Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

The slope of line which belongs to family (1+ l) x + (1-l)y + 2(1-l) = 0 and makes shortest intercept on `x^2 = 4y - 4`

Answer» `(1+l)x+(l-1)y+2(1-l)=0`
`x+xl+ly-y+2+2l=0`
`(x-y+2)+l(x+y-2)=0`
`x-y+2=0-(1)`
`x+y-2=0-(2)`
adding equation 1 and 2
x=0,y=0
`x^2=4(y-1)`
`F(0,2)`
`1/(FA)+1/(FB)=2/(FC)`
option c is correct
2.

. The shortest distance from the point (2, -7) to circle `x^2+y^2-14x-10y-151=0`

Answer» False
Given circle is `x^(2)+y^(2)-14x-10y-151=0`
`therefore` Centre=(7,5)
and Radius=`sqrt(49+25+151)=sqrt(225)=15`
So, the distances between th point (2,-7) and centre of the circle is given by
`d_(1)=sqrt((2-7)^(2)+(-7-5)^(2))`
`=sqrt(25+144)=sqrt(169)=13`
`therefore` Shortest distance,d=`abs(13-15)=2`
3.

A tangent to a hyperbola `x^2/a^2 - y^2/b^2 = 1` intercepts a length of unity from each of the coordinate axes, then the point `(a, b)` lies on rectangular hyperbola

Answer» let the eqn of hyperbola be
`H : x^2/a^2 -y^2/b^2 = 1`
let the point on it be `(a sec theta, b tan theta)`
the equation of tangent will be
`bxsec theta - ay tan theta = ab`
putting y=0
`bxsec theta = ab `
`x= a cos theta = 1`
putting x=0
`-aytan thea = ab`
so, `y = bcos theta=1`
as `acos theta = 1`
`a = sec theta`
as `-bcos theta = 1`
`b = -tan theta`
as we know the identity `sec^2 theta - tan^2 theta = 1`
`a^2 - (-b)^2 =1`
`a^2-b^2=1 `
`x^2 - y^2=1 `
4.

If the focus of a parabola is (0,-3) and its directrix is y=3, then its equation isA. `x^(2)=-12y`B. `x^(2)=12y`C. `y^(2)=-12x`D. `y^(2)=12x`

Answer» Correct Answer - A
Given that, focus of parabola at F (0,-3) and equation of directrix is y=3
Let any point on the parabola is P (x,y).
Then, PF=`abs(y-3)`
`rArr sqrt((x-0)^(2)+(y-3)^(2))=abs(y-3)`
`rArrx^(2)+y^(2)+6y+9=y^(2)-6y+9`
`rArrx^(2)+12y=0`
`rArrx^(2)=-12y`
5.

Find the equation of the circle which circumscribes the triangle formedby the line: ` y=x+2,3y=4x a n d 2y=3x`

Answer» Given equations of line are
y=x+2…(i)
3y=4x….(ii)
2y=3x ….(iii)
From Eqs. (i) and (ii)
`(4x)/3=x+2`
`rArr4x=3x+6`
`rArr x=6`
On putting x=6 in Eq.(i) we get
y=8
`therefore` Point,A=(6,8)
From Eqs. (i) and (iii),
`(3x)/2=x+2`
`rArr3x=2x+4rArrx=4`
When x=4 then y=6
`therefore` Point, B=(4,6)
From Eqs. (ii) and (iii) `x_(1)=0_(1),y=0`
Now, C=(0,0)
Let the equation of circle is
`x^(2)+y^(2)+2gxn+2fy+c=0`
since,the points A(6,8),B(4,6) and C(0,0) lie on this circle
36+64+12g+16f+c=0
`rArr 12g+16f+c=-100....(iv)`
and 16+36+8g+12f+c=0...(v)
`rArr 8g+12f+c=-52`....(vi)
`rArr c=0`
From Eqs. (iv) , (v) and (vi),
12g+16f=-100
`rArr3g+4f+25=0`
`rArr2g+3f+13=0`
`rArrg/(+52-75)=f/(50-39)=1/(9-8)`
`rArrg/(-23)=f/11=1/1`
`rArrg=-23,f=11`
So, the equation of the circle is
`x^(2)+y^(2)-46x+22y+0=0`
`rArrx^(2)+y^(2)-46x+22y=0`
6.

Find the equation of the parabola whose focus is at (-1,-2) and thedirectrix the line `x-2y+3=0`

Answer» Given that, focus at F(-1,-2) and dirctrix is x-2y+3=0
Let any point on the parabola be (x,y)
`PF=abs((x-2y+3)/(sqrt(1+4)))`
`rArr (x+1)^(2)+(y+2)^(2)=((x-2y+3)^(2))/5`
`rArr5[x^(2)+2x+1+y^(2)+4y+4]=x^(2)+4y^(2)+9-4xy-12y+6x`
`rArr4x^(2)+y^(2)+4x+32y+16=0`
7.

Find the equation of the circle having `(1,-2)`as its centre and passing through the intersectionof the lines `3x+y=14a d n2x+5y=18.`

Answer» Given that, centre of the circle is (1,-2) and the circle passing through the lines
3x+y= 14….(i)
and 2x+5y=18…(ii)
From Eq. (i) y=14-3x pu in Eq. (ii), we get
2x+70-15x=18
`rArr` -13x=-52`rArr`x=4
Now, x=4 put in Eq. (i) we get
12+y=14`rArr`=y=2
Since, point (4, 2) lie on these lines also lies on the circle.
Radius of the circle =`sqrt((4-1)^(2)+(2+2)^(2))`
`=sqrt(9+16)=5`
Now equation of the circle is
`(x-1)^(2)+(y+2)^(2)=5^(2)`
`rArr x^(2)-2x+1+y^(2)+4y+4=25`
`rArr x^(2)+y^(2)-2x+4y-20=0`
8.

Find the equations of the hyperbola satisfying the given conditions :Foci `(0,+-sqrt(10))`, passing through (2,3)

Answer» Here, Foci of hyperbola `= (+-sqrt10,0)`
That means the transverse axis of the hyperbola is `Y`-axis.
So, the equation will be of the type,
`y^2/a^2-x^2/b^2 = 1->(1)`
Also, `c = sqrt10`
In a hyperbola, `c^2 = a^2+b^2`
Putting value of `c`,
`=> (sqrt10)^2 = a^2+ b^2`
`=>b^2 = 10-a^2`
Putting vallue of `b^2` in (1),
`y^2/a^2-x^2/10-a^2 = 1->(2)`
As hyperbola is passing through `(2,3)`, `x=2` and `y=3` should satisfy (2).
`So, 9/a^2-4/(10-a^2) = 1`
`=>9(10-a^2)-4a^2 = a^2(10-a^2)`
`=>90-9a^2-4a^2 = 10a^2 - a^4`
`=>a^4-23a^2+90 = 0`
`=>a^4-18a^2-5a^2+90 = 0`
`=>(a^2-18)(a^2-5) = 0`
`=> a^2 = 18 and a^2 = 5`
But, `a^2` can not be greater than `c^2`.
`:.a^2 = 5`
`b^2 = 10 - 5 = 5`
Putting values of `a^2` and `b^2` in (1),
`y^2/5-x^2/5 = 1`
9.

Find the equation of the circle passing through the point (7, 3) having radius 3 units and whose centre lies on the line `y = x-1`

Answer» Let equation of circle be
`(x-h)^(2)+(y-k)^(2)=r^(2)…..(i)`
`rArr (x-h)^(2)+(y-k)^(2)=9`
Given that, centre (h,k) lies on the line
y=x-1 i.e., k=h-1
Now, the circle passes through the point (7,3).
`(7-h)^(2)+(3-k)^(3)=9`
`rArr 49-14h+h^(2)+9-6k+k^(2)=9`
`rArr h^(2)+k^(2)-14h-6k+49=0`.....(iii)
On putting k=h-1 in Eq. (iii) we get
`h^(2)+(h-1)^(2)-14h-6(h-1)+49=0`
`rArr 2h^(2)-22h+56=0`
`rArrh^(2)-11h+28=0`
`rArr h^(2)-7h-4h+28=0`
`rArrh(h-7)-4(h-7)=0`
`rArr(h-7)(h-4)=0`
`therefore h=4,7`
When h=7, then k=7-1=6
`therefore` Centre(7,6)
When h=4, then k=3
`therefore` Centre-(4,3)
So, the equation of circle when centre (7,6) is
`(x-7)^(2)+(y-6)^(2)=9`
`rArr x^(2)-14x+49+y^(2)-12y+36=9`
`rArr x^(2)+y^(2)-14x-12y+76=0`
When centre (4,3), then the equation of the circle is
`(x-4)^(2)+(y-3)^(2)=9`
`therefore x^(2)-8x+16+y^(2)-6y+9=9`
`rArr x^(2)+^(2)-8x-6y+16=0`
10.

The equation of the hyperbola with vertices at (0,`pm`6) and eccentricity 5/3 is….. And its foci are …….

Answer» Let the equation of the hyperbola be -`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
Then vertices=(0,`pm`b)=(0,`pm`6)
`therefore b=6 and e=5//3`
`becausee=sqrt(1+(a^(2))/(b^(2)))rArr25/9=1+(a^(2))/36`
`rArr (25-9)/9=(a^(2))/36rArr16=(a^(2))/4rArra^(2)=48`
So, the equation of hyperbola is
`(-x^(2))/48+(y^(2))/36=1rArr(y^(2))/36-(x^(2))/48=1`
`because` Foci=(0,`pm`be)=(0,`pm5/3xx6`)=(0,`pm`10)
11.

If the parabola `y^2=4a x `passes through the point (3,2) then find the length of its latusrectum.A. `2/3`B. `4/3`C. `1/3`D. 4

Answer» Correct Answer - B
Given that, parabola is
`y^(2)=4ax`
`therefore` Length of latusrectum=4a
Since, the parabola passes through the point (3,2)
Then, 4=4a(3)
`rArr a=1//3`
`therefore` 4a=4/3
12.

If the line `l x+m y+n=0`touches the parabola `y^2=4a x ,`prove that `ln=a m^2`

Answer» True
Given equation of a line is
lx+my+n=0
and parabola`y^(2)`=4ax
From Eq. (i), x=`-((my+n)/l)`put in Eq. (ii) we get
`y^(2)=-(4a(my+n))/l`
`rArr ly^(2)=-4amy-4ax`
`rArrly^(2)+3amy+4an=0`
For tangent, D=0
`rArr16a^(2)m^(2)=4lxx4an`
`rArr 16a^(2)m^(2)=16anl`
`rArr am^(2)=nl`
13.

A circle of radius R touches externally a set of 12 circles each of radius `r` surrounding it. Each one of the smaller circles touches two circles of the set. Then `R/r=sqrtm+sqrtn-1,` where `m,n in N and m+n` is

Answer» Sum of interior angles of 12 sides polygon is=`(n-2)pi`
`=10pi`
`(10pi)/12=2(pi/2-theta/2)`
`(5pi)/6=pi-theta`
`theta=pi/6=30^0`
`(2r)^2=R^2+R^2-2Rcostheta`
`4r^2=2R(1-cos30^0)`
`R^2/r^2=1/(1-sqrt3/2)`
`=4/(2-sqrt3)`
`=4(2+sqrt3)`
`R/r=sqrt2*sqrt(4+2sqrt3`
`=sqrt2*(sqrt3+1)`
`=sqrt6+sqrt2`
m=6,n=2
m+n=6.
14.

The difference between the radii of the largest and smallest circles which have their centres on the circumference of the circle `x^2 + y^2 + 2x + 4y -4 = 0` and passes through point (a,b) lying outside the circle is :

Answer» `x^2+y^2+2x+4y-4=0`
`(x+1)^2+(y+2)^2-1-4-4=0`
`(x+1)^2+(y+2)^2=3^2`
AB is a diameter
`r_m=AB+r_s`
`r_m-r_s=AB=2*3=6`.
15.

If e is eccentricity of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`(where,a`lt`b), thenA. `b^(2)=a^(2)(1-e^(2))`B. `a^(2)=b^(2)(1-e^(2))`C. `a^(2)=b^(2)(e^(2)-1)`D. `b^(2)=a^(2)(e^(2)-1)`

Answer» Correct Answer - B
Given that, `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 altb`
We know that, `e=sqrt(1-(a^(2))/(b^(2)))rArre^(2)=((b^(2)-a^(2)))/(b^(2))`
`rArr b^(2)e^(2)=b^(2)=a^(2)`
`rArra^(2)=b^(2)(1-e^(2))`
16.

If lx + my -1 = 0 touches the circle `x^2 + y^2 = a^2` then the point (l,m) lies on the circle

Answer» C(0,0),r=a
`d=|(0+0-1)/sqrt(l^2+m^2)|=a`
`1/(l^2+m^2)=a^2`
`l^2+m^2=1/a^2`
`l^2+m^2=a^(-2)`
`x^2+y^2=a^(-2)`
option C is correct.
17.

The locus of the centre of a circle touching the circle `x^2 + y^2 - 4y -2x = 2sqrt3 - 1` internally and tangents on which from (1,2) is making a `60^@` angle with each other is a circle. then integral part of its radius is

Answer» `x^2+y^2-4y-2x=2sqrt3-1`
`(x-1)^2+(y-2)^2=1+4+2sqrt3-1`
`(x-1)^2+(y-2)^2=(sqrt3+1)^2`
`C_1C_2=r_1+r_2`
`(h-1)^2+(k-2)^2=(sqrt3+1+r)^2`
`sin30^0=r/(sqrt3+1+r)`
`sqrt3+1+r=2r`
`r=sqrt3+1=2.732`
2 Answer
18.

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.`16 x^2+y^2=16`

Answer» Given equation is,
`16x^2+y^2 = 16`
We will convert this equation into standard form.
`=>16/16x^2+1/16y^2 = 1`
`=> x^2/1+y^2/16 =1 `
So, this is our standard equation of ellipse with,
`a = 1, b = 4`
`c = sqrt(b^2-a^2) = sqrt(16-1) = sqrt15`
Here, as `b gt a`, major-axis will be `Y-`axis.
Now, foci will be `(0,+-c) = (0,+-sqrt15).`
Vertices will be `(0,+-b) = (0,+-4).`
Length of major-axis ` = 2b = 8`
Length of minor axis ` = 2a = 2`
Eccentricity `= c/b = sqrt15/4.`
Length of latus rectum ` = 2a^2/b = 2**1/4 = 1/2.`
19.

If latus rectum of ellipse `x^2tan^2phi+y^2sec^2phi=1` is 1/2, then the value of `phi` where `phi in (0,pi)` is

Answer» `x^2/cos^2phi+y^2/cos^2phi=1`
`a^2=cot^2phi`
`b^2=cos^2phi`
`1/2=(2b^2)/a=(2*cos^2phi)/cotphi`
`1/2=(2cos^2phi*sinphi)/cosphi`
`1/2=sin^2phi`
`2phi=pi/6`
`phi=pi/12`
`sin(pi-2phi)=1/2`
`pi-2phi=pi/6`
`pi-pi/6=2phi`
`2phi=5/6pi`
`phi=5/12pi`
option d is correct.
20.

If the latus rectum of an ellipse is equal to the half of minor axis, then find its eccentricity.

Answer» Consider the equation of the ellipse is `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`therefore`Length of major axis=2a
Length of minor axis=2b
and length of latusrectum=`(2b^(2))/a`
Given that, `(2b^(2))/a=(2b)/2`
`rArr` a=2b`rArr`b=a/2
We know that, `b^(2)=a^(2)(1-e^(2))`
`rArr (a/2)^(2)=a^(2)(1-e^(2))`
`rArr(a^(2))/4=a^(2)(1-e^(2))`
`rArr1-e^(2)=1/4`
`rArre^(2)=1-1/4`
`therefore e=sqrt(3/4)=sqrt(3/2)`
21.

Tangents are drawn from a point `P(6,sqrt(5))` to the ellipse `x^2/25+y^2/16=1`touching the ellipse in the points Q and R. The angle between PQ and PR is

Answer» Equation of tangent to an ellipse=>`y=mx+-sqrt(a^2 m^2+b^2)`.
here `a^2=25 and b^2=16`
substituting values we get=>` y=mx+-sqrt(25 m^2+16)` the point `(6,sqrt5)`, will satisfy this equation,so substituting values of x and y we get the eqn=>
`11m^2 -12sqrt(5)m-11=0`
using quadratic formula we get two values of m
`m_1=(6sqrt(5)+sqrt(301))/(11) m_2=(6sqrt(5)-sqrt(301))/(11)`
angle between the two tangents=`theta=tan^(-1)((m_1-m_2)/(1+m_1m_2))`
substituting values of m_1 and m_2 we get=> `theta=.tan^(-1)oo=pi/2`
22.

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.`49 y^2-16 x^2=784`

Answer» Given equation is,
`49y^2-16x^2 = 784`
We will convert this equation into standard form.
`=>49/784y^2-16/784x^2 = 1`
`=> y^2/16-x^2/49 =1 `
So, this is our standard equation of hyperbola with,
`a = 4, b = 7`
`c = sqrt(a^2+b^2) = sqrt(16+49) = sqrt65`
Here, as `y^2` is positive, major-axis will be `Y-`axis.
Now, foci will be `(0,+-c) = (0,+-sqrt65).`
Vertices will be `(0,+-a) = (0,+-4).`
Eccentricity `= c/a = sqrt65/4.`
Length of latus rectum ` = 2b^2/a = 2**49/4 = 49/2.`
23.

Find the area of the region bounded by the latus recta of the ellipse `x^2/a^2+y^2/b^2=1` and the targets to the ellipse drawn at their ends

Answer» equation of tangent PR
`(xx_1)/a^2+(yy_1)/b^2=1`
putting the extreme values
`(xe)/a+y/a`=1 -(1)
equation of tangent QR
`(xe)/a-y/b=1` -(2)
adding 1 and 2
`(2xe)/a=2`
`x=a/e`
putting this value in equation 1
`(xe)/a+y/a=1`
`a/e*e/a+y/a=1`
y=0
we got point R(`a/e`,0)
area of `triangle` PQR
A=`1/2*PQ*FR`
`A=1/2*(2b^2)/a*sqrt(a/e-ae)`
`A=1/2*(2b^2)/a*sqrt(a(1/e-e)`
`A=b^2/asqrt(a((1-e^2)/e)`
`A=b^2/asqrt(b^2/(ae))`
`A=b^2/asqrt(b^2/sqrt(a^2-b^2)`
`a=b^3/(a(a^2-b^2)^(1/4)`
24.

The ends of the major axis of an ellipse are (- 2, 4) and (2, 1). If the point (1, 3) lies on the ellipse,then find its latus rectum and eccentricity.

Answer» the major end points are (-2,4),(2,1)
by distance formula
`2a=sqrt(4^2+3^2)`
`2a=sqrt(16+9)`
`2a=5`
`a=5/2`
center of eclipse `((-2+2)/2,(4+1)/2)`
equation of eclipse
`(x-0)^2/a^2+(y-(5/2))^2/b^2=1`
`x^2/(25/4)+(y-(5/2))^2/b^2=1`
now, we have to find b
putting the value(1,3)
`4/25+1/4b_2=1`
`1/4b^2=1-4/5=21/25`
so `b^2=25/84`
`x^2/(25/4)+(y-(5/2))^2/b62=1`
length of latus rectum will be`=2b^2/a=(2*25*2)/(84*5)=5/21`
eccentricity=`e=sqrt(1-b^2/a^2)=sqrt(1-(25/84)/(25/4)=sqrt(20/21)`.
25.

If the eccentricity of an ellipse is `5/8`and the distance between its foci is `10 ,`then find the latusrectum ofthe ellipse.

Answer» Given that, eccentricity=`5/8i.e.,e=5/8`
Let equation of the ellipse be `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` ltvbrgt since the foci of the ellipse is `)pmae,o)`.
`therefore` Distance between foci =`sqrt((ae+ae)^(2))`
`rArr 2sqrt(a^(2)e^(2))=10` [`because` distance between the foci=10]
`rArr sqrt(a^(2)e^(2))=5`
`rArr a^(2)e^(2)=25`
`rArr a^(2)=(25xx64)/25`
`thereforea=8`
We know that,
`rArr b^(2)=a^(2)(1-e^(2))`
`rArr b^(2)=64(1-25/64)`
`rArr b^(2)=64((64-25)/64)`
`b^(2)=39`
`therefore` Length of latusrectum of ellipse=`(2b^(2))/a=2(39/8)=39/4`
26.

The line `3x-4y = 12` is a tangent to the ellipse with foci (-2, 3) and (-1, 0). Find the eccentricity of the ellipse.

Answer» `f1(-2,3) & f2(-1,0)`
So, `2ae=sqrt((-2+1)^2+ (3-0)^2)=sqrt10``4a^2e^2=10`
`a^2*(1-b^2/a^2)=5/2`
So, `a^2-b^2=5/2`
Equation of tangent,`y=(3x)/4-3`
&
`y=mx pmsqrt(a^2m^2 +b^2)`
Hence, `m=3/4 & a^2(3/4)^2+ b^2=9`Therefore, `a^2(1+9/16)=9+5/2``a^2=186/25`
Hence, `4*186/25*e^2=10`
So, `e=sqrt(125/368)=(5sqrt(5))/(4sqrt(23)`
27.

Find the range of eccentricity of the ellipse `x^2/a^2+y^2/b^2=1`, (where a > b) such that the line segment joining the foci does not subtend a right angle at any point on the ellipse.

Answer» we know `x^2y^2=a^2e^2`
we need to prove
b>ae
`b^2>a^2e^2`
`b^2>a^2-b^2`
`2b^2>a^2`
`b^2/a^2>1/2`
`0`ein(0,1/sqrt2)`
28.

Show that the set all points such that thedifference of their distances from `(4,0)a n d(-4,0)`is always equal to 2 represents a hyperbola.

Answer» Let the points be P (x,y).
`therefore` Distances of P from (4,0)`sqrt((x+4)^(2))+y^^(2))` …(i)
Now, `sqrt((x+4)^(2)+y^(2))-sqrt((x-4)^(2)+y^(2))=2`
`sqrt((x+4)^(2)+y^(2))=2+sqrt((x-4)^(2)+y^(2))`
On squaring both sides, we get
`x^(2)+8x+16+y^(2)=4+x^(2)-8x+16+y^(2)+4sqrt((x-4)^(2)+y^(2))`
`rArr16x-4=4sqrt((x-4)^(2)+y^(2))`
`rArr4(4x-1)=4sqrt((x-4)^(2)+y^(2))`
`rArr 16x^(2)-8x+1=x^(2)= 16-8x+y^(2)`
`rArr 15x^(2)-y^(2)=15` which is parabola.
29.

Show that the point `(x ,y)`given by `x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2))`lies on a circle for all real values of `t`such that `-1lt=tlt=1,`where a is any given real number.

Answer» Given points are `x=(2at)/(1+t^(2))` and `y=(a(1-t^(2)))/(1+t^(2))`
`because x^(2)+y^(2)=(4a^(2)t^(2))/((1+t^(2))^(2))+(a^(2)(1-t^(2)))/(1+t^(2))`
`rArr1/(a^(2)(x^(2)+y^(2)))=(4t^(2)+1+t^(4)-2t^(2))/((1+t^(2))^(2))`
`rArr1/(a^(2))(x^(2)+y^(2))=(t^(2)+2t^(2)+1)/((1+t^(2))^(2))`
`rArr 1/(a^(2))(x^(2)+y^(2))=((1+t^(2))^(2))/((1+t^(2))^(2))`
`rArr x^(2)+y^(2)=a^(2)`, which is a required circle.
30.

Range of values of k for which the point (k,-1) is exterior to both the parabolas ` y^2 = |x|` is

Answer» `y^2=x`
`y^2-x=0`
1-k>0
k<1
`y^2=-x`
`y^2+x=0`
`1+k>0`
`k> -1`
`k in (-1,1)`
option 2 is correct.
31.

The number of integer values of k for which the equation `x^2 +y^2+(k-1)x-ky+5=0` represents a circle whose radius cannot exceed 3 is

Answer» `x^2+y^2+2gx+2fy+c=0`
where centre`=(-g,-f)`
`r=sqrt(f^2+g^2-c)`
`2g=k-1`
`g=(k-1)/2`
`2f=-k`
`f=-k/2`
`c=5`
`r<=3`
`sqrt(f^2+g^2-c) <=3`
`f^2+g^2-c<=9`
`k^2/4+(k-1)^2/4-5<=9`
`(k^2+(k-1)^2-4xx14)/4<=0`
`k^2+(k-1)^2-56<=0`
`k^2+k^2-2k+1-56<=0`
`2k^2-2k-55<=0`
`k=2+-sqrt(4+440)/2xx2`
`k=2+-sqrt2(111)/4`
`k=1+-sqrt2(111)/2`
`(k- (1-sqrt(111)/2)(k-(1+sqrt111/2)`
`sqrt111=10.53`
`(1-sqrt111)/2=-4.7`
`(1+sqrt111)/2=5.7`
option `1`
32.

The equation of the image of the circle `x^2+y^2+16x-24y+183=0` by the line mirror `4x+7y+13=0` is :

Answer» `x^2+y^2+16x-24y+183=0`
`x^2+16x+64-64+y^2-24y+144-144+183=0`
`(x+8)^2+(y-12)^2+183-208=0`
`(x+8)^2+(y-12)^2-25=5^2`
Center(-8,12)
`4x+7y+13=0-(1)`
`7x+4y+k=0`
`-56+48+k=0`
`k=8`
`7x+4y+8=0-(2)`
From equation 1 and 2
`y=325/65=5`
`y=5`
`4x+7y+13=0`
9`4x+35+13=0`
`x=-12`
(-8,12),(-12,5),(h,k)
`(-8+h)/2=-12`
`h=-16`
`(12+k)/2=5`
`k=-2`
(-16,-2)
`(x+16)^2+(y+2)^2=25`
`x^2+y^2+32x+4y+256+4-25=0`
`x^2+y^2+32x+4y+235=0`.
33.

A student is allowed to select at most n books from a collection of (2n+1) books. If the total number of ways in which a student selects at least one book is 63. then n equals to -

Answer» `(2n+1)C_1+(2n+1)C_2+...+(2n+1)C_n=63`
`(2n+1)C_0+(2n+1)C_1+...+(2n+1)C_(2n+1)=2^(2n+1)`
`(2n+1)C_0=(2n+1)C_(2n+1)=1`
`(2n+1)C_1=(2n+1)C_(2n)`
`1+1+2S=2^(2n+1)`
`2+2*63=2^(2n+1)`
`128=2^(2n+1)`
`2^7=2^(2n+1)
`2n+1=7`
`2n=6`
`n=3`.
34.

Find the coordinates of points on the parabola `y^2=8x`whose focal distance is `4.`

Answer» Given parabola is `y^(2)`=8x
On compairing this parabola to the `y^(2)`=4ax, we get…..(i)
`8x=4axrArra=2`
`therefore` Focal distance=`abs(x+a)=4`
`rArr abs(x+2)=4`
`rArr x+2=pm4`
`rArr x=2,-6`
But `xne-6`
For x=2, `y^(2)=8xx2`
`therefore y^(2)=16rArry=pm4`
So, thepoints are (2,4) and (2,-4).
35.

over the towers of a bridge a cable is hung in the form of a parabola, have their tops 30 meters above the road way are 200 meters apart. If the cable is 5 meters above the road way at the centre of the bridge, then the length of the vertical supporting cable 30 meters from the centre is

Answer» `x^2=4a(y-b)`
`x^2=4a(y-5)`
`100*100=4a(30-5)`
a=100
`x^2=400(y-5)`
At x=30
`900=400(y-5)`
`y=29/4m`
36.

Filnd the distance between the directricesthe ellipse `(x^2)/(36)+(y^2)/(20)=1.`

Answer» The equation of ellipse is `(x^(2))/36+(y^(2))/20=1`
On comparing this equation with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`we get
`a=6,b=2sqrt5`
we know that, `b^(2)=a^(2)(1-e^(2))` ltbr. `rArr 20=36(1-e^(2))`
`rArr 20/36=1-e^(2)`
`therefore e=sqrt(1-20/36)=sqrt(16/36)`
`E=4/6=2/3`
Now, directrices=`(+a/e,-1//e)`
`therefore a/e=(6/2)/3=(6xx3)/2=9`
and `-a/e=-9`
`therefore` Distance between the directrices=`abs(9-(-9))=18`
37.

The angle between the two tangents from the origin to the circle `(x-7)^2+ (y+1)^2= 25` equals

Answer» `sintheta=5/(5sqrt2)=1/sqrt2`
`theta=pi/4`
`OC=sqrt50=5sqrt2`.
38.

Two parabola have the same focus. If their directrices are the x-axis and the y-axis respectively, then the slope of their common chord is :

Answer» F(n,k)
D_1:y=0
D_2:x=0
`P_1:(x-h)^2+(y-k)^2=y^2`
`sqrt((x-h)^2+(y-k)^2)=|(lx+my+n)/sqrt(l^2+m^2)|`
`x^2-2hx+h^2+y^2-2yk+k^2=y^2`
`P_1:x^2-2hx-2yk+h^2+k^2=0-(1)`
`P_2:x^2-2hx+h^2+y^2-2yk+k^2=x^2`
`y^2-2hx-2yk+h^2+k^2=0`
Chord=`P_1=P_2`
`x^2-2hx-2yk+h^2+k^2-y^2+2hx+2ykh^2-k^2=0`
`y^2-x^2=0`
`(y-x)(y+x)=0`
`m=1,-1`
option 1 is correct.
39.

From the focus of parabola `y^2 = 8x` as centre, a circle is described so that a common chord is equidistant from vertex and focus of the parabola. The equation of the circle is

Answer» OP=PF
OP=OF/2=1
`y^2=8x`
`y^2=8`
`y=pm2sqrt2`
`FN=sqrt((2-1)^2+(2sqrt2-0)^2)=sqrt9=3`
Circle=`(x-2)^2+y^2=9`.
40.

The locus of the mid point of a chord of the circle `x^2+y^2=4` which subtends a right angle at the origin is

Answer» `/_OAD` and`/_OBD`
OA=OB
OD=OD
AD=DB
`/_OAD cong /_OBD`
`/_AOD=/_BOD=90/2=45`
`cos45=(OB)/(OA)`
`1/sqrt2=sqrt(h^2+k^2)/2`
`1/2=(h^2+k^2)/4`
`h^2+k^2=2`
`x^2+y^2=2`
option 3 is correct.
41.

P(-3, 2) is one end of focal chord PQ of the parabola `y^2+4x+4y=0`. Then the slope of the normal at Q is

Answer» Parabola=that tangent at one end of focal chord is parallel to normal at other end.
Slope of normal at `theta`=slope of tangent at P
`y^2+4x+4y=0`
diff with respect to x
`2ydy/dx+4+4dy/dx=0`
`dy/dx=-4/(2y+4)`
`=-1/2`.
42.

Find the length of the normal chord which subtends an angle of `90^@` at the vertex of the parabola `y^2=4x` .

Answer» Let `PQ` is the common chord.
Then, at any point coorinates of `P` and `Q` are `(t1^2,2t1)` and `(t2^2,2t2)`
As the chord subtends an angle of `90^@`, relation between t1 and t2 will be,
`t2=-t1-2/(t1)` `-> Eq(1)`
If O is the origin, then OP and OQ are perpendicular to each other. In that case, both their slopes multiplication will be -1.
Thus,
`(2t1)/(t1^2)**(2t2)/(t2^2)=-1`
`=>t1.t2=-4 ->Eq(2)`
Putting values of t2 from Eq(1)
`=>t1(-t1-2/(t1))=-4`
`=>-t1^3-2t1=-4t1`
`=>t1^3-2t1=0`
Solving, above, we get, `t1=0` or `t1=sqrt(2)`
As, t1=0 is not possiblee, so `t1 = sqrt(2)`
Putting value of t1 in Eq(2), we get, `t2 = -2sqrt(2)`
So, coordinates of chord are`P(2,2sqrt(2))` and `Q(8,-4sqrt(2))`
So, length of PQ will be `sqrt((6sqrt(2))^2+6^2))= sqrt(108) = 6sqrt(3)`
43.

In a circle of diameter 40cm the length of a chord is 20 cm Find the length of the minor arc

Answer» AB=40cm
AC=r=20cm
`/_PCQ=60^0`
Minar arc=`2pi*20*60/360=20/3pi`.
44.

The power of the origin w.r.t the circle on a focal chord of `y^2 = 4ax` as a diameter is

Answer» PQ is a diameter.
`((at_1^2+at_2^2)/2,2a(t_1+t_2)/2)`
`t_1t_2=-1`
`(x-a)^2+y^2=4a^2`
Power=`-a(3a)=-3a^2`.
45.

If `y=2x` is the chord of the circle `x^2+y^2-4x=0`, find the equation of the circle with this chord as diameter.

Answer» `x^2+(2x)^2-4x=0`
`x(5x-4)=0`
x=0,4/5
`x_1=4/5,y_1=2x_1=8/5`
`((x_1+0)/2,(y_1+0)/2)=(x_1/2,y_1/2)=(2/5,4/5)`
`(x-h)^2+(y-k)^2=r^2`
`(x-2/5)^2+(y-4/5)^2=(x_1/2)^2+(y_1/2)^2`
`x^2-4/5x+-8y/5+y^2=0`
`5(x^2+y^2)-4x-8y=0`.
46.

If from any point `P` on the circle `x^2+y^2+2gx+2fy+c=0`, tangents are drawn to the circle `x^2+y^2+2gx+2fy+csin^2 alpha+(g^2+f^2)cos^2 alpha=0`, then the angle between the tangents is :(A) `alpha`(B) `2 alpha`(C) `alpha/2`(D) `alpha/3`

Answer» P(h,k) to the cords
`x^2+y^2+2xy+2fy=0`
`T=h^2+k^2+2gh+2fk+c`
`T=h^2+k^2+2gh+2fk+sin^alpha+(g^2+f^2)cos^2alpha`
`sintheta(h,k)` lies on the circle `x^2+y^2+2gx+2fy+c=0`
`t^2=(h^2+k^2gh+2fk+c)+csin^alpha+(g^2+f^2)cos^2alpha-c`
`=(g^2+f^2)cos^2alpha-c(1-sin^2alpha)`
`r^2=g^2f^2-(csin^2alpha+(g^2+f^2)cos^2alpha)`
`=(g^2+f^2-c)sin^2alpha`
`tantheta=r/T=sqrt((g^2+f^2-c)sin^2alpha)/sqrt(g^2+f^2-c cos^2alpha)`
`sqrt(sin^2alpha/cos^2alpha)=tanalpha`
`theta=alpha`
option b is coorect
47.

The locus of the mid points of the chords of the circle `x^2+y^2+4x-6y-12=0` which subtend an angle of `pi/3`radians at its circumference is:(A) `(x-2)^2+(y+3)^2=6.25` (B) `(x+2)^2+(y-3)^2=6.25`(C) `(x+2)^2+(y-3)^2=18.75` (D) `(x+2)^2+(y+3)^2=18.75`

Answer» We can draw the figure from the given details. Please refer to the video for diagram.
Equation of the given circle is is,
`x^2+y^2+4x-6y-12 = 0`
Comparing this equation with the standard circle equation,
`x^2+y^2+2gx+2fy+c = 0`, we get
`g = 2,f = -3, c = -12`
Now, centre of circle will be `(-g,-f) = (-2,3)`
And, radius AC will be `sqrt(g^2+f^2-c) = sqrt(4+9+12) = 5`
Now, we are given ,`/_AQB = 60^@`
`/_ACB` will be twice of it, as C is centre of the circle.
`/_ACB = 2**60^@ = 120^@`
Now, if `P(alpha,beta)` is the midpoint of the chord, then `/_ACP = 60^@`
So, CP will be `/_ACcos60^@ = 5/2`
Now, we can say that `CP^2 = ((alpha - (-2))^2 + (beta -3)^2)`
`=>(alpha+2)^2+(beta-3)^2 = (2.5)^2`
`=>(alpha+2)^2+(beta-3)^2 = 6.25`
If we replace (alpha,beta) with (x,y), then,
`(x+2)^2+(y-3)^2 = 6.25`
that is the required equation.
48.

The arithmetic mean of the ordinates of the feet of the normals from (2,6) to the parabola `y^2=4x` is

Answer» `(at^2, 2at) = (t^2,2t)`
N`=> y= -tx + 2at + at^3`
`y = -tx + 2t + t^3`-(2,6)
`6 = -2t + 2t + t^3`
`t^3 = 6`
`t^3- 6=0`
lets say , `t_1 + t_2 + t_3 = 0`
mean =`(2at_1 + 2 at_2+ 2at_3)/2`
`=0`
Answer
49.

If `a!=0` and the line `2bx+3cy+4d=0` passes through the points of intersection of the parabola `y^2 = 4ax` and `x^2 = 4ay`, then

Answer» Intersection points of `y^2 = 4ax` and `x^2 = 4ay` will be `(0,0)` and `(4a,4a)`.
Putting these values of `(x,y)` in given line, `2bx+3cy+4d = 0`
At point `(0,0),`
`0+0+4d = 0 => d = 0->(1)`
At point `(4a,4a),`
` 8ab+12ac+4ad = 0`
`=>4a(2b+3c+0) = 0`
`=>4a(2b+3c) = 0`
As ,` a !=0,` So, `2b+3c = 0->(2)`
Squaring and adding (1) and (2),
`d^2+(2b+3c)^2 = 0`
So, option `D` is the correct option.
50.

Length of the latus rectum of the hyperbola `xy-3x-4y+8=0`

Answer» Equation of given hyperbola is,
`xy-3x-4y+8 = 0`
`=>x(y-3)-4(y-3)-12+8 = 0`
`=>(x-4)(y-3) = 2^2`
So, this is a standard form of rectangular hyperbola, `XY = a^2/2`.
`:. a^2/2 = 2^2 = 4 => a^2 = 8=> a = 2sqrt2`
Length of latus rectum of rectangular hyperbola `= 2a = 2**2sqrt2 = 4sqrt2`