Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

`x^(2) + xy + y^(2) =100`

Answer» `x^(2) + xy + y^(2) =100`
Differentiate both sides w.r.t. x
`2x + (x (dy)/(dx)+ y .1)+ 2y(dy)/(dx) = 0`
`rArr (x + 2y)(dy)/(dx)= - (2x + y)`
`rArr (dy)/(dx) = - (2x + y)/(x + 2y)`
302.

If `y=sqrt(x+sqrt(x+sqrt(+…..oo)))` then prove that `(2y-1)dy/dx=1.`

Answer» `y=sqrt(x+sqrt(x+sqrt(+…..oo)))`
`y=sqrt(x+y)`
`rArr y^2x+y`
`rArr 2dy dy/dx =1 + dy/dx`
`rArr (2y -1) dy/dx =1`
` rArr dy/dx =(1)/(2y -1)`
303.

If `x^(y)+y^(x)=a^(b)` then find `(dy)/(dx)`.

Answer» Let `u=x^(y)andv=y^(x)`
`u=x^(y)`
`rArrlogu=logx^(y)=ylogx`
`rArr1/ucdot(du)/(dx)=y/x+logxcdot(dy)/(dx)`
`rArr(du/(dx)=u[y/x+logxcdot(dy)/(dx)]`
`=x^(y)[y/x+logxcdot(dy)/(dx)]`
`=ycdotx^(y-1)+x^(y)cdotlogxcdot(dy)/(dx)`
and `v=y^(x)`
`rArrlogv=logy^(x)=xlogy`
`rArr1/v(dv)/(dx)=x/ycdot(dy)/(dx)+logycdot1`
`rArr(dv)/(dx)=v(x/y(dy)/(dx)+logy)`
`=y^(x)(x/y(dy)/(dx)+logy)`
`=xcdoty^(x-1)cdot(dy)/(dx)+y^(x)logy`
Now `x^(y)+y^(x)=a^(b)`
`rArru+v=a^(b)rArr(du)/(dx)+(dv)/(dx)=0`
`rArrycdotx^(y-1)+x^(y)logxcdot(dy)/(dx)`
`+xcdoty^(x-1)(dy)/(dx)+y^(x)logy=0`
`rArr(dy)/(dx)(x^(y)logx+xcdoty^(x-1))=-(y^(x)logy+ycdotx^(y-1))`
`rArr(dy)/(dx)=(-(y^(x)logy+ycdotx^(y-1))/((x^(y)logx+xcdoty^(x-1))` Ans.
304.

If `y= tan ^-1 ((x)/sqrt(a^2-x^2))` then `dy/dx =? `A. `1/(sqrt(a^2-x^2))`B. `1/(sqrt(x^2-a^2))`C. `1/(sqrt(a^2+x^2))`D. `1/(sqrt(1 +x^2))`

Answer» Correct Answer - A
305.

If `y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))}`, `-1

Answer» Correct Answer - `(-x)/(sqrt(1-x^4))`
306.

`sin^(3)(ax+b)`

Answer» Correct Answer - `3a sin ^2 (ax +b) cos (ax +b)`
307.

If `x^2+y^2=25 " then find " dy/dx.`

Answer» `x^2+y^2=25` Differenatiate both sides with respect to x
`2x+2y dy/dx =0 `
`rArr dy/dx =-x`
308.

`sin^(-1)(ax)`

Answer» Correct Answer - `(a)/(sqrt(1-a^2x^2))`
309.

`sqrt(ax^2+bx+c)`

Answer» Correct Answer - `(2ax+b)/(2 sqrt(ax^2+bx +c))`
310.

`xy + y^(2) = tan x + y `

Answer» `xy + y^(2) = tan x + y `
Differentiate both sides w.r.t. x
`(x(dy)/(dx)+y.1)+ 2y(dy)/(dx)= sec^(2)x + (dy)/(dx)`
`rArr (dy)/(dx) (x + 2y - 1)=sec^(2)x - y`
`rArr (dy)/(dx) =(sec^(2) x - y)/(x + 2y-1)`
311.

`2sqrt(cot(x^2))`

Answer» Let y `2sqrt(cot(x^(2)) `
`rArr (dy)/(dx) = 2 (d)/(dx)sqrtcot (x^(2))`
`= 2(d)/(dx)[cot (x^(2))] ^(1//2).`
`= 2(1)/(2)[cot (x^(2))] ^(1//2).(d)/(dx) cot(x^(2))`
`= (-cosec^(2)(x^(2)))/ sqrt(cot(x^(2)))(d)/(dx)(x^(2))`
`= (2xcosec^(2)(x^(2)))/ sqrt(cot(x^(2)))`
312.

If `y=(sin x) ^(sin x ^sin x ....oo)` then prove that `dy/dx=(y^2 cot x)/(1-y log (sin x))`

Answer» `y=(sin x) ^(sin x ^sin x ....oo)`
`rArr y=(sin x)^y `
`rArr log y =log (sin x)^y=y log (sin x)`
Differentiate both sides with respect to x
`(1)/(y)dy/dx =y.1/sin x .d/dx sin x +log (sin x) .dy/dx `
`rArr dy/dx (1/y-log sin x )=y/sin x .cos x`
`rArr dy/dx (1-y log sin x)/(y)=y cot x `
`rArr dy/dx =(y^2 cot x)/1- y log sin x`
313.

If ` y = tan ^-1[x/(1+sqrt(1-x^2))] "then find" dy/dx`

Answer» Let `x=sin theta`
` therefore y=tan ^-1[(sin theta)/(1+sqrt(1-sintheta))]`
`=tan^-1[(sin theta)/(1+cos theta)]=tan ^-1[(2sin ""theta/2cos ""theta/2)/(2cos^2""theta/2)]`
`tan^-1(tan""theta/2)=theta/2=1/2sin^-1x`
`rArr dy/dx=1/2d/dxsin^-1x=1/(2sqrt(1-x^2))`
314.

` sqrt(cot^(-1)sqrt(x))`

Answer» Correct Answer - `(-1)/(4sqrt(xcot^(-)1+cos^2 sqrt(x)).(1+x))`
315.

`ax + by^(2) = cos y `

Answer» `ax + by^(2) = cos y `
Differentiate both sides w.r.t. x
`a + 2 by (dy)/(dx)= - sin y (dy)/(dx)`
`rArr (2by + sin y) (dy)/(dx) = - a rArr (dy)/(dx) = (-a)/(2by + sin y) `
316.

If `{(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2,` where {.} represents the fractional part function, then `f(x)` isA. continuous at `x=pi//2`B. `underset(x to pi//2)lim f(x)` but f(x) is not continuous at `x=pi//2`C. `underset(x to pi//2)lim f(x)` does not existD. `underset(x to pi//2^(-))lim f(x) =-1`

Answer» Correct Answer - B
We have
`underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim f(pi//2-h)`
`Rightarrow underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim (sin {cos (pi//2-h)})/(-h)`
`Rightarrow underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim (sin{sin h})/(-h)2`
`Rightarrow underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim (sin(sin h))/(-h)`
`Rightarrow underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim (sin(sin h))/(sin h)xx(sin h)/(h)=-1` and
`underset(xto pi//2^(-))lim f(x)=underset(h to 0)lim f(pi//2+h)`
`Rightarrow underset(xto pi//2^(+))lim f(x)=underset(h to 0)lim (sin {cos (pi//2+h)})/((pi)/(2)+h-(pi)/(2))`
`Rightarrow underset(xto pi//2^(+))lim f(x)=underset(h to 0)lim (sin{-sin h})/(h)`
`Rightarrow underset(xto pi//2^(+))lim f(x)=underset(h to 0)lim (sin{sin h})/(h)xx(sin h)/(h)=-1`
`"Clearly", underset(x to pi//2^(-))lim f(x)=underset(x to pi//2^(+))lim f(x) ne f((pi)/(2))`
`"So", underset(x to pi//2)lim` f(x) exists but f(x) is not continuous at `x=pi//2`.
317.

Find `(dy)/(dx),`if `y=12(1-cost), x=10(t-sint),-pi/2

Answer» `y=12(1-cost)`
`implies(dy)/(dt)=12sint`
`x=10(t-sint)`
`implies(dx)/(dt)=10(1-cos t)`
` :. (dy)/(dx)=(dy//dt)/(dx//dt)=(12sint)/(10(1-cost))`
`=(6)/(5)*(2"sin"(t)/(2)"cos"(t)/(2))/(2"sin"^(2)(t)/(2))=(6)/(5)"cot"(t)/(2)`
318.

It is given that forthe function `f`given by `f(x)=x^3+b x^2+a x`, `x in [1, 3]`. Rolles theorem holdswith `c=2+1/(sqrt(3))`. Find the values of `a`and `b`.

Answer» Correct Answer - a=11 , b=-6
319.

`cos (sqrt(x))`

Answer» Let y = `cos (sqrt(x))`
`rArr (dy)/(dx)= (d)/(dx) cos (sqrt(x))`
`= -sin (sqrt(x)). (d)/(dx) sqrt(x) = - (sin (sqrt(x)))/(2sqrt(x))`
320.

If `y= cot^(-1)(sqrt(1+x^2+1)/x) " then find " dy/dx`

Answer» Let x=tan theta
therefore `y=cot ^(-1)(sqrt((1+tan ^2 theta +1)/(tan theta)))`
`=cot ^(-1)((sec theta+1)/(tan theta))`
`=cot ^(-1)((1+cos theta)/(sin theta))`
`cot ^-1 ((2cos^2""theta/(2))/(2sin""theta/2cos""(theta)/(2)))=cot^(-1)(cot""theta/2)`
`=theta/2=1/2 tan ^(-1)x`
`rArr dy /dx=1/2 d/dx tan ^(-1)=(1)/(2(1+x^2))`
321.

If `alpha, beta(alpha,beta)` are the points of discontinuity of the function `f(f(x))`, where `f(x)=1/(1-x)`, then the set of values of a foe which the points `(alpha,beta)` and `(a,a^2)` lie on the same side of the line `x+2y-3=0` , isA. `(-3//2,1)`B. `[-3//2,1]`C. `[1,oo)`D. `(-oo,-3//2]`

Answer» Correct Answer - A
We have
`f(x)=(1)/(1-x)`
Clearly, f(x) is defined for all `x in R -(1)}`
Now,
`f(f(x))=f((1)/(1-x))=(1)/(1-(1)/(1-x))=(x-1)/(x)`
We find that f(f(x)) is defined for all `x ne 0,1`
Now, `f(f(x))=f((x-1)/(x))=(1)/(1-(x-1)/(x))="x for all x"in 0,1`
Thus, the set of points of discontinuity is `{0,1}`
the line x+2y-3=0. Therefore,
`(0+2-3)(a+2a^(2)-3)gt0`
`Rightarrow 2a^(2)+a-3 lt 0`
`Rightarrow (2a+3) (a-1) lt 0 Rightarrow -3//2 lt a lt 1`
`Rightarrow a in (-3//2,1)`
322.

If `y=log(sinx)`, prove that `(d^3y)/(dx^3)=2cosx cos e c^3x`.

Answer» Correct Answer - `2cosec^2x . Cotx`
323.

Find `(dy)/(dx)` in the following `2x + 3y = sin x `

Answer» `2x + 3y = sin x `
Differentiate both sides w.r.t. x
`2+ 3(dy)/(dx)= cos x `
`rArr 3(dy)/(dx) = cos x -2 rArr (dt)/(dx)= (cos x -2)/(3)`
324.

`2x + 3y = sin y `

Answer» `2x + 3y = sin y `
Differentiate both sides w.r.r. x
`2 + 3 (dt)/(dx)= cos y(dy)/(dx)`
`rArr 2 = (cos y - 3 ) (dy)/(dx) rArr (dy)/(dx) = (2)/(cos y - 3)`
325.

If `x=a(t-sint), y=a(1-cost)` then find `(d^2y)/(dx^2)`.

Answer» Correct Answer - `-1/(4a)cosec^4 t/2`
326.

if `y= (sin ^(-1)x)/(sqrt(1-x^2))` then prove that `(1-x)^2) .d/dx=xy+1`

Answer» `y=(sin^1x)/(sqrt(1-x^(2)))`
`rArr dy/dx=d/dx((sin^(-1)x)/(sqrt(1-x^(2))))`
`sqrt(1-x^(2))d/dxsin ^(-1)x-sin^(-1)x`
`=(" ".d/dxsqrt(1-x^(2)))/((sqrt(1-x^(2)))^2)`
`sqrt(1-x^(2)).(1)/(sqrt(1-x^(2)))-sin^(-1)x.(1)/(2sqrt(1-x^(2)))`
`=(" "d/dx(1-x^(2)))/((1-x^(2))`
`rArr (1-x^(2))dy/dx=1-(sin^(-1)x)/(sqrt(1-x^(2))).(1)/(2).(-2x)`
`rArr (1-x^(2))d/dx=1 +x.y`
Hence Proverd
327.

If `y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta)` then `(d^(3)y)/(da^(3))=?`A. `sin^(3) (alpha +beta)/(cosalpha)`B. `sin ( alpha + beta)`C. 0D. 1

Answer» Correct Answer - C
328.

if `x^2+y^2 = t - 1/t` and` x^4 + y^4 = t^2 + 1/t^2 `then prove that `dy/dx = 1/(x^3y)`

Answer» Correct Answer - B
329.

xsin 2y = y cos 2x

Answer» Correct Answer - `(2ysin2x+sin 2y)/(cos^2x-2xcos^(2)2y)`
330.

`5x^2+5y^2-7y+3x=2=0`

Answer» Correct Answer - `(10x+3)/(7-10y)`
331.

If `y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y_(2)+ xy _(1) = ?`A. myB. `m^(2)y`C. `m^(2)y^(2)`D. None of these

Answer» Correct Answer - B
332.

`x^2+y^2=log(xy)`

Answer» Correct Answer - `(y(1-2x^2))/(x(2y^2-1))`
333.

`sin(xy)+x/y=x^2-y`

Answer» Correct Answer - `(2xy^2-y-y^3cos(xy))/(xy^2cos(xy)-x+y^2)`
334.

`"If "xy=e^((x-y))," then find "(dy)/(dx).`

Answer» `xy = e^(x-y) " "....(1)`
Differentiate both sides w.r.t.x
` x(dy)/(dx) + y * 1 = (d)/(dx)e^((x-y))`
`rArr x(dy)/(dx) + y = e^((x-y)) * (d)/(dx) (x-y)`
`rArr x(dy)/(dx) + y = xy(1-(dy)/(dx)) " From equation" (1)`
`rArr x(dy)/(dx) + xy(dy)/(dx) = xy-y`
`rArr (dy)/(dx) = (y(x-1))/(x(1+y))`
335.

If `f(x)= x^2+7x+10` then `f(2) =? `A. -4B. `-5/2`C. -11D. 11

Answer» Correct Answer - D
336.

log tan x

Answer» Correct Answer - 2 cosec 2x
337.

`x=a(cos t + log tan t/2), y =a sin t`

Answer» Correct Answer - tan t
338.

`(cosx)^(y)=(siny)^(x)`

Answer» Correct Answer - `(logsiny+ytanx)/(logcosx-xcoty)`
339.

If `(cosx)^y=(cosy)^x`find `(dy)/(dx)`.

Answer» `("cos" x)^(y) = ("cos" y)^(x)`
`rArr "log" ("cos" x)^(y) = "log" ("cos" y)^(x)`
`rArr y"log cos" x = x"log cos"y`
Differentiate both sides w.r.t.x
`y * (d)/(dx) "log cos"x + "log cos"x (d)/(dx)y`
`= x (d)/(dx)"log cos"y + "log cos"y(d)/(dx) x`
`rArr y * ((-"sin"x))/("cos"x) + "log cos"x * (dy)/(dx)`
`=(x(-"sin"y))/("cos"y)(dy)/(dx) + "log cos"y * 1`
`rArr -y"tan"x + "log cos"x (dy)/(dx)`
`= -x"tan"y (dy)/(dx) + "log cos"y`
`rArr ("log cos" x + x"tan"y)(dy)/(dx) = "log cos" y + y"tan"x`
`rArr (dy)/(dx) = ("log cos"y + y"tan"x)/("log cos"x + x"tan"y)`
340.

Differentiate `(x^2-5x+8)(x^3+7x+9)` in three ways mentioned below:(i) by using product rule(ii) by expanding the product to obtain a single polynomial.(iii) by logarithmic differentiation.Do they all give the same answer?

Answer» `"Let "y = (x^(2) -5x + 8) (x^(3) + 7x +9)`
`(i) (dy)/(dx) = (x^(2) -5x + 8) (d)/(dx) (x^(3) + 7x +9) + (x^(3) + 7x +9) (d)/(dx) (x^(2) -5x + 8)`
`=(x^(2) - 5x + 8)(3x^(2) + 7) + (x^(3) + 7x + 9)(2x - 5)`
`= 3x^(4) + 7x^(2) - 15x^(3) - 35x + 24x^(2) + 56 + 2x^(4) - 5x^(3) + 14x^(2) - 35x + 18x -45`
`= 5x^(4) - 20x^(3) + 45x^(2) - 52x + 11`
`(ii) y = (x^(2) - 5x + 8)(x^(3) + 7x + 9)`
`= (x^(5) - 5x^(4) + 15x^(3) - 26x^(2) + 11x +72)`
`rArr (dy)/(dx)= (d)/(dx) (x^(5) - 5x^(4) + 15x^(3) - 26x^(2) + 11x +72)`
`= 5x^(4) - 20x^(3) + 45x^(2) - 52x + 11`
`(iii) y= (x^(2) - 5x + 8)(x^(3) + 7x + 9)`
`rArr "log"y = "log" [(x^(2) - 5x + 8) * (x^(3) + 7x + 9)]`
`= "log" (x^(2) - 5x + 8) +"log" (x^(3) + 7x + 9)`
Differentiate both side w.r.t.x
`(1)/(y) (dy)/(dx) = (2x - 5)/(x^(2) - 5x + 8) + (3x^(2) + 7)/(x^(3) + 7x + 9)`
`rArr (dy)/(dx) = y[((2x - 5)(x^(3) + 7x + 9) + (3x^(2) + 7)(x^(2) - 5x + 8))/((x^(2) - 5x + 8)(x^(3) + 7x + 9))]`
`= y[(2x^(4) - 5x^(3) + 14x^(2) - 35x + 18x - 45 + 3x^(4) + 7x^(2) - 15x^(3) - 35x + 24x^(2) + 56)/(y)]`
`= 5x^(4) - 20x^(3) + 45x^(2) - 52x + 11`
Thus, the results in three cases are same.
341.

Prove that tangent function is continous in its domain.

Answer» Let f(x) = tan x
its domain `=R-{(2n+1)pi/2,n in Z}`
`therefore` f(x)= tan x is continuous in
`R-{(2n+1)pi/2:n in Z}`
Hence proved
342.

Find `(dy)/(dx)`, if ` y + siny = cosx`

Answer» Differentiating with respect to x,
`(dy)/(dx)+cosy(dy)/(dx)=-sinx`
`(dy)/(dx)=-sinx/(1+cosy)`
343.

If u, v and w are functions of x, then show that`d/(dx)(udotvdotw)=(d u)/(dx)vdotw+udot(d v)/(dx)dotw+udotv(d w)/(dx)`in two ways - first by repeated application of product rule, second by logarithmic differentiation.

Answer» `(i) (dy)/(dx) = (d)/(dx) {(uv)w}`
`= w * (d)/(dx) (uv) + uv * (d)/(dx)(w)`
`= w[v(du)/(dx) + u(dv)/(dx)] + uv(dw)/(dx)`
`=vw (du)/(dx) + uw (dv)/(dx) + uv(dw)/(dx)`
(ii) y = uvw
`rArr "log"y = "log (uvw)`
`="log" u + "log"v + "log"w`
Differentiate both sides w.r.t.x
`(1)/(y) (dy)/(dx) = (1)/(u) (du)/(dx) + (1)/(v) (dv)/(dx) + (1)/(w) (dw)/(dx)`
`rArr (dy)/(dx) = (y)/(u) (du)/(dx) + (y)/(v) (dv)/(dx) + (y)/(w) (dw)/(dx)`
`= (uvw)/(u) (du)/(dx) + (uvw)/(v) (dv)/(dx) + (uvw)/(w) (dw)/(dx)`
`= vw(du)/(dx) + uw(dv)/(dx) + uv(dw)/(dx)`
Thus, the results in two cases are same.
344.

In the curve `x= a (cos t+ log tan(t/2))`,` y =a sin t`. Show that the portion of the tangent between the point of contact and the x-axis is of constant length.

Answer» `x=a("cos"t + "log tan"(t)/(2)) " and "y=a"sin"t`
`rArr (dx)/(dt)=a[-"sin"t + ("sec"^(2)(t)/(2))/(2"tan"(t)/(2))] "and" (dy)/(dx) = a"cos"t`
`=a[-"sin"t + (1)/(2"tan"(t)/(2) "cos" (t)/(2))]`
`=a(-"sin"t + (1)/("sin"t))`
`=a((1-"sin"^(2)t)/("sin"t))= a("cos"^(2)t)/("sin"t)`
`"Now", (dy)/(dx) = (dy//dt)/(dx//dt) = ((a"cos"t)/(a"cos"^(2)t))/("sin"t) = "tan"t`
345.

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find `(dy)/(dx)`.`x=costheta-cos2theta, y=sintheta-sin2theta`

Answer» `(deltay)/(deltatheta)=costheta-2cos2theta`
`(deltax)/(deltatheta)=sintheta+2sintheta`
`(deltay)/(deltax)=(costheta-2cos2theta)/(-sintheta+2sin2theta)`
346.

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find `(dy)/(dx)`.`x=2a t^2, y=a t^4`

Answer» `{:(x=2at^(2), |, y=at^(4)),(rArr (dx)/(dt) = 4at,|,rArr (dy)/(dt) = 4at^(3)):}`
`therefore (dy)/(dx) = (dy//dt)/(dx//dt) = (4at^(3))/(4at) = t^(2)`
347.

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find `(dy)/(dx)`.`x=(sin^3t)/(sqrt(cos2t)), y=(cos^3t)/(sqrt(cos2t))`

Answer» `y = cos^3t/sqrt(cos2t)`
`dy/dt = 1/(cos2t)(sqrt(cos2t)(3cos^2t)(-sint) - cos^3t(1/2(1/(sqrt(cos2t))(-sin2t)(2)))`
`dy/dt = 1/(cos2t)(-sqrt(cos2t)(3cos^2t)(sint) +(cos^3tsin2t)/(sqrt(cos2t)))`
`dy/dt = 1/((cos2t)(sqrt(cos2t)))(cos^3tsin2t-3cos^2tsintcos2t)->(1)`
`x = sin^3t/sqrt(cos2t)`
`dx/dt = 1/(cos2t)(sqrt(cos2t)(3sin^2t)(cost) - sin^3t(1/2(1/(sqrt(cos2t))(-sin2t)(2)))`
`dx/dt = 1/(cos2t)(sqrt(cos2t)(3sin^2t)(cost) +(sin^3tsin2t)/(sqrt(cos2t)))`
`dx/dt = 1/((cos2t)(sqrt(cos2t)))(3sin^2tcostcos2t + sin^3tsin2t)->(2)`
Dividing (1) by (2),
`dy/dx = (cos^3tsin2t-3cos^2tsintcos2t)/(3sin^2tcostcos2t + sin^3tsin2t)`
348.

If `x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t)` show that `dy/dx =0 at t=pi/6`

Answer» `x = ("sin"^(3)t)/(sqrt("cos" 2t))`
`rArr (dx)/(dt) = (sqrt("cos"2t) * (d)/(dt)"sin"^(3)t - "sin"^(3)t(d)/(dt) sqrt("cos"2t))/(sqrt("cos" 2t))^(2)`
`= (sqrt("cos"2t) * 3"sin"^(2)t "cos"t - "sin"^(3)t * ((-2"sin"2t)/(2sqrt("cos"2t))))/("cos" 2t)`
`= ("cos"2t * 3"sin"^(2)t "cos"t + "sin"^(3)t "sin"2t)/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t[3 "cos"t " cos"2t + "sin"t " sin"2t])/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t[3 "cos"t (1-2"sin"^(2)t) + "sin"t * 2"sin"t " cos"t])/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t "cos" t(3-4 "sin"^(2)t))/("cos" 2tsqrt("cos"2t))`
`" and "y = ("cos"^(2)t)/(sqrt("cos"2t))`
`rArr(dy)/(dt) = (sqrt("cos"2t)(d)/(dt)"cos"^(3)t-"cos"^(3)t(d)/(dt)sqrt("cos"2t))/((sqrt("cos"2t))^(2)`
`= (sqrt("cos"2t) * 3"cos"^(2) t (-"sin"t)-"cos"^(3)t * ((-2"sin"2t))/(2sqrt("cos"2t)))/("cos" 2t)`
`=-((3"cos"^(2) t "sin"t * "cos" 2t - "sin" 2t "cos"^(3) t))/("cos" 2tsqrt("cos"2t))`
`=-("cos"^(2)t[3"sin"t(2 "cos"^(2)t-1)-2 "sin" t "cos"t * "cos"t])/("cos" 2t sqrt("cos"2t))`
`=-("cos"^(2)t"sin"t(4"cos"^(2)t-3))/("cos" 2t sqrt("cos"2t))`
`Now (dy)/(dx) = (dy//dt)/(dx//dt) = -("cos"^(2)t"sin"t(4"cos"^(2)t-3))/("sin"^(2)t"cos"t(3-4"sin"^(2)t))`
`=- ("cos"t(4"cos"^(2)t-3))/("sin"t(3-4"sin"^(2)t))`
`=- ((4"cos"^(3)t-3"cos"t))/((3"sin"t-4"sin"^(3)t))`
`=-("cos"3t)/("sin"3t) = -"cos" 3t`
349.

`x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t`

Answer» Correct Answer - tan t
350.

Let `f: RvecR`be any function. Also `g: RvecR`is defined by `g(x)=|f(x)|`for all `xdot`Then isOnto if `f`is ontoOne-one if `f`is one-oneContinuous if `f`is continuousNone of theseA. onto if f is ontoB. one-one if f is one-oneC. continuous if f is continuousD. None of these

Answer» Correct Answer - C
(a) Since g(x) = `|f(x)|`
`therefore" "g(x) ge 0`
`therefore" Range of "g ne R". Hence, is not onto"`.
(b) If we take `f(x)=x`, then f is one-one but `|f(x)|=|x|` is not one-one.
(c) If f(x) is continuous then `|f(x)|` is also continuous.