Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Find the length of major axis and minor axis of the ellipse 16x2 + 25y2 = 400.

Answer»

Given equation of the ellipse is 16x2 + 25y2 = 400

\(= \frac{x^2}{25}+\frac{y^2}{16}=1\\=\frac{x^2}{5^2}+\frac{y^2}{4^2}=1\) 

a = 5,b = 4

∴ Length of major axis = 2a = 10 

And length of minor axis = 2b = 8.

2.

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are (A) x = 4 (B) y = ±4 (C) x = -4 (D) x = ±5

Answer»

Correct option is: (B) y = ±4

3.

Find the equation of the circle which passes through (2, -2) and (3, 4) and whose centre lies on the line x + y = 2.

Answer»

Let, the equation of the circle with centre (h, k) and radius ‘r’ be

(x − h)2 + (y − k)2 = r2  … (1) 

Since the circle passes through (2, −2) and (3, 4). 

(2 − h)2 + (−2 − k)2 = r2  … (2) 

And (3 − h)2 + (4 − k)2 = r2 … (3) 

(2) and (3) ⇒ (2 − h)+ (2 + k)2 = (3 − h)2 + (4 − k)2

⇒ 4 − 4h + h2 + 4 + 4k + k2 = 9 − 6h + h2 + 16 − 8k + k2 

⇒ −4h + 4k+ 8 + 6h + 8k − 25 = 0 

⇒ 2h + 12k − 17 = 0  … (4) 

Also, centre (h, k) lies on x + y = 2 

∴h + k = 2  … (5) 

(4) − 2 × (5) ⇒ 10k − 17 = −4

⇒ \(k=\frac{13}{10}\)

(5) ⇒ k = 1.3 ⇒ h= 0.7 

∴ (1) ⇒ (x − 0.7)2 + (y − 1.3)2 = r2 … (6)

(2) ⇒ (2 − 0.7)2 + (−2 − 1.3)2 = r2 

⇒ r2 = 12.58 ∴ (6) 

⇒ (x − 0.7)2+ (y − 13)2 = 12.58, is the required equation of the circle.

4.

Equation of directrix of parabola x2 =- 8y is :(A) y = -2(B) y = 2(C) x = 2(D) x = – 2

Answer»

Answer is (B) y = 2

Equation of parabola

x2 = – 8y

⇒ x2 = -4 × 2 × y

Here a = 2

By equation of directrix y = a

y = 2

5.

A conic section will be parabola if:(A) e = 0(B) e < 0(C) e > 0(D) e = 1

Answer»

Answer is (C) e > 0

6.

If line 2y – x = 2 touches the parabola y2 = 2x then tangent point is :(A) (4, 3)(B) (-4, 1)(C) (2, 2)(D) (1, 4)

Answer»

Answer is (C) (2, 2)

Equation of line,

2y – x = 2

x = 2y – 2 ….(i)

Equation of parabola,

y2 = 2x

From equation (i) and (ii),

y2 = 2(2y – 2)

⇒ y2 = 4y – 4

⇒ y2 – 4y + 4 = 0

⇒ (y – 2)2 = 0

⇒ y – 2 = 0

⇒ y = 2

Put value of y in equation (i),

x = 2 × 2 – 2 = 2

Thus tangent point, (x, y) = (2, 2)

7.

Find the equation of circle with radius r, whose centre lies in 1st quadrant and touches y-axis at a distance of h from the origin. Find the equation of other tangent which passes through origin.

Answer»

Centre of circle = (r, h)

Radius of circle = r

Thus, equation of circle

(x – r)2 + (y – h)2 = r2

Let tangent OB touches the circle at B. 

Tangent passes through origin. 

Let tangent touches the circle at point (x1,y1).

∴ Equation of tangent at point of circle,

xx1 + yy1 + g(x + x1) + f(y + y1) + c = 0

xx1 + yy1 – r(x + x1) + h(y + y1) + h2 = 0

Since the line passes through origin.

∴ x × 0 + y × 0 – r(x + 0) – h(y + 0) + h2 = 0

⇒ – rx – hy + h2 = 0

⇒ rx + hy – h2 = 0

This is required equation.

8.

Find the equation of tangents which are drawn from point (4, 10) to parabola y2 = 8x.

Answer»

From point (x1, y1) two tangents can be drawn at parabola whose combined equation can be find by equation SS’ = T2

Given Point – (4, 0)

Equation of parabola,

⇒ y2 = 8x where a = 2

then S = y2 – 4ax1

⇒ S = y2 – 8x …(i)

S’ = y12 – 4ax2

⇒ S’ = (10)2 – 4 × 2 × 4

⇒ S’ = 100 – 32 = 68 …(ii)

T = yy1 – 2a(x + x1)

⇒ T = y × 10 – 2 × 2 × (x + 4)
= T = 10y – 4(x + 4)

T2 = {10y – 4(x + 4)}2

⇒ T2 = 100 y2 + 16(x + 4)2 – 80(x + 4)y

⇒ T2 = 100y2 + 16x2 + 256 + 128x – 80xy- 320y …(iii)

Put the values from eqn. (i), (ii), (iii) in SS’ – T2

(y2 – 8x) (68) = 16x2 + 100y2 – 80xy + 128x – 320y + 256

⇒ 68y2 – 744x – 16x2 – 100y2
+ 80xy – 128x+ 320y – 256 = 0

⇒ – 16x2 – 32y2 + 80xy – 672x + 320y – 256 = 0

⇒ x2 + 2y2 – 5xy + 42x – 20y + 16 = 0

This is required equation.

9.

If line y = mx + c touches the ellipse x2/a2 + y2/b2 = 1, then value of c will be:(A) c = a/m(B) c = ±√ (a2m2 - b2)(C) c = ±√ (a2m2 + b2)(D) c = a√ (1 + m2)

Answer»

Answer is  (C) c = ±√ (a2m2 + b2)

10.

Show that line x – 3y – 4 = 0 touches ellipse 3x2 + 4y2 = 20.

Answer»

Equation of line, x – 3y – 4 =0

⇒ x = 3y + 4

Equation of ellipse,

3x2 + 4y2 = 20

Putting value of x from (i) in eqn. (ii),

3(3y + 4)2 + 4y2 = 20

⇒ 3(9y2 + 24y + 16) + 4y2 – 20 = 0

⇒ 27y2 + 72y + 48 + 4y2 – 20 = 0

⇒ 31y2 + 72y + 28 = 0

Line will touch eqn. (ii) if

(72)2 – 4(31 )(28) = 0

∴ (72)2 – 4 × 31 × 28 = 5184 – 3472

= 1712 ≠ 0

Thus, given line will not be touch given ellipse.

∴ Given equation is wrong.

11.

A normal of parabola y2 = 4x is :(A) y = x + 4(B) y + x = 3(C) y + x = 2(D) y + x = 1

Answer»

Answer is (D) y + x = 1

Equation of parabola

y2 = 4x

y2 = 4 × 1 × x

a = 1

12.

Find the equation of common tangent to the parabolas y2 = 4x and x2 = 32y.

Answer»

Given equation of the parabola is y2 = 4x 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 4 

⇒ a = 1 

Let the equation of common tangent be 

y = mx + 1/m …..(i)

Substituting y = mx + 1/m in x2 = 32y, we get

⇒ x2 = 32(mx + 1/m) = 32 mx + 32/m

⇒ mx2 = 32 m2 x + 32 

⇒ mx2 – 32 m2 x – 32 = 0 ……..(ii)

Line (i) touches the parabola x2 = 32y. 

The quadratic equation (ii) in x has equal roots. 

Discriminant = 0 

⇒ (-32m2)2 – 4(m)(-32) = 0 

⇒ 1024 m4 + 128m = 0 

⇒ 128m (8m3 + 1) = 0 

⇒ 8m3 + 1 = 0 …..[∵ m ≠ 0] 

⇒ m3 = - 1/8

⇒ m = - 1/2

Substituting m = - 1/2  in (i), we get

⇒ y = - 1/2 x + 1/ (- 1/2)

⇒ y = - 1/2 x-2

⇒ x + 2y + 4 = 0, which is the equation of the common tangent.

13.

Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that sum of their slopes is -3.

Answer»

Given equation of the parabola is y2 = 18x 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 18

⇒ a = 9/2

Equation of tangent to the parabola y2 = 4ax having slope m is

⇒ y = mx + a/m

⇒ y = mx + 9/2m

⇒ 2ym = 2xm2 + 9 

⇒ 2xm2 – 2ym + 9 = 0

The roots m1 and m2 of this quadratic equation are the slopes of the tangents.

m1 + m2 = (-2y)/2x = y/x

But, m1 + m2 = -3

y/x = -3

y = -3x, which is the required equation of locus

14.

Find the equation of tangent to the parabola: y2 = 36x from the point (2, 9)

Answer»

Given equation of the parabola is y2 = 36x. 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 36 

⇒ a = 9 

Equation of tangent to the parabola y2 = 4ax having slope m is 

y = mx + \(\frac {a}{m}\)

Since the tangent passes through the point (2, 9), 

⇒ 9 = 2m + 9/m

⇒ 9m = 2m2 + 9 

⇒ 2m2 – 9m + 9 = 0 

⇒ 2m2 – 6m – 3m + 9 = 0 

⇒ 2m(m – 3) – 3(m – 3) = 0 

⇒ (m – 3)(2m – 3) = 0 

⇒ m = 3 or m = 3/2

These are the slopes of the required tangents. 

By slope point form, y – y1 = m(x – x1), the equations of the tangents are 

⇒ y – 9 = 3(x – 2) and y – 9 = 3/2 (x – 2)

⇒ y – 9 = 3x – 6 and 2y – 18 = 3x – 6 

⇒ 3x – y + 3 = 0 and 3x – 2y + 12 = 0

15.

If the tangents drawn from the point (-6, 9) to the parabola y2 = kx are perpendicular to each other, find k.

Answer»

Given equation of the parabola is y2 = kx 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = k 

⇒ a = k/4

Equation of tangent to the parabola y2 = 4ax having slope m is

y = mx + \(\frac {a}{m}\)

Since the tangent passes through the point (-6, 9), 

⇒ 9 = -6m + k/4m

⇒ 36m = -24m2 + k

⇒ 24m2 + 36m – k = 0 

The roots m1 and m2 of this quadratic equation are the slopes of the tangents. 

m1 m2 = -k/24

Since the tangents are perpendicular to each other

m1 m2 = -1 

⇒ -k/24 = -1

⇒ k = 24

Alternate method: 

We know that, tangents drawn from a point on directrix are perpendicular. 

(-6, 9) lies on the directrix x = -a. 

⇒ -6 = -a 

⇒ a = 6 

Since 4a = k 

⇒ k = 4(6) = 24

16.

Find the co-ordinate of focus, and length of latus rectum of parabola 3y2 = 8x

Answer»

Given equation of the parabola is 

3y2 = 8x

\(=y^2=\frac{8}{3}x\\=y^2=4.\frac{2}{3}x\)

Here, a = \(\frac{2}{3}\)

∴ focus = (a, 0) = ( \(\frac{2}{3}\) , 0)

And length of latus rectum = 4a = \(\frac{8}{3}\)

17.

Find the equation of the circle whose:(i) Centre (- 2, 3) and radius is 4(ii) Centre (a, b) and radius is a – b

Answer»

(i) According to question,

Centre of circle (h, k) = (- 2, 3)

and Radius of circle r = 4 unit

Then, equation of circle

From formula (x – h)2 + (y- k)2 = r2

[x – (- 2)]2 + (y – 3)2 = 42

⇒ (x + 2)2 + (y – 3)2 = 16

⇒ x2 + 4x + 4 + y2 – 6y + 9 = 16

⇒ x2 + y2 + 4x – 6y = 16 – 9 – 4

⇒ x2 + y2 + 4x – 6y = 3

⇒ x2 + y2 + 4x – 6y – 3 = 0

Thus, required equation of circle

x2 + y2 + 4x – 6y – 3 = 0.

(ii) According to question,

Centre of circle (h, k) = (a, b)

and Radius of circle r = (a – b) unit

Then, equation of circle
From formula (x – h)2 + (y – k)2 = r2

⇒ (x – a)2 + (y – b)2 = (a – b)2

⇒ x2 + a2 – 2ax + y2 + b2 – 2 by = a2 + b2 – 2ab

⇒ x2 + y2 – 2ax – 2by + a2 + b2 – a2 – b2 + 2ab = 0

⇒ x2 + y2 – ax – 2by + 2ab = 0.

18.

Find co-ordinates of focus, vertex, and equation of directrix and the axis of the parabola y = x2 – 2x + 3

Answer»

Given equation of the parabola is y = x2 – 2x + 3 

⇒ y = x – 2x + 1 + 2

⇒ y – 2 = (x – 1)2 

⇒ (x – 1)2 = y – 2 

Comparing this equation with X2 = 4bY, we get 

X = x – 1, Y = y – 2 

⇒ 4b = 1 

⇒ b = 1/4

The co-ordinates of vertex are (X = 0, Y = 0) 

⇒ x – 1 = 0 and y – 2 = 0 

⇒ x = 1 and y = 2 

The co-ordinates of vertex are (1, 2). 

The co-ordinates of focus are S(X = 0, Y = b) 

⇒ x – 1 = 0 and y – 2 = 1/4

⇒ x = 1 and y = 9/4

The co-ordinates of focus are (1, 9/4)

Equation of the axis is X = 0 

x – 1 = 0, i.e., x = 1 

Equation of directrix is Y + b = 0 

⇒ y – 2 + 1/4 =0

⇒ y – 7/4 = 0

⇒ 4y – 7 = 0