JK^(-1)`D. insufficient data |
Answer» Correct Answer - A `DeltaS=(2906)/(298)=9.75jK^(-1)` |
|
83. |
A natural gas may be assumed to be a mixture of methane and ethane only. On complete combustion of `10L` of gas at `STP` the heat evolved was `474.6 kJ`. Assuming `Delta_(comb) H^(Theta) CH_(4)(g) =- 894 kJ mol^(-1)` and `Delta_(comb) H^(Theta) C_(2)H_(6)(g) =- 1500 kJ mol^(-1)` . So, find composition of the mixture by volume. |
Answer» x litre `toCH_(4)," mole of "CH_(4)=x//22.4` `(10-x)litre to C_(2)H_(6)," mole of "C_(2)H_(6)=(10-x)//22.4` Heat evolved `=(x)/(22.4)xx894+((10-x))/(22.4)xx1500` `474.6=(x)/(22.4)xx894+((10-x))/(22.4)xx1500` `x=0.745,%CH_(4)=74.5%` |
|
84. |
The difference between `Delta H` and `Delta U` for the combustion of methane at `27^(@)C` will be (in `J mol^(-1)`)A. `8.314xx27xx(-3)`B. `8.314xx300xx(-3)`C. `8.314xx(300)xx(-2)`D. `8.314xx300xx1` |
Answer» Correct Answer - C `CH_(4)(g)+2O_(2)toCO_(2)(g)+2H_(2)O(l)` `Deltan=1-3=(-2)` ` :. DeltaH-DeltaE=Deltan_(g)RT=(-2)(8.314)(300)` |
|
85. |
A process is spantaneous at a given temperature ifA. `DeltaH=0`, `DeltaS lt 0`B. `DeltaHgt0`, `DeltaS lt 0`C. `DeltaHlt0`, `DeltaS gt 0`D. `DeltaHgt0`, `DeltaS = 0` |
Answer» Correct Answer - C `(A)` Energy has no rule, entropy decreases non spontaneous `(B)` Energy factor opposes, entropy factor also opposes- non spontaneous `(C )` Energy factor favours, entropy factor also opposes-spontaneous `(D)` Energy factor opposes, entropy factor has no role- non spontaneous |
|
86. |
Which relations among the following is/are correct ?A. `G=H-TS`B. `PV=H-V`C. `w=DeltaW-q`D. `qv-qp=-DeltanRT` |
Answer» Correct Answer - A::C::D `(A)`, `(C )`, `(D)` represent correct expressions. |
|
87. |
The bond dissociation energies for `Cl_(2)`, `I_(2)` and `IC l` are `242.3`, `151.0` and `211.3 kJ//"mole"` respectively. The enthalpy of sublimation of iodine is `62.8 kJ //"mole"`. What is the standard enthalpy of formation of `ICI(g)` nearly equal toA. `-211.3 kJ//"mole"`B. `-14.6 kJ//"mole"`C. `16.8 kJ//"mole"`D. `33.5 kJ//"mole"` |
Answer» Correct Answer - C We aim at `(1)/(2)I_(2)(s)+(1)/(2)Cl_(2)(g)toICl(g)` We are given `(i) Cl_(2)(g)to2Cl(g)`, `DeltaH=242.3 kJ` `(ii) I_(2)(g)to2I(g)`, `DeltaH=151 kJ` `(iii) Icl(g)toI(g)+Cl(g)`, `DeltaH=211.3 kJ` `(iv) I_(2)(s)toI_(2)(g)`, `DeltaH=62.8kJ` `(1)/(2)(ii)+(1)/(2)(i)-(iii)+(1)/(2)(iv)` gives the required equation `DeltaH=(1)/(2)(151)+(1)(2)(242.3)-211.3+(1)(2)(62.8)` `=16.75 kJ` |
|
88. |
The sublimation energy of `I_(2)` (solid) is 57.3 KJ/mole and enthalpy of fusion is 15.5 KJ/mole. The enthalpy of vapourisation of `I_(2)` isA. `41.8 kJ //mol`B. `-41.8 kJ //mol`C. `72.8 kJ //mol`D. `-72.8 kJ //mol` |
Answer» Correct Answer - A `I_(2)(s)overset(Delta_("sub")H)(to)I_(2)(g)` `:. Delta_("sub")H=Delta_(f)H+Delta_(vap)H` `:. 57.3=15.5+Delta_(vap)H` `Delta_(vap)H=41.8 kJ//mol` |
|
89. |
For vaporization of water at 1 atmospheric pressure the values of `DeltaH` and `DeltaS` are `40.63KJmol^(-1)` and `108JK^(-1)mol^(-1)` , respectively. The temperature when Gibbs energy change `(DeltaG)` for this transformation will be zero isA. `273.4K`B. `393.4K`C. `373.4K`D. `293.4K` |
Answer» Correct Answer - D `DeltaG=DeltaH-TDeltaS` `Delta=0` , `:. DeltaH=TDeltaS` `T=(DeltaH)/(DeltaS)=(40.63xx10^(3))/(108.8)=373.4K` |
|
90. |
The molar heat of formation of `NH_(4)NO_(3)(s)` is `-367.5kJ ` and those of `N_(2)O(g)` and `H_(2)O(l)` are `+81.46kJ and -285.78kJ` respectively at `25^(@)C` and 1 atmospheric pressure. Calculate the `DeltaH` and `DeltaU` for the reaction, `NH_(4)NO_(3)(s)toN_(2)O(g)+2H_(2)O(l)` |
Answer» `DeltaH^(@)=DeltaH_(f("products"))^(@)-DeltaH_(f("reactants"))^(@)` `=[DeltaH_(f(N_(2)O))^(@)+2xxDeltaH_(f(H_(2)O))^(@)]-[DeltaH_(f(NH_(4)NO_(3)))^(@)]` `=81.46+2xx(-285.78)-(-367.5)` `=81.46-571.56+367.5` `=-122.56kJ` We know that `DeltaH=DeltaU+DeltanRT` or `DeltaU=DeltaH-DeltanRT` `Deltan=1,R=8.314xx10^(-3)kJ" "mol^(-1)K^(-1),T=298K` `DeltaU=-122.56-(1)(8.314xx10^(-3))(298)` `=-122.56-2.477` `=-125.037kJ` |
|
91. |
Calculate the enthalpy of formation of `Delta_(f)H` for `C_(2)H_(5)OH` from tabulated data and its heat of combustion as represented by the following equaitons: i. `H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(g), DeltaH^(Theta) =- 241.8 kJ mol^(-1)` ii. `C(s) +O_(2)(g) rarr CO_(2)(g),DeltaH^(Theta) =- 393.5kJ mol^(-1)` iii. `C_(2)H_(5)OH (l) +3O_(2)(g) rarr 3H_(2)O(g) + 2CO_(2)(g), DeltaH^(Theta) =- 1234.7kJ mol^(-1)` a. `-2747.1 kJ mol^(-1)` b. `-277.7 kJ mol^(-1)` c. `277.7 kJ mol^(-1)` d. `2747.1 kJ mol^(-1)`A. `-2747.1kJ" "mol^(-1)`B. `-277.7kJ" "mol^(-1)`C. `277.7kJ" "mol^(-1)`D. `2747.1kJ" "mol^(-1)` |
Answer» Correct Answer - B Required equation: `2C(s)+3H_(2)(g)+1//2O_(2)(g)toC_(2)H_(5)OH(l)` `2C(s)+2O_(2)(g)to2CO_(2)(g),DeltaH^(@)=-2xx393.5kJ` `3H_(2)(g)+(3)/(2)O_(2)(g)to3H_(2)O(g),DeltaH^(@)=3xx241.8kJ` `underline(3H_(2)O(l)+2CO_(2)(g)toC_(2)H_(5)OH(l)+3O_(2)(g)," "DeltaH=1234.7kJ)` On adding `underline(2C(s)+3H_(2)(g)+(1)/(2)O_(2)(g)toC_(2)H_(5)OH(l)," "DeltaH^(@)=-277.7kJ" "mol^(-1))` |
|
92. |
What would be the heat released when an aqueous solution containing `0.5 mol` if `HNO_(3)` is mixed with `0.3` mol of `OH^(-1)` (enthalpy of neutralisation is `-57.1 kJ`)A. `28.5 kJ`B. `17.1 kJ`C. `45.7 kJ`D. `1.7 kJ` |
Answer» Correct Answer - B `0.5 mol HNO_(3)-=0.5 molH^(+)` `H^(+)+OH^(-)toH_(2)O`, `DeltaH=-57.1 kJ` Here `OH^(-)=0.3 mol` Thus, `OH^(-)` is the limiting reactant When `1` mol of `OH^(-)` ions are neutralised heat released` = 57.1 kJ` `0.3` mol of `OH^(-)` ions are neutralised heat released `=57.1xx0.3=17.13 kJ` |
|
93. |
What would be the heat released when an aqueous solution containing `0.5 mol` if `HNO_(3)` is mixed with `0.3` mol of `OH^(-1)` (enthalpy of neutralisation is `-57.1 kJ`)A. 28.5 kJB. 17.1 kJC. 45.7 kJD. 1.7 kJ |
Answer» Correct Answer - B 0.3 mole `OH^(-)` ion will be completely neutralised, `thereforeDeltaH=-57.1xx0.3=-17.13kJ` |
|
94. |
The standard enthalpy of formation `(Delta_(f)H^(@))` at `298K ` for methane `(CH_(4(g)))` is `-74.8kJ mol^(-1)`. The additional information required to determine the average energy for `C-H` bond formation would be `:`A. The dissociation energy of hydrogen molecule, `H_(2)`B. The dissociation energy of `H_(2)` and enthlpy of sublimation of carbonC. Latent heat vaporisation of methaneD. The first four ionisation energies of carbon and electron gain enthalpy of hydrogen |
Answer» Correct Answer - B `C+2H_(2)rarrCH_(4)` `Delta_(f)H^(@)=[e_(C(Srarrg))+2xxe_(H-H)-4xxe_(C-H)]` |
|
95. |
If a `298K` the bond energies of `C-H,C-C,C=C` and `H-H` bonds are respectivly `414, 347, 615KJmol^(-1)` , the vlaue of enthalpy change for the reaction `H_(2)C=CH_(2)(g)+H_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)` at `298K` will beA. `+250 kJ`B. `-250 kJ`C. `+125 kJ`D. `-125 kJ` |
Answer» Correct Answer - D `DeltaH=sumB.E."of reactants"-sumB.E."of products"` `=B.E.(C=C)+4xxB.E.(C-H)+B.E.(H-H)-B.E.(C-C)-6xxB.E.(C-H)` `=B.E.(C=C)+B.E.(H-H)-B.E.(C-C)-2xxB.E.(C-H)` `=615+435-347-2xx414=1050-1175` `=-125 kJ` |
|
96. |
If a `298K` the bond energies of `C-H,C-C,C=C` and `H-H` bonds are respectivly `414, 347, 615KJmol^(-1)` , the vlaue of enthalpy change for the reaction `H_(2)C=CH_(2)(g)+H_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)` at `298K` will beA. `+250KJ`B. `-250KJ`C. `+125KJ`D. `-125KJ` |
Answer» Correct Answer - B `CH_(2)=CH_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)` `4E_(C-H)implies 414xx4=16566E_(C-H) implies 414xx6=2484` `1E_(C=C) implies 615xx1=61E_(C-C) implies 347xx1=347` `1E_(H-H) implies 435xx1=435` `4DeltaH_(C-H)+DeltaH_(C=C)+DeltaH_(H-H)=2706rarr` `6DeltaH_(C-H)+DeltaH_(C-C)=2831` `DeltaH=2706-2831=-125KJ` |
|
97. |
The standard enthalpy of formation of `C_(2)H_(4)(l)`, `CO_(2)(g)` and `H_(2)O(l)` are `52`, `394` and `-286 kJ mol^(-1)` respectively. Then the amount of heat evolved by burning `7g` of `C_(2)H_(4)(g)` isA. `1412 kJ`B. `9884 kJ`C. `353 kJ`D. `706 kJ` |
Answer» Correct Answer - C Desired equation `C_(2)H_(4)(g)+3O_(2)to2CO_(2)+2H_(2)O` , `DeltaH=?` `DeltaH=[2DeltaH_(f)^(@)(CO_(2))+2DeltaH_(f)^(@)(H_(2)O)-DeltaH_(f)^(@)(C_(2)H_(2))-3DeltaH_(f)^(@)(O_(2))]` `=2(-394)+2(-286)-52-0=1412 kJ mol^(-1)` or `1` mol (287) of `C_(2)H_(4)` will give heat `=1412 kJ` `:. 7 g` of `C_(2)H_(4)` will give `=(1412)/(28)xx7=353 kJ` |
|
98. |
The enthalpy of formation for `C_(2)H_(4)(g)`, `CO_(2)(g)` and `H_(2)O(l)` at `25^(@)C` and `1` atm. Pressure be `52`, `-394` and `-286 kJ mol^(-1)` respectively. The enthalpy of combustion of `C_(2)H_(4)(g)` will beA. `+1412 kJ mol^(-1)`B. `-1412 kJ mol^(-1)`C. `+141.2 kJ mol^(-1)`D. `-141.2 kJ mol^(-1)` |
Answer» Correct Answer - B `C_(2)H_(4)+3O_(2)to2CO_(2)+2H_(2)O` , `DeltaH=2(-286)+2(-394)-(52)=-1412kJ` |
|
99. |
In the reaction equilibrium `N_(2)O_(4) hArr 2NO_(2)(g)` When `5` mol of each is taken and the temperature is kept at `298 K`, the total pressure was found to be `20` bar. Given : `Delta_(f)G_(n_(2)O_(4))^(ɵ)=100 kJ, Delta_(f)G_(NO_(2))^(ɵ)=50 KJ` a. Find `DeltaG` of the reaction at `298 K`. b. Find the direction of the reaction. |
Answer» The reaction is: `N_(2)O_(4)(g)hArr2NO_(2)(g)` Since, number of moles of both `N_(2)O_(4)` and `NO_(2)` are same hence their partial pressure will also be same. `P_(N_(2)O_(4))=P_(NO_(2))=(20)/(2)=10` bar `Q_(P)=([P_(NO_(2))]^(2))/([P_(N_(2)O_(4))])=(10^(2))/(10)=10`bar `DeltaG_("reaction")^(@)=2DeltaG_(f)^(@)NO_(2)-DeltaG_(f)^(@)N_(2)O_(4)` `=2xx50-100=0` We know that, `DeltaG=DeltaG^(@)-2.303RT" "log" "Q` `=0-2.303xx8.314xx298" log "10` `=5705J` Since, `DeltaG` is negative hence reaction will be spontaneous in forward direction. |
|
100. |
Calculate the internal energy change for the process in which 1.0 kcal of heat is added to1 .2 litre of `O_(2)` gas in a cyclinder at constant pressure of 1.0 atm and the volume changes to 1.5 litre. |
Answer» Correct Answer - 0.993kcal | |