Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

The gas with the highest heat of combustion is `:`A. MethaneB. EthaneC. EtheneD. Ethyne

Answer» Correct Answer - B
Gas with highest number of `C` atoms and having all single bonds should have highest value of `DeltaH_(comb)`.
52.

One gram sample of `NH_(4)NO_(3)` is decomposed in a bomb calorimeter. The temperature of the calorimeter increases by `6.12K` . The heat capacity of the system is `1.23KJ//g//deg` . What is the molar heat of decomposition for `NH_(4)NO_(3)` ?A. `-7.53KJ//mol`B. `-398.1KJ//mol`C. `-16.1KJ//mol`D. `-602KJ//mol`

Answer» Correct Answer - B
Molecular weight of `NH_(4)NO_(3)=80` Heat evolved `=1.23xx6.12`
`:.` Molar heat capacity `=1.23xx6.12xxC`
53.

the sing of `DeltaG` for the process of melting of ice at 273 K and 1 atm pressurme isA. positiveB. negaitiveC. neither negative nor positiveD. either negative or positive

Answer» Correct Answer - c
At 273 K water and ice are in equillibrium , hence` DeltaG=0`
54.

The sign of `DeltaG` for the process of melting of ice at `273K` and `1` atm pressure isA. positiveB. negativeC. neither positive nor negativeD. either positive nor negative

Answer» Correct Answer - C
Melting of ice is spontaneous above `273 K` at one atm pressure. At `273 K` and `1` atm, there is equilibrium `H_(2)O(s)hArrH_(2)O(l)`
Hence, `DeltaG=0`
55.

`DeltaG`, in process of melting of ice at `-15^(@)C`,isA. `DeltaG=-ve`B. `DeltaG=+ve`C. `DeltaG=0`D. all of these

Answer» Correct Answer - b
becouse melting of ice at `-15^(@)C` is a non - spontaneous process.
56.

For a certain reaction `X`rarr`Y` the value of `DeltaH` and `DeltaS` are `50.50KJ mol^(-1)` and `100.03JK^(-1)` respectively. The temperature at which `DeltaG=0` isA. `505^(@)C`B. `232^(@)C`C. `252^(@)C`D. `450^(@)C`

Answer» Correct Answer - A
Given, `DeltaH=50.50KJ mol^(-1)`
`DeltaS=100JK^(-1)=100xx10^(-3)=0.1KJK^(-1)`
`:.` From `DeltaG=DeltaH-TDeltaS`
`implies 0=DeltaH-TDeltaS`
`implies T=(DeltaH)/(DeltaS)=(50.50)/(0.1)=505K`
`:. T=505-273=232^(@)C`
57.

Which of the following processes process towards more disordered state? `I` Stretching the rubberII. Sublimation of dry ice `III` Crystallisation of salt from solution `IV` . Dissolution of sugar from solutionA. `I,II,IV`B. `I,III`C. `III,IV`D. `II,IV`

Answer» Correct Answer - B
In `I` and `IV` , entropy increaes due to increases in randomness.
58.

A reaction has `DeltaH=-33KJ` and `DeltaS=-58(J)/(H)` . This reaction would be:A. spontanceous at all temperaturesB. non-spontaneous at all temperaturesC. spontaneous above a certain temperatureD. spontaneous below a certain temperature

Answer» Correct Answer - B
`DeltaG=underset(-ve)undersetdarr((DeltaH))-Tunderset(-ve)undersetdarr((DeltaS))`
Since both are `-ve` , the reaction would have a `-veDeltaG` below a temperature of `(33000)/(58)K(=569K)` .
59.

From the following bond energies `H-H` bond energy `431.37 kJ mol^(-1)` `C=C` bond energy `606.10 kJ mol^(-1)` `C-C` bond energy `336.49 kJ mol^(-1)` `C-H` bond energy `410.5 kJ mol^(-1)` Enthalpy for the reaction `overset(H)overset(|)underset(H)underset(|)(C )=overset(H)overset(|)underset(H)underset(|)(C )+H-HtoH-overset(H)overset(|)underset(H)underset(|)(C )-overset(H)overset(|)underset(H)underset(|)(C )-H` will beA. `553.6 kJ mol^(-1)`B. `1573.6 kJ mol^(-1)`C. `-243.6 kJ mol^(-1)`D. `-120.0 kJ mol^(-1)`

Answer» Correct Answer - D
`DeltaH-"reaction"=sum"Bond energies of reactants"-sum "Bond energies of products"`
`=[BE(C=C+4xxBE(C-H)+BE(H-H)]-[BE(C-C)+6xxBE(C-H)]`
`:. [606.10+1642.00+431.37]-[336.49+2463.49]`
`=2679.47-2799.40=-120 kJ mol^(-1)`
60.

From the following bond energies: `H--H` bond energy: `431.37KJmol^(-1)` `C=C` bond energy: `606.10KJmol^(-1)` `C--C` bond energy: `336.49KJmol^(-1)` `C--H` bond energy: `410.50KJmol^(-1)` Enthalpy for the reaction will be: `overset(H)overset(|)underset(H)underset(|)(C)=overset(H)overset(|)underset(H)underset(|)(C)+H-H to Hoverset(H)overset(|)underset(H)underset(|)(C)-overset(H)overset(|)underset(H)underset(|)(C)-H`A. `553.0KJmol^(-1)`B. `1523.6KJmol^(-1)`C. `-243.6KJmol^(-1)`D. `-120.0KJmol^(-1)`

Answer» Correct Answer - B
For reaction
`DeltaH_(r)=-[4xxBE_(C-H)+1BE_(H=-H)]`
`-[6xxBE_(C-H)+1xxBE_(C-C)]`
`=(4xx410.50+1xx606.10+1xx431.37)`
`-[(6xx410.50)+(1xx336.49)]`
`=-120.0KJmol^(-1)`
61.

What percentage `T_(1)` is of `T_(2)` for a `10%` efficiency of a heat engine? `T_(1)` is the temperature of sink and `T_(2)` is the temperature of heat reservoir.A. `T_(1)=90%` of `T_(2)`B. `T_(1)=T_(2)`C. `T_(2)=90%` of `T_(1)`D. `T_(1)=50%` of `T_(2)`

Answer» Correct Answer - C
Efficiency, `eta=(T_(2)-T_(1))/(T_(2)=1-(T_(1))/(T_(2))=0.1`
or `T_(1)=0.9T_(2)`
62.

The difference between `DeltaH` and `Delta E` at constant voluem is equal toA. `R`B. `pDeltaV`C. `Vdeltap`D. `(3)/(2)R`.

Answer» Correct Answer - C
`H=E+PV`
Taking `Delta` on both the sides
`DeltaH=DeltaE+Delta(PV)=DeltaE+PDeltaV+VDeltaP`
At constant volume, `DeltaV=0`
`:. DeltaH=DeltaE+VDeltaP`
or `DeltaH-DeltaE=VDeltaP`
63.

When ammonium chloride is dissolved in water, the solution becomes cold. The change isA. EndothermicB. ExothermicC. SupercoolingD. None of the above

Answer» Correct Answer - A
Endothermic because heat is absorbed.
64.

Warming ammonium chloride with sodium hydroxide in a test tube is an example of :A. Closed systemB. Isolated systemC. Open systemD. None of these

Answer» Correct Answer - D
An open system exchanges the mass and energy both.
65.

Heat of formation, `Delta H_(f)^(@)` of an explosive compound like `NCl_(3)` is -A. positiveB. negativeC. zeroD. positive or negative

Answer» Correct Answer - A
Since `DeltaH_(f)^(@)` is positive, it has greater heat content and is explosive.
66.

when ammonium chloride is dissoved in water , the sloution becomes cold. The change isA. endothermicB. exothermicC. supercoolingD. none of these

Answer» Correct Answer - a
the process is endothermic and takes up takes up heat from solution so that the solution becomes cold.
67.

`S_("rhombic")+O_(2)(g)toSO_(2)(g), DeltaH = -297 .5 kcal` `S_("monoclinic")+ O_(2)(g) to SO_(2)(g) , DeltaH = -300 kJ`A. rhombic sulphur is yellow in colorB. monoclinic sulphur has metallic lustreC. monoclinic sulphur is more stableD. `DeltaH_("translition")of S_(R) of S_(M)` is endothermic

Answer» Correct Answer - d
subtracting second equation from first , we get `S_((R))toS_((M))DeltaH=+2.5kJ`, endothermic
68.

At `0^(@)C` , ice and water are in reuilibrium and `DeltaS` and `DeltaG` for the conversion of ice to liquid water isA. `0,21.98JK^(-1)mol^(-1)`B. `-ve` , zeroC. `-ve,21.98JK^(-1)mol^(-1)`D. Zero, zero

Answer» Correct Answer - C
Since the given process is in equilibrium, i.e.,
`DeltaG=0`
`DeltaG=DeltaH-TDeltaS`
or, `0=Delta-TDeltaS` or `DeltaH=TDeltaS`
or, `DeltaS=(DeltaH)/(T)=(6)/(273)xx10^(3)JK^(-1)K^(-1)`
`=21.98JK^(-1)mol^(-1)`
69.

Combustion of sucrose is used by aerobic oranisms for providing energy for the life sustaining processes. If all the capturing of energy from reaction is done through electrical process (non `P-V` work), then calculate maximum available energy which can be captured by combustion of `34.2g` of sucrose. Given, `DeltaH_("combustion")("surrose") =-6000KJ mol^(-1)` `DeltaS_("combustion")=180J//K-mol` and body temperatuire is `300K`A. `600KJ`B. `594.6KJ`C. `5.4KJ`D. `605.4KJ`

Answer» Correct Answer - D
No. of moles of sucrose `=(34.2)/(342)=0.1`
`-(DeltaG)T,P` =useful work done by the system
`-DeltaG=-DeltaH+TDeltaS=+(6000xx0.1)+(180xx0.1xx300)/(1000)`
`=605.4KJ`
70.

At `0^(@)C` , ice and water are in equilibrium and `DeltaS` and `DeltaG` for the conversion of ice to liquid water isA. `0,21.98JK^(-1)mol^(-1)`B. `-ve` , zeroC. `+ve,21.98JKk^(-1)mol^(-1)`D. All of these

Answer» Correct Answer - D
Since the given process is in equilibrium, i.e., `DeltaG=0`
`DeltaG=DeltaH-TDeltaS`
or, `0=DeltaH-TDeltaS` or `DeltaH=TDeltaS` or, `Delta=(DeltaH)/(T)=(6)/(273)xx10^(3)`
`JK^(-1)mol^(-1)=21.98JK^(-1)mol^(-1)`
71.

The standard heat of formation of `U_(3)O_(8)` is -853.5 kcl//mol and the standard heat of the reaction `3UO_(2) +O_(2) rarr U_(3)O_(8)` is -76.01 Kcal. The standard heat of formation of `UO_(2)` isA. `-1083KJmol^(-1)`B. `-108.3KJmol^(-1)`C. `-10.83KJmol^(-1)`D. `-1.083KJmol^(-1)`

Answer» Correct Answer - C
`3U O_(2) + O_(2) rarr U_(3)O_(8)`
`Delta H^(@) = Delta H_(f)^(@) (U_(3)O_(8)) - Delta H_(f)^(@) (O_(2)) - 3 Delta H_(f)^(@) (U O_(2))`
`implies 3DeltaH_(f)^(@) (UO_(2))=-DeltaH^(@) + DeltaH_(f)^(@)(U_(3)O_(8)) - DeltaH_(f)^(@)(O_(2))`
or `Delta H_(f)^(@) (UO_(2)) = (-(-76.0) + (-583.5)-0)/(3)`
`=-259.17` Kcal
`=-1083.33` KJ/mol
72.

Heat of neutralisation is least whenA. `NaOH` is neutralised by `CH_(3)COOH`B. `NaOH` is neutralised by `HNO_(3)`C. `NaOH` is neutralised by `HCL`D. `NaOH` is neutralised by `H_(2)SO_(4)`

Answer» Correct Answer - A
`Delta H` is least when weak acid or base in neutralized by weak base or acid, ww
73.

For the raction `B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(2)(s)+3H_(2)O(l)` `DeltaE=-2143.2KJ` Calculate `DeltaH` for the reaction at `25^(@)C`A. `-2148.2KJmol^(-1)`B. `-2138.6KJmol^(-1)`C. `-2133.2KJmol^(-1)`D. `-2143.2KJmol^(-1)`

Answer» Correct Answer - C
For `B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(l)`
`DeltaE=-2143.2KJ`
`Deltan=0-2=-2`
Now from `DeltaH=DeltaE+DeltanRT`
`-2143.2+(-2)xx8.314xx10^(-3)xx298`
`=-2148.2KJ mol^(-1)`
74.

Standard enthalpy and standard entropy changes for the oxidation of ammonia at `298 K` are `-382.64 kJ mol^(-1)` and `-145.6 jK^(-1)mol^(-1)` respectively. Standard Gibbs energy change for the same reaction at `298 K` isA. `-523.2 kJ mol^(-1)`B. `-22.1 kJ mol^(-1)`C. `-339.3 kJ mol^(-1)`D. `-439.3 kJ mol^(-1)`

Answer» Correct Answer - C
`NH_(3)(g)+(3)/(4)O_(2)(g)to(1)/(2)N_(2)(g)+(3)/(2)H_(2)O(l)`
`T=298 K`
`DeltaH=-382.64 kJ mol^(-1)`
`DeltaS=-145.6 JK^(-1) mol^(-1)`
`=-0.1456 kJ K^(-1) mol^(-1)`
`DeltaG=DeltaH-TDeltaS`
`=-382.64 kJ mol^(-1)-(298 K)xx(0.1456 k JK^(-1)mol^(-1))`
`=-382.64 kJ mol^(-1)+43.3888 kJ mol^(-1)`
`=-339.25 kJ mol^(-1)`
75.

Standard enthalpy and standard entropy change for the oxidation of `NH_(3)` at `298K` are `-382.64KJ mol^(-1)` and `145.6Jmol^(-1)` respectively. Standard free energy change for the same reaction at `298K` isA. `-221.1KJmol^(-1)`B. `-339.3KJmol^(-1)`C. `-439.3KJmol^(-1)`D. `-523.2KJmol^(-1)`

Answer» Correct Answer - A
`DeltaH^(@)=-382.64KJmol^(-1)`
Given that, `DeltaS^(@)=-145.6JK^(-1)mol^(-1)`
`=-145.6xx10^(-3)KJK^(-1)`
or `DeltaG^(@)=-382.64-(298xx1-145.6xx10^(3))`
`=-339.3KJmol^(-1)` .
76.

For the reaction, `X_(2)O_(4)(l)rarr2XO_(2)(g),DeltaE=2.1Kcal` , `DeltaS=20cal//K` at `300K` . Hence `DeltaG` isA. `2.7Kcal`B. `-2.7Kcal`C. `9.3Kcal`D. `-9.3Kcal`

Answer» Correct Answer - B
From `DeltaH=DeltaE+DeltanRT`
`DeltaH=2.1+2xx(2xx10^(-3))xx300`
`3.3`
Now from `DeltaG=DeltaH-TDeltaS`
`=3.3-300xx(20xx10^(-3))`
`=-2.7Kcal`
77.

Molar heat capacity of water in equilibrium with ice at constant pressure isA. ZeroB. Infinity `(oo)`C. `40.45KJK^(-1)mol^(-1)`D. `75.48JK^(-1)mol^(-1)`

Answer» Correct Answer - C
By definition `C_(p,m)=(dq_(p))/(dT)`
For `h_(2)O(l)`
Temperature does not change if some heat is given to the system. Hence,
`C_(p,m)=(+ve)/(zero)=oo`
78.

The molar heat capacity of water at constant pressure, `C_(P)` , is `75 JK^(-1) mol^(-1)`. When `1.0 kJ` of heat is supplied to `100 g` of water which is free to expand, the increase in temperature of water isA. `6.6 K`B. `1.2 K`C. `2.4 K`D. `4.8 K`

Answer» Correct Answer - C
`Q=1 kJ=1000 J`
`m=100 g=(100g)/(18g mol^(-1))=5.55 mol`
`Q=mC.Delta t`
`Delta t=(Q)/(m.C.)=(1000J)/(5.55molxx75 JK^(-1)mol^(-1))`
`=2.4 K`
79.

If for an ideal gas, the ratio of pressure and volume is constant and is equal to 1 atm `L^(-1)` , the molar heat capacity at constant pressure would beA. `(3)/(2)R`B. `2R`C. `(5)/(2)R`D. zero

Answer» Correct Answer - C
By definition,
`H=E+PV`
`((dH)/(dT))_(P)=((dE)/(dT))_(P)+P((dV)/(dT))_(p)=C_(p),m`
For the given ideal gas, we will have `PV=RT`
or `V^(2)=RT`
or `2V((dV)/(dT))_(P)=R`
or `((dV)/(dT))_(P)=(R)/(2V)`
`E=(3RT)/(2)`
or `((dE)/(dT))_(P)=(3)/(2)R=C_(v),m`
`C_(P),m=(3)/(2)R+Pxx(R)/(2V)=((3)/(2)+(1)/(2))R=2R`
80.

Heat exchanged in a chemical reaction at constant temperature and pressure is calledA. entropy changeB. enthalpy changeC. internal energy changeD. free energy change

Answer» Correct Answer - B
Enthalpy change is the heat exchanged at constant tempertaure and pressure.
81.

The law formulated by Nernst isA. First law of thermodynamicsB. Second law of thermodynamicsC. Third law of thermodynamicsD. Both `A` and `B`

Answer» Correct Answer - C
Third law of thermodynamics was put forward by Nernst.
82.

For a melting of a solid at `25^(@)C`, the fusion process requires energy equivalent to` 2906`joules o be added to system considering the process to be reversible at fusion point, the entropy change of the process isA. `9.75 JK^(-1)`B. `11.272 JK^(-1)`C. `2.33 JK^(-1)`D. insufficient data

Answer» Correct Answer - A
`DeltaS=(2906)/(298)=9.75jK^(-1)`
83.

A natural gas may be assumed to be a mixture of methane and ethane only. On complete combustion of `10L` of gas at `STP` the heat evolved was `474.6 kJ`. Assuming `Delta_(comb) H^(Theta) CH_(4)(g) =- 894 kJ mol^(-1)` and `Delta_(comb) H^(Theta) C_(2)H_(6)(g) =- 1500 kJ mol^(-1)` . So, find composition of the mixture by volume.

Answer» x litre `toCH_(4)," mole of "CH_(4)=x//22.4`
`(10-x)litre to C_(2)H_(6)," mole of "C_(2)H_(6)=(10-x)//22.4`
Heat evolved `=(x)/(22.4)xx894+((10-x))/(22.4)xx1500`
`474.6=(x)/(22.4)xx894+((10-x))/(22.4)xx1500`
`x=0.745,%CH_(4)=74.5%`
84.

The difference between `Delta H` and `Delta U` for the combustion of methane at `27^(@)C` will be (in `J mol^(-1)`)A. `8.314xx27xx(-3)`B. `8.314xx300xx(-3)`C. `8.314xx(300)xx(-2)`D. `8.314xx300xx1`

Answer» Correct Answer - C
`CH_(4)(g)+2O_(2)toCO_(2)(g)+2H_(2)O(l)`
`Deltan=1-3=(-2)`
` :. DeltaH-DeltaE=Deltan_(g)RT=(-2)(8.314)(300)`
85.

A process is spantaneous at a given temperature ifA. `DeltaH=0`, `DeltaS lt 0`B. `DeltaHgt0`, `DeltaS lt 0`C. `DeltaHlt0`, `DeltaS gt 0`D. `DeltaHgt0`, `DeltaS = 0`

Answer» Correct Answer - C
`(A)` Energy has no rule, entropy decreases non spontaneous
`(B)` Energy factor opposes, entropy factor also opposes- non spontaneous
`(C )` Energy factor favours, entropy factor also opposes-spontaneous
`(D)` Energy factor opposes, entropy factor has no role- non spontaneous
86.

Which relations among the following is/are correct ?A. `G=H-TS`B. `PV=H-V`C. `w=DeltaW-q`D. `qv-qp=-DeltanRT`

Answer» Correct Answer - A::C::D
`(A)`, `(C )`, `(D)` represent correct expressions.
87.

The bond dissociation energies for `Cl_(2)`, `I_(2)` and `IC l` are `242.3`, `151.0` and `211.3 kJ//"mole"` respectively. The enthalpy of sublimation of iodine is `62.8 kJ //"mole"`. What is the standard enthalpy of formation of `ICI(g)` nearly equal toA. `-211.3 kJ//"mole"`B. `-14.6 kJ//"mole"`C. `16.8 kJ//"mole"`D. `33.5 kJ//"mole"`

Answer» Correct Answer - C
We aim at `(1)/(2)I_(2)(s)+(1)/(2)Cl_(2)(g)toICl(g)`
We are given
`(i) Cl_(2)(g)to2Cl(g)`, `DeltaH=242.3 kJ`
`(ii) I_(2)(g)to2I(g)`, `DeltaH=151 kJ`
`(iii) Icl(g)toI(g)+Cl(g)`, `DeltaH=211.3 kJ`
`(iv) I_(2)(s)toI_(2)(g)`, `DeltaH=62.8kJ`
`(1)/(2)(ii)+(1)/(2)(i)-(iii)+(1)/(2)(iv)` gives the required equation
`DeltaH=(1)/(2)(151)+(1)(2)(242.3)-211.3+(1)(2)(62.8)`
`=16.75 kJ`
88.

The sublimation energy of `I_(2)` (solid) is 57.3 KJ/mole and enthalpy of fusion is 15.5 KJ/mole. The enthalpy of vapourisation of `I_(2)` isA. `41.8 kJ //mol`B. `-41.8 kJ //mol`C. `72.8 kJ //mol`D. `-72.8 kJ //mol`

Answer» Correct Answer - A
`I_(2)(s)overset(Delta_("sub")H)(to)I_(2)(g)`
`:. Delta_("sub")H=Delta_(f)H+Delta_(vap)H`
`:. 57.3=15.5+Delta_(vap)H`
`Delta_(vap)H=41.8 kJ//mol`
89.

For vaporization of water at 1 atmospheric pressure the values of `DeltaH` and `DeltaS` are `40.63KJmol^(-1)` and `108JK^(-1)mol^(-1)` , respectively. The temperature when Gibbs energy change `(DeltaG)` for this transformation will be zero isA. `273.4K`B. `393.4K`C. `373.4K`D. `293.4K`

Answer» Correct Answer - D
`DeltaG=DeltaH-TDeltaS`
`Delta=0` , `:. DeltaH=TDeltaS`
`T=(DeltaH)/(DeltaS)=(40.63xx10^(3))/(108.8)=373.4K`
90.

The molar heat of formation of `NH_(4)NO_(3)(s)` is `-367.5kJ ` and those of `N_(2)O(g)` and `H_(2)O(l)` are `+81.46kJ and -285.78kJ` respectively at `25^(@)C` and 1 atmospheric pressure. Calculate the `DeltaH` and `DeltaU` for the reaction, `NH_(4)NO_(3)(s)toN_(2)O(g)+2H_(2)O(l)`

Answer» `DeltaH^(@)=DeltaH_(f("products"))^(@)-DeltaH_(f("reactants"))^(@)`
`=[DeltaH_(f(N_(2)O))^(@)+2xxDeltaH_(f(H_(2)O))^(@)]-[DeltaH_(f(NH_(4)NO_(3)))^(@)]`
`=81.46+2xx(-285.78)-(-367.5)`
`=81.46-571.56+367.5`
`=-122.56kJ`
We know that `DeltaH=DeltaU+DeltanRT`
or `DeltaU=DeltaH-DeltanRT`
`Deltan=1,R=8.314xx10^(-3)kJ" "mol^(-1)K^(-1),T=298K`
`DeltaU=-122.56-(1)(8.314xx10^(-3))(298)`
`=-122.56-2.477`
`=-125.037kJ`
91.

Calculate the enthalpy of formation of `Delta_(f)H` for `C_(2)H_(5)OH` from tabulated data and its heat of combustion as represented by the following equaitons: i. `H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(g), DeltaH^(Theta) =- 241.8 kJ mol^(-1)` ii. `C(s) +O_(2)(g) rarr CO_(2)(g),DeltaH^(Theta) =- 393.5kJ mol^(-1)` iii. `C_(2)H_(5)OH (l) +3O_(2)(g) rarr 3H_(2)O(g) + 2CO_(2)(g), DeltaH^(Theta) =- 1234.7kJ mol^(-1)` a. `-2747.1 kJ mol^(-1)` b. `-277.7 kJ mol^(-1)` c. `277.7 kJ mol^(-1)` d. `2747.1 kJ mol^(-1)`A. `-2747.1kJ" "mol^(-1)`B. `-277.7kJ" "mol^(-1)`C. `277.7kJ" "mol^(-1)`D. `2747.1kJ" "mol^(-1)`

Answer» Correct Answer - B
Required equation:
`2C(s)+3H_(2)(g)+1//2O_(2)(g)toC_(2)H_(5)OH(l)`
`2C(s)+2O_(2)(g)to2CO_(2)(g),DeltaH^(@)=-2xx393.5kJ`
`3H_(2)(g)+(3)/(2)O_(2)(g)to3H_(2)O(g),DeltaH^(@)=3xx241.8kJ`
`underline(3H_(2)O(l)+2CO_(2)(g)toC_(2)H_(5)OH(l)+3O_(2)(g)," "DeltaH=1234.7kJ)`
On adding `underline(2C(s)+3H_(2)(g)+(1)/(2)O_(2)(g)toC_(2)H_(5)OH(l)," "DeltaH^(@)=-277.7kJ" "mol^(-1))`
92.

What would be the heat released when an aqueous solution containing `0.5 mol` if `HNO_(3)` is mixed with `0.3` mol of `OH^(-1)` (enthalpy of neutralisation is `-57.1 kJ`)A. `28.5 kJ`B. `17.1 kJ`C. `45.7 kJ`D. `1.7 kJ`

Answer» Correct Answer - B
`0.5 mol HNO_(3)-=0.5 molH^(+)`
`H^(+)+OH^(-)toH_(2)O`, `DeltaH=-57.1 kJ`
Here `OH^(-)=0.3 mol`
Thus, `OH^(-)` is the limiting reactant
When `1` mol of `OH^(-)` ions are neutralised heat released` = 57.1 kJ`
`0.3` mol of `OH^(-)` ions are neutralised heat released `=57.1xx0.3=17.13 kJ`
93.

What would be the heat released when an aqueous solution containing `0.5 mol` if `HNO_(3)` is mixed with `0.3` mol of `OH^(-1)` (enthalpy of neutralisation is `-57.1 kJ`)A. 28.5 kJB. 17.1 kJC. 45.7 kJD. 1.7 kJ

Answer» Correct Answer - B
0.3 mole `OH^(-)` ion will be completely neutralised,
`thereforeDeltaH=-57.1xx0.3=-17.13kJ`
94.

The standard enthalpy of formation `(Delta_(f)H^(@))` at `298K ` for methane `(CH_(4(g)))` is `-74.8kJ mol^(-1)`. The additional information required to determine the average energy for `C-H` bond formation would be `:`A. The dissociation energy of hydrogen molecule, `H_(2)`B. The dissociation energy of `H_(2)` and enthlpy of sublimation of carbonC. Latent heat vaporisation of methaneD. The first four ionisation energies of carbon and electron gain enthalpy of hydrogen

Answer» Correct Answer - B
`C+2H_(2)rarrCH_(4)`
`Delta_(f)H^(@)=[e_(C(Srarrg))+2xxe_(H-H)-4xxe_(C-H)]`
95.

If a `298K` the bond energies of `C-H,C-C,C=C` and `H-H` bonds are respectivly `414, 347, 615KJmol^(-1)` , the vlaue of enthalpy change for the reaction `H_(2)C=CH_(2)(g)+H_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)` at `298K` will beA. `+250 kJ`B. `-250 kJ`C. `+125 kJ`D. `-125 kJ`

Answer» Correct Answer - D
`DeltaH=sumB.E."of reactants"-sumB.E."of products"`
`=B.E.(C=C)+4xxB.E.(C-H)+B.E.(H-H)-B.E.(C-C)-6xxB.E.(C-H)`
`=B.E.(C=C)+B.E.(H-H)-B.E.(C-C)-2xxB.E.(C-H)`
`=615+435-347-2xx414=1050-1175`
`=-125 kJ`
96.

If a `298K` the bond energies of `C-H,C-C,C=C` and `H-H` bonds are respectivly `414, 347, 615KJmol^(-1)` , the vlaue of enthalpy change for the reaction `H_(2)C=CH_(2)(g)+H_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)` at `298K` will beA. `+250KJ`B. `-250KJ`C. `+125KJ`D. `-125KJ`

Answer» Correct Answer - B
`CH_(2)=CH_(2)(g)+H_(2)(g)rarrH_(3)C-CH_(3)(g)`
`4E_(C-H)implies 414xx4=16566E_(C-H) implies 414xx6=2484`
`1E_(C=C) implies 615xx1=61E_(C-C) implies 347xx1=347`
`1E_(H-H) implies 435xx1=435`
`4DeltaH_(C-H)+DeltaH_(C=C)+DeltaH_(H-H)=2706rarr`
`6DeltaH_(C-H)+DeltaH_(C-C)=2831`
`DeltaH=2706-2831=-125KJ`
97.

The standard enthalpy of formation of `C_(2)H_(4)(l)`, `CO_(2)(g)` and `H_(2)O(l)` are `52`, `394` and `-286 kJ mol^(-1)` respectively. Then the amount of heat evolved by burning `7g` of `C_(2)H_(4)(g)` isA. `1412 kJ`B. `9884 kJ`C. `353 kJ`D. `706 kJ`

Answer» Correct Answer - C
Desired equation
`C_(2)H_(4)(g)+3O_(2)to2CO_(2)+2H_(2)O` , `DeltaH=?`
`DeltaH=[2DeltaH_(f)^(@)(CO_(2))+2DeltaH_(f)^(@)(H_(2)O)-DeltaH_(f)^(@)(C_(2)H_(2))-3DeltaH_(f)^(@)(O_(2))]`
`=2(-394)+2(-286)-52-0=1412 kJ mol^(-1)`
or `1` mol (287) of `C_(2)H_(4)` will give heat `=1412 kJ`
`:. 7 g` of `C_(2)H_(4)` will give `=(1412)/(28)xx7=353 kJ`
98.

The enthalpy of formation for `C_(2)H_(4)(g)`, `CO_(2)(g)` and `H_(2)O(l)` at `25^(@)C` and `1` atm. Pressure be `52`, `-394` and `-286 kJ mol^(-1)` respectively. The enthalpy of combustion of `C_(2)H_(4)(g)` will beA. `+1412 kJ mol^(-1)`B. `-1412 kJ mol^(-1)`C. `+141.2 kJ mol^(-1)`D. `-141.2 kJ mol^(-1)`

Answer» Correct Answer - B
`C_(2)H_(4)+3O_(2)to2CO_(2)+2H_(2)O` ,
`DeltaH=2(-286)+2(-394)-(52)=-1412kJ`
99.

In the reaction equilibrium `N_(2)O_(4) hArr 2NO_(2)(g)` When `5` mol of each is taken and the temperature is kept at `298 K`, the total pressure was found to be `20` bar. Given : `Delta_(f)G_(n_(2)O_(4))^(ɵ)=100 kJ, Delta_(f)G_(NO_(2))^(ɵ)=50 KJ` a. Find `DeltaG` of the reaction at `298 K`. b. Find the direction of the reaction.

Answer» The reaction is:
`N_(2)O_(4)(g)hArr2NO_(2)(g)`
Since, number of moles of both `N_(2)O_(4)` and `NO_(2)` are same hence their partial pressure will also be same.
`P_(N_(2)O_(4))=P_(NO_(2))=(20)/(2)=10` bar
`Q_(P)=([P_(NO_(2))]^(2))/([P_(N_(2)O_(4))])=(10^(2))/(10)=10`bar
`DeltaG_("reaction")^(@)=2DeltaG_(f)^(@)NO_(2)-DeltaG_(f)^(@)N_(2)O_(4)`
`=2xx50-100=0`
We know that, `DeltaG=DeltaG^(@)-2.303RT" "log" "Q`
`=0-2.303xx8.314xx298" log "10`
`=5705J`
Since, `DeltaG` is negative hence reaction will be spontaneous in forward direction.
100.

Calculate the internal energy change for the process in which 1.0 kcal of heat is added to1 .2 litre of `O_(2)` gas in a cyclinder at constant pressure of 1.0 atm and the volume changes to 1.5 litre.

Answer» Correct Answer - 0.993kcal