Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

`cosec^(-1)((1+tan ^2x)/(2tanx))`

Answer» Correct Answer - 2
252.

`cosec^(-1)3x`

Answer» Correct Answer - `(-1)/(xsqrt(9x^2-1))`
253.

If y=x sin y then prove that `xdy/dx=(y)/(1-x cos y)`

Answer» y=sin x `rArr dy/dx(1-x cos y ) =sin y`
`rArr dy/dx = (sin y )/(1-x cos y )=(y)/(x(1-x cos y)).`
`rArr x.(dy)/(dx)=(y)/((1-x cos y )).`
254.

`sqrt(secx)`

Answer» Correct Answer - `1/2 sqrt(sec x ). tan x `
255.

`y=(sinx)^(cosx)+(cosx)^(sinx)`

Answer» Correct Answer - `(sinx)^(cosx)[cotxcdotcosx-sinxlog(sinx)]+)cosx)^(sinx)[cosxcdotlog(cosx)-sinxcdottanx]`
256.

If `y=secx+tanx` then prove that `(d^2y)/(dx^(2))=cosx/((1-sinx)^(2))`.

Answer» `y=secx+tanx`
`=1/cosx+sinx/cosx=(1+sinx)/cosx` ,brgt `rArr(dy)/(dx)=d/(dx)((1+sinx)/cosx)`
`(cosxd/(dx)(1+sinx)-(1+sinx)d/(dx)cosx)/(cos^(2)x)`
`=(cosx.cosx+(1+sinx).sinx)/(cos^(2)x)`
`=(1+sinx)/(1-sin^2x)=1/(1-sinx)`
`rArr (d^(2)y)/(dx^2)=d/(dx)(1/(1-sinx))`
`=((1-sinx).d/(dx)(1)-1d/(dx)(1-sinx))/((1-sinx)^(2))`
`=(0+cosx)/((1-sinx)^(2))=cosx/((1-six)^(2))`
257.

`tan (e^x+5)`

Answer» Correct Answer - `e^(x).sec^2(e^x +5)`
258.

`y=sqrt((x^(2)+x+1)/(x^(2)-x+1))`

Answer» Correct Answer - `sqrt((x^(2)+x+1)/(x^(2)-x+1))cdot((1-x^(2)))/(x^(4)+x^(2)+1)`
259.

cosec`sqrt(x)`

Answer» Correct Answer - `(-cosec sqrt(x)cot sqrt(x))/(2sqrt(x))`
260.

The number of points in `(1,3)`, where `f(x) = a(([x^2]),a>1` is not differential is

Answer» Correct Answer - D
Let `g(x)=x^(2)`. Then g(x) is an increasing function on (1,3) such that g(1)=1 and g(3)=9
on (1,3) such that g(1)=1 and g(3)=9
Clearly, `[g(x)]=[x^(2)]` is discontinuous and hence non-differentiable at `x=sqrt(2),sqrt(3),sqrt(4),sqrt(5),sqrt(6),sqrt(7) and sqrt(8)`. Hence, `f(x)=a^([x^(2)]` is non differentiable at x=0, then
261.

If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`

Answer» `therefore sqrt(1-x^2)+sqrt(1-y^2)=a (x-y)`
`rArr sqrt(1-sin^2A)+sqrt(1-sin^2 )=B=a (sinA-sin B)`
`rArr cosA +cos B = a(sin A-sin B)`
`rArr 2cos""(A+B)/2.cos"" (A-B)/2=a 2 cos ""(A+B)/2 sin""(A-B)/2`
`rArr cos""(A-B)/2=a.sin""(A-B)/2`
`rArr cos""(A-B)/2=cot^-1a`
`rArr (A-B)/2=cot^-1a`
`rArr A-B = 2 cot^-1a`
`rArr sin^-1x sin ^1y=2 cot ^-1 a`
Differentiate both sides with respect to x `1/sqrt(1-x)-1/sqrt(1-y)dy/dx=0`
`rArr dy/dx=(sqrt(1-y^2))/(sqrt(1-x^2))`
262.

`y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^(x))`

Answer» Correct Answer - `((x+1)^(2)sqrt(x-1))/((x+3)^(3)cdote^(x))[2/(x+1)+1/(2(x-1))-3/(x+3)-1]`
263.

`"cos" e^(x)`

Answer» Correct Answer - `-e^x sin e^x`
264.

`e^("sin x")`

Answer» Correct Answer - `e^(sinx) cos x`
265.

`y=(sinx)^(tanx)+(cosx)^(secx)`

Answer» Correct Answer - `(sinx)^(tanx)[1+log(sinx)cdot sec^(2)x]+(cosx)^(secx)cdot secxsecxtanx[log(cosx)-1]`
266.

If `y=x^(sin^(-1)x)` then finde `(dy)/(dx)`.

Answer» `y=x^(sin^(-1)x)`
Taking log on both sides
`logy=log(x^(sin^(-1)x)`
`=sin^(-1)xcdotlogx`
Differentiate both sides with respect to x.
`(1/y)(dy)/(dx)=sin^(-1)xcdot1/x+logxcdot1/(sqrt(1-x^(2)))`
`rArr (dy)/(dx)=ycdot[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]`
`rArr(dy)/(dx)=x^(sin^(-1)x)[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]`cdotAns
267.

`sqrt((1-tanx)/(1+tanx))`

Answer» Correct Answer - `(-sec^2x)/((1+ tan x )sqrt(1-tan ^2 x ))`
268.

Differentiate `tan^-1""((2x)/(1-x^2))` with respect to `cos ^-1 ((1-x^2)/(1+x^2))`

Answer» Let `y_(1)=tan^-1""(2x)/(1-x^2)=2 tan^-1 x`
`rArr dy_(1)/dx =2 d/dx tan^-1 x=(2)/(1+x^2)`
` Let y_(2)=cos ^-1((1-x^2)/(1+x^2))`
and x tan `theta `
`therefore y_(2)=cos ^-1""(1-tan^2 theta)/(1+tan^2theta)`
`rArr (dy_2)/(dx)=2 d/dx . tan ^-1x=2/(1+x^2)`
`now dy_1/dy_2=(dy_1//dx)/(dy_2//dx)=(2//(1+x^2))/(2//(1+x^2))=1.`
269.

Let `f(x)={2/(1+x^2),xi sr a t ion a l b ,xi sr a t ion a l`has exactly two points of continuity then the value of `b`are`(0,3]`b. `[0,1]`c. `(0,2]`d.`varphi`A. (0,3]B. [0,1]C. (0,2]D. `phi`

Answer» Correct Answer - C
`f(x)={{:((2)/(1+x^(2))",","x is irrational"),(b",","x is rational"):}` has exactly two points of continuity then equation `(2)/(1+x^(2))=b` must have two distinct roots.
Now `(2)/(1+x^(2)) in(0,2]`
`rArr" "b in {0,2]`
270.

`e^(tanx)`

Answer» Correct Answer - `e^(tan x).sec^2x`
271.

Find the 2nd derivative of `x^(6).e^(6x)` with respect to x.

Answer» Let `y=x^(3).e^(6x)`
`rArr(dy)/(dx)=d/(dx)(x^(3).e^(6x))`
`=x^(3).d/(dx)e^(6x)+e^(6x).d/(dx)x^(3)`
`=x^(3).6e^(6x)+e^(6x).3x^(2)`
`=6.x^3.e^(6x)+3.x^2.e^(6x)`
`rArr (d^(2)y)/(dx^(2))=6.d/dx(x^3.e^(6x))+3.d/dx(x^2.e^(6x))`
`=6[x^3. 6.e^(6x)+e^(6x).3x^2]`
`+3[x^2 . 6 e^(6x)+e^(6x).2x]`
`=e^(6x)[36x^3+18x^2+18x^2+6x]`
`=6x . e^(6x)(6x^2+6x+1)`.
272.

The function f(x)=(x) where (x) denotes the smallest integer `ge x` isA. everywhere continuousB. continuous at x=n, `n in Z`C. continuous on R-ZD. none of these

Answer» Correct Answer - C
For any `n in Z`, we have
`("LHL at x=n")=underse(x to n^(-))lim f(x)`
`Rightarrow ("LHL at x=n")=underse(h to 0)lim f(n-h)=underset(h to 0)lim (n-h)=n`
`("RHL at x=n")=underset(x to n^(+))lim f(x)`
`Rightarrow ("RHL at x=n")=underset(h to 0)lim f(n+h)=n+1`
`therefore underset(x to n^(-))lim f(x)ne underset(x to n^(+))lim f(x)`
Let `x=a in R-Z`. Then, there exists `n in Z` such that `n lt a lt n+1` Now,
`underset(x to a^(-))lim f(x)=underset(x to 0)limf(a-h)=underset(h to 0)lim (a-h)=n+1`
`underset(x to a^(+))lim f(x)=underset(h to 0)limf(a+h)=underset(h to 0)lim (a+h)=n+1`
`and, f(a)=n+1`
`therefore underset(x to a^(-))lim f(x)=underset(x to a^(+))lim f(x)=f(a)`
There f(x) is a continuous at x=a
Hence, f(x) is a continous at all points other than integer points.
273.

Let `f(x)=[t a n x[cot x]],x [pi/(12),pi/(12)]`, (where [.] denotes the greatest integer less than orequal to`x`). Then the number of points, where `f(x)`is discontinuous isa. oneb. zero``c. threed. infiniteA. oneB. zeroC. threeD. infinite

Answer» Correct Answer - C
We `x in I`.
`rArr" "tanx[cotx]=1`
`rArr" "[tanx[cotx]lt1`
When, `x in I`,
`[cotx]ltcotx`
`rArr" "0 lt tanx[cotx]lt1`
`rArr" "[tanx[cotx]]=0`
`rArr" "f(x)=[tanx[cotx]]={{:(1",",cotx in I),(0",",cot x cancelinI):}`
So, f(x) is discontinuous when `cot x in I`
Now `(pi)/(12)le x lt(pi)/(2)`
`rArr" "0 lt cot x le2+sqrt3`
Hence, number of points of discontinuity are `x=cot^(-1)3, cot^(-1)2` and `cot^(-1)1=(pi)/(4)`.
Thus three points of discontinuity.
274.

Statement-1: Let `f(x)=[3+4sinx ]`, where [.] denotes the greatest integer function. The number of discontinuities of f(x) in `[pi,2pi]` is 6 Statement-2: The range of f is `[-1,0,1,2,3]`A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
We have
`-1 le sin x le 0 "for all "x in [pi,2pi]`
`Rightarrow -4 le 4sin x le 0 "for all "x in [pi,2pi]`
`Rightarrow -1 le 4sin x le 3 le 3" for all "x in [pi,2pi]`
`Rightarrow f(x)=[4 sinx+3]"assumes values"-1,0,1,2 and 3` when `x in [pi,2pi]`
`Rightarrow "Range f"=[-1,0,1,2,3]`
So, statement-2 is true
Clearly, there are eight of discontinuity of f(x) in `[pi,2pi]`. So, statment-1 is true.
275.

`Differential `e^(tanx)`with respect to sin x.

Answer» `Let y_(1)=e^(tanx) " and " y_(2)=sin x `
`therefore dy_(1)/dx=d/dx e tan x`
`=e^tan x.d/dxe^tan x`
`e^tan x.s ec^2 x `
and `dy_(1)/dy_(2)=(dy_1//dx)/(dy_2//dx)=(e^tan x .sec^2 x )/(cos x)`
`=e^(tan x).sec ^3 x `
276.

Find the derivative of `(1+cosx)^(x)` with respect to x.

Answer» Let y=`(1+cosx)^(x)`
log y=`log(1+cosx)^(x)`
`=xlog(1+cosx)`
Differentiate both sides with respect to x.
`(1/y)(dy)/(dx)=xcdotd/(dx)log(1+cosx)+log(1+cosx)cdotd/(dx)x`
`rArr(dy)/(dx)=y[x/(1+cosx)cdotd/(dx)(1+cosx)+log(1+cosx)]`
`rArr(dy)/(dx)=(1+cosx)^(x)[(-xsinx)/(1+cosx)+log(1+cosx)]`
Ans.
277.

`y=(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Answer» Correct Answer - `(x+1)^(2)(x+2)^(3)(x+3)^(4)cdot[2/(x+1)+3/(x+2)+4/(x+3)]`
278.

If `x(x)+y^(y)=1` then find `(dy)/(dx)`.

Answer» Correct Answer - `-(x^(x)(1+logx))/(y^(y)(1+logy))`
279.

If `f(x)=[x] sin ((pi)/([x+1]))`, where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain isA. ZB. `Z-{-1,0}`C. `R-[-1,0)`D. none of these

Answer» Correct Answer - B
Clearly , f(x) is defined for all `x in R -[-1,0)`. For any integer `k ne -1`, we have
`f(x)=k sin (pi)/(k+1), k le x lt k +1`
So, f(x) being a constant function is continuous at all points other than integers in its domain.
Also,
`underset(x to k)lim f(x)=underset(h to 0)lim f(k-h)`
`Rightarrow underset(x to k^(-))lim f(x)=underset(h to 0)lim [k-h] "sin" (pi)/([k+h+1])=k sin ((pi)/(k+1)), k ne -1`
`therefore underset(x to k^(-))lim f(x) ne underset(x to k^(+))(lim f(x), k ne 0`
Thus, f(x) is a discontinous at all non-zero integer points in its domain.
When k=0, we have
`f(x)=0 sin pi=0"for all " x in [0,1)`
`Rightarrow underset(x to 0^(+))lim f(x)=f(0)`
So, f(x) is right continous at x=0
Hence, the set of points of discontinuity in its domain is `Z-(-1,0)`
280.

Differentiate `sqrt((1-x)/(1+x))` with respect to x.

Answer» Let y=`sqrt((1-x)/(1+x))=((1/x)/(1+x))^(1//2)`
`rArrlogy=log((1-x)/(1+x))^(1//2)=1/2log((1-x)/(1+x))`
`=1/2[log(1-x)-log(1+x)]`
Differentiate both sides with respect to x
`1/y(dy)/(dx)=1/2[(-1)/(1-x)-1/(1+x)]`
`=1/2[(-1-x-1+x)/(1-x^(2))]=(-1)/(1-x^(2))`
`rArr(dy)/(dx)=-y/(1-x^(2))=-1/(1-x^(2))sqrt((1-x)/(1+x))`
`=(-1)/((1+x)^(1//2)(1+x)^(3//2))` Ans.
281.

Let `f(x)=p[x]+qe^(-[x])+r|x|^(2)`, where p,q and r are real constants, If f(x) is differential at x=0. Then,A. `q=0,r=0, p in R`B. `p=0,r=0, q in R`C. `p=0,q=0, r in R`D. none of these

Answer» Correct Answer - C
We have `f(x)=p[x]+qe^(-[x])+rx^(2)`
Since, [x] and [x] are not differentiable at x=0. Therefore, f(x) will be differentiable at x=0 only when p=q=0
282.

`y=tanxtan2xtan3xtan4x`

Answer» Correct Answer - `2tanxtan2xtan3xtan4x[cosec2x+2cosec4x+3cosec6x+4cosec8x]`
283.

(i) `y=e^(x)sin^(3)xcos^(4)x` (ii) `y=x*e^(xsinx)`

Answer» Correct Answer - (i) `e^(x)sin^(3)xcos^(4)x[1+3cotx-4tanx]` (ii) `e^(xsinx)(xcosx+sinx)`
284.

`sin^(2) x + cos ^(2) y = 1`

Answer» `sin^(2) x + cos ^(2) y = 1`
Differentiate both sides w.r.t. x
` 2 sin x cos + 2 cos y (-sin y)(dy)/(dx)= `
`rArr sin 2x - sin 2y (dy)/(dx) = 0 rArr (dy)/(dx) = (sin2x)/(sin2y)` .
285.

If f is continuous on its domain D; then `|f|` is also continuous on D

Answer» Hence, `f(x) = |x-1|` in `[0,2]` is not differentiable at `x in 1 in (0,2)`.
286.

`sin (tan ^(-1)2x)`

Answer» Correct Answer - `(2 cos(tan ^(-1)2x))/(1+4x^2)`
287.

Let `f(x)={{:(,(1)/(|x|),"if "|x| gt 2,"then "f(x)is),(,a+bx^(2), , "if"|x| le2):}` is differentiable at x=-2 forA. `a=(3)/(4), b=(1)/(6)`B. `a=(3)/(4), b=(1)/(16)`C. `a=-(1)/(4), b=(1)/(16)`D. `a=(1)/(4), b=-(1)/(16)`

Answer» Correct Answer - B
We have
`f(x)={{:(,-(1)/(x),"if "x lt -2),(,a+bx^(2),"if"-2 le x lte 2),(,(1)/(x),"if"x gt 2):}`
Since, f(x) is differentiable at x=-2. So, it is continuous there at
`therefore underset(x to -2^(-))lim f(x)=underset(x to -2^(+))lim f(x)=f(-2)`
`Rightarrow underset(x to -2^(-))lim f(x)=underset(x to -2^(+))lima+bx^(2)=a+b(-2)^(2)`
`Rightarrow (1)/(2)=a+4b`
As f(x) is differentiable at x=-2. Therefore
`underset(x to -2^(-))lim (f(x)-f(-2))/(x-(-2))=underset(x to -2^(+))lim (f(x)-(f-2))/(x-(-2))`
`underset(x to -2^(-))lim (-(1)/(x)-(a+4b))/(x+2) =underset(x to -2^(+))lim ((a+bx^(2))-(a+4b))/(x+2)`
`underset(x to -2^(-))lim (-(1)/(x)-(1)/(2))/(x+2)=b underset(x to -2^(+))lim (x^(2)-4)/(x+2)`
`Rightarrow underset(x to -2^(-))lim -(1)/(2x)=b underset(x to =2^(+))lim (x-2)`
`Rightarrow (1)/(4)=b(-4) Rightarrow b=-(1)/(16)...(ii)`
Solving (i) and (ii), we get `a=(3)/(4) and b=-(1)/(16)`
288.

`log (x+1/x)`

Answer» Correct Answer - `(x^2-1)/(x(x^2+1))`
289.

Differentiate `sqrt((x+1)(x+2)(x+3))` with respect to x.

Answer» Let y=`sqrt((x+1)(x+2)(x+3))`
`rArrlogy=log[sqrt((x+1)(x+2)(x+3))]`
`=1/2log[(x+1)(x+2)(x+3)]`
`=1/2[log(x+1)+log(x+2)+log(x+3)]`
Differentiate both sides with sides with respect to x
`1/y(dy)/(dx)=1/2[1/(x+1)+1/(x+2)+1/(x+3)]`
`rArr(dy)/(dx)=1/2y(1/(x+1)+1/(x+2)+1/(x+3))`
`=1/2sqrt((x+1)(x+2)(x+3))`
`(1/(x+1)+1/(x+2)+1/(x+3))`. Ans
290.

`sin^(2)y + cos xy = k`

Answer» `sin^(2)y + cos xy = k`
Differentiate both sides w.r.t. x
` 2sin y cos y (dy)/(dx) + (-sin xy) (d)/(dx)(xy) =0`
`rArr sin 2y (dy)/(dx)-sin xy(x(dy)/(dx)+ y .1)=0`
`rArr (dy)/(dx)(sin2y- x sin xy)= ysin xy`
`rArr (dy)/(dx)=(y sin xy)/(sin 2y = x sin xy)`
291.

(i) `x^(y)cdoty^(x)=1` (ii) `y=e^(x^(x))`

Answer» Correct Answer - (i) `(-y(y+xlogy))/(x(ylogx+x))` (ii) `e^(x^(x))cdotx^(x)(1+logx)`
292.

`tan ^(-1)(cos sqrt(x))`

Answer» Correct Answer - `(-sinsqrt(x))/(2sqrt(x)(1+cos^2sqrt(x)))`
293.

If `f.g` is continuous at `x = 0` , then f and g are separately continuous at `x = 0`.

Answer» Let `f(x) = sinx` and `g(x) = cotx`
`:. f(x). g(x) = sinx. (cosx)/(sinx) = cosx`
which is continuous at `x = 0` but `cot x` is not continuous at `x = 0`.
294.

If `y= (x)/(x+5) " then " x dy/dx = ? `A. y(1-y)B. y(1-y)C. (1-y)D. (1+y)

Answer» Correct Answer - A
295.

`x^(3) + x^(2)y+ xy^(2) + y^(3) = 81`

Answer» `x^(3) + x^(2)y+ xy^(2) + y^(3) = 81`
Differentiate both sides w.r.t. x
`3x^(2) + (x^(2)(dy)/(dx)+2xy)`
` + (2xy (dy)/(dx)+y^(2))+ 3y^(2)(dy)/(dx)=0`
`rArr (x^(2) + 2xy + 3xy^(2))(dy)/(dx)=-(3x^(2)+2xy+y^(2))`
`rArr (dy)/(dx)=-((3x^(2)+2xy+y^(2)))/((x^(2) + 2xy+ 3y^(2)))`
296.

If `x^(a)cdoty^(b)=(x+y)^(a+b)` then prove that `(dy)/(dx)=y/x`

Answer» `x^(a)cdoty^(b)=(x+y)^(a+b)`
`rArrlog(x^(a)cdoty^(b))=log(x+y)^(a+b)`
`rArrlogx^(a)+logy^(b)=(a+b)log(x+y)`
`rArralogx+blogy=(a+b)log(x+y)`
Differentiate both sides with respect to x
`a/x+b/y(dy)/(dx)=((a+b))/((x+y))cdotd/(dx)(x+y)`
`=(a+b)/(x+y)(1+(dy)/(dx))`
`=(a+b)/(x+y)+(a+b)/(x+y)+(a+b)/(x+y)cdot(dy)/(dx)`
`rArr(b/y-(a+b)/(x+y))(dy)/(dx)=(a+b)/(x+y)-a/x`
`rArr(b(x+y)-y(a+b))/(y(x+y))cdot(dy)/(dx)-(x(a+b)-a(x+y))/(x(x+y))`
`rArr(bx+by-ay-by)/ycdot(dy)/(dx)=(ax+bx-ax-ay)/x`
`rArr(bx-ay)/ycdot(dy)/(dx)=(bx-ay)/xrArr(dy)/(dx)=y/x`
Hence proved.
297.

`tan^-1((sqrt(1+x^2)-1)/x)`

Answer» Correct Answer - `(1)/(2(1+x^2))`
298.

If `x^y = e^(x-y) " then " dy/dx ?`A. `1/log x `B. `(1)/(log ex )^2`C. `(log x )/(log ex )^2`D. `1/(log ex )^2`

Answer» Correct Answer - C
299.

`logs(sqrt(x)+1/sqrt(x))`

Answer» Correct Answer - `(x-1)/(2x(x+1))`
300.

`sqrt("log"x)`

Answer» Correct Answer - `(1)/(2xsqrt(log x))`