This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 120951. |
What are stoichiometric defects or intrinsic defects in ionic crystals? |
|
Answer» Stoichiometric defects are those defects in which the ratio of cations to anions remains the same are represented by the molecular formula. |
|
| 120952. |
Classify the following into crystalline and amorphous solids.1. NaCl 2. Graphite 3. Plastic 4. Diamond 5. Rubber 6. KCl 7. Wood 8. CaCO3 9. IodineWrite any two properties of graphite. |
||||||||
Answer»
1. It is a good conductor of electricity. 2. Graphite is a good solid lubricant. |
|||||||||
| 120953. |
The sharp melting point of crystalline solids is due to ___________.(i) a regular arrangement of constituent particles observed over a short distance in the crystal lattice.(ii) a regular arrangement of constituent particles observed over a long distance in the crystal lattice.(iii) same arrangement of constituent particles in different directions.(iv) different arrangement of constituent particles in different directions. |
|
Answer» (ii) a regular arrangement of constituent particles observed over a long distance in the crystal lattice. |
|
| 120954. |
Based on the nature of order present in the arrangement of the constituent particles, solids are classified into two, crystalline and amorphous.(a) List out any four points of difference between crystalline and amorphous solids.(b) A list of solids are given below:Quartz, glass, iodine, ice.From this, identify crystal (s)(i) having sharp melting point.(ii) which is/are isotropic |
||||
|
Answer» (a)
(b) (i) Quartz, Iodine, Ice (ii) Glass |
|||||
| 120955. |
The sharp melting point of crystalline solids is due to ___________. (i) a regular arrangement of constituent particles observed over a short distance in the crystal lattice. (ii) a regular arrangement of constituent particles observed over a long distance in the crystal lattice.(iii) same arrangement of constituent particles in different directions. (iv) different arrangement of constituent particles in different directions. |
|
Answer» (ii) a regular arrangement of constituent particles observed over a long distance in the crystal lattice. |
|
| 120956. |
Why are amorphous solids to be considered as supercooled liquids? |
Answer»
|
|
| 120957. |
Gold (atomic radius = 0.144 nm) crystallises in a face-centred unit cell. What is the length of a side of the cell? |
|
Answer» For fee lattice, edge length, a = 2 √2 x 0.144 nm = 0.407 nm |
|
| 120958. |
Which of the following type of cubic lattices has maximum number of atoms per unit cell?(a) simple cubic(b) body centred cubic(c) face centred cubic(d) all have same |
|
Answer» (c) face centred cubic (4 atoms per unit cell) |
|
| 120959. |
The 14 possible three dimensional crystal lattices are called ____________. |
|
Answer» Bravais Lattices |
|
| 120960. |
Distinguish between face centred and end centred unit cells. |
|||||||||||||||
|
Answer» Face centred and end centred unit cells:
|
||||||||||||||||
| 120961. |
Oxygen molecule shows : (a) Paramagnetism (b) Diamagnetism (c) Ferromagnetism (d) ferrimagnetism |
|
Answer» Option : (a) Paramagnetism |
|
| 120962. |
Which of the following lattices has the highest packing efficiencyi. Simple cubicii. Body centred cubic andiii. Hexagonal close-packed lattice? |
||||||||
|
Answer» Hexagonal close-packed lattice has the highest packing efficiency
|
|||||||||
| 120963. |
Sweet tooth’ may lead to tooth decay. Explain why? What is the role of tooth paste in preventing cavities? |
|
Answer» Tooth decay starts when the pH of the mouth is lower than 5.5 as Tooth enamel, made up of calcium phosphate does not dissolve in water, but is corroded . The best way to prevent this is to clean the mouth after eating food using toothpastes, which are generally basic, for cleaning the teethcan neutralise the excess acid and prevent tooth decay. |
|
| 120964. |
Why does a curry stain on washing turns red? |
|
Answer» Turmeric is a natural indicator that turns red when treated with the base. Since soaps are basic in nature they convert the yellow colour of turmeric to red. |
|
| 120965. |
Explain in detail the role of pH in our daily life. |
|
Answer» PH in plants and animals: Our body works within the pH range of 7.0 to 7.8. Living organisms can survive only in a narrow range of pH change. When pH of rain water is less than 5.6, it is called acid rain. When acid rain flows into the rivers, it lowers the pH of the river water. The survival of aquatic life in such rivers becomes difficult. PH in our digestive system: It is very interesting to note that our stomach produces hydrochloric acid. It helps in the digestion of food without harming the stomach. During indigestion the stomach produces too much acid and this causes pain and irritation. To get rid of this pain, people use bases called antacids. One such remedy must have been suggested by you at the eginning of this Chapter. These antacids neutralise the excess acid. Magnesium hydroxide (Milk of magnesia), a mild base, is often used for this purpose. PH in our tooth! Tooth decay starts when the pH of the mouth is lower than 5.5. Tooth enamel, made up of calcium phosphate is the hardest substance in the body. It does not dissolve in water, but is corroded when the pH in the mouth is below 5.5. Bacteria present in the mouth produce acids by degradation of sugar and food particles remaining in the mouth after eating. The best way to prevent this is to clean the mouth after eating food. Using toothpastes, which are generally basic, for cleaning the teeth can neutralise the excess acid and prevent tooth decay. Self defense by animals and plants through chemical warfare Bee-sting leaves an acid which causes pain and irritation. Use of a mild base like baking soda on the stung area gives relief. Stinging hair of nettle leaves inject methanoic acid causing burning pain. |
|
| 120966. |
0.6 g of a metal gives on oxidation 1 g of its oxide. Calculate its equivalent mass. |
|
Answer» Mass of metal = 0.6 Mass of metal oxide = 1 g Mass of oxygen = 1 – 0.6 = 0.4 g 0.4 g of oxygen combines with 0.6 g of metal. ∴ 8 g of oxygen will combine with = 0.6/0.4 x 8 Equivalent mass of the metal = 12 g eq-1 . |
|
| 120967. |
The number of moles of ethane in 60 g is …(a) 2 (b) 4 (c) 0.5 (d) 1 |
|
Answer» (a) 2 C2H6 – Ethane – molar mass = 24 + 6 = 30 g 30 g of C2 H6 contains = 1 mole. ∴ 60 g of C2H6 will contains = 2 x 1 = 2 moles. |
|
| 120968. |
Calculate the number of moles present in 9 g of ethane. |
|
Answer» Mass of ethane = 9 g Molar mass of ethane C2H6 = 30 g mol-1 No. of moles = Mass/ Mola mass = 9/30 = 0.3 mol. |
|
| 120969. |
Calculate the number of moles present in 60 g of ethane. |
|
Answer» No. of moles = (Mass of the substance) / (Molar mass of the substance) = W/M Molar Mass of ethane (C2H6 ) = 24 + 6 = 30 Number of moles in 60 g of ethane = 60/30 = 2 moles. |
|
| 120970. |
Calculate the equivalent mass of sulphuric acid. |
|
Answer» Sulphuric acid = H2SO4 Molar mass of Sulphuric acid = 2 + 32 + 64 = 96 Basicity of Sulphuric acid = 2 Equivalent mass of acid = (Molar mass of an acid) / Basicity = 96/2 = 48 g eq-1 |
|
| 120971. |
How many moles of hydrogen is required to produce 20 moles of ammonia? |
|
Answer» 3H2 + N2 → 2NH3 A per stoichiometric equation, No. of moles of hydrogen required for 2 moles of ammonia 3 moles No. of moles of hydrogen required for 20 moles of ammonia = \(\frac{3}{2}\) x 20 = 30 moles. |
|
| 120972. |
How many molecules of hydrogen is required to produce 4 moles of ammonia? (a) 15 moles (b) 20 moles (c) 6 moles (d) 4 moles |
|
Answer» (c) 6 moles 3H2 + N2 → 2NH2 To get 2 moles of ammonia, 3 mole of H2 is required. To get 4 moles of ammonia = 3/2 x 4 = 6 moles of H2 is required. |
|
| 120973. |
A sample of hydrated copper sulphate is heated to drive off the water of crystallization, cooled and reweighed 0.869 g of CuSO4 aH2O gave a residue of 0.556 g. Find the molecular formula of hydrated copper sulphate. |
|
Answer» 0.869 g of CuSO4 .aH2O gave a residue of 0.556 g of Anhydrous CuSO4 . ∴ Weight of a H2O molecule = 0.869 – 0.556 = 0.313 g Molecular weight of H2O = (1 x 2) + 16 = 2 + 16 = 18 No. of moles of water = Mass / (Molecular mass) CuSO4.5H2O – Molecular mass = 63.5 + 32 + 64 + 90 = 249.5 g 249.5 g of CuSO4.5H2O on heating gives 159.5 g of CuSO4 . 0.869 g of CuSO4.aH2O on heating gives = 159.5/249.5 x 0.869 = 0.556 g of anhydrous CuSO4 . ∴ a = 5 The molecular formula of hydrated copper sulphate = CuSO4.5H2O |
|
| 120974. |
The oxidation number of Cr in K2Cr2O7 is …… (a) +4 (b) + 6 (c) O (d) + 7 |
|
Answer» (b) + 6 K2Cr2O2 2 + 2x – 140 2x – 12 = 0 2x = + 12 x = + 6 |
|
| 120975. |
The balanced equation for a reaction is given below 2x + 3y → 41 + m When 8 moles of x react with 15 moles of y, then – 1. Which is the limiting reagent? 2. Calculate the amount of products formed. 3. Calculate the amount of excess reactant left at the end of the reaction. |
|
Answer» 2 x + 3 y → 41 + m 1. 2x reacts with 3y to give products. 5x reacts with l5y means, y is the excess because 8 moles of x should react withn 4 x 3y = 12y moles of y to give products. In this reaction 15y moles are used. Therefore, 3 moles of y is excess and it is the limiting agent. 2. When 8 moles of x react with 12 moles of y, the product formed will be 4 x 41 i.e. 161 and 4m as product. 8x + 12y → 161 + 4m 3. At the end of the reaction, the excess reactant left in 3 moles of y. |
|
| 120976. |
Give difference between empirical and molecular formula. |
|
Answer» Empirical Formula: \(\bullet\) Empirical formula is the simplest formula. \(\bullet\) It shows the ratio of number of atoms of different elements in one molecule of the compound. \(\bullet\) It is calculated from the percentage of composition of the various elements in one molecule. \(\bullet\) For example, Empirical formula of Benzene = CH. Molecular Formula: \(\bullet\) Molecular Formula is the actual formula. \(\bullet\) It shows the actual number of different types of atoms present in one molecule of the compound. \(\bullet\) It is calculated from the Empirical formula Molecular Formula = (Empirical formula)n \(\bullet\) Molecular formula of Benzene = C6H6 |
|
| 120977. |
What do you understand by the terms empirical formula and molecular formula? |
|
Answer» Empirical Formula: \(\bullet\) It is the simplest formula. \(\bullet\) It shows the ratio of number of atoms of different elements in one molecule of the compound Molecular Formula: \(\bullet\) It is the actual formula. \(\bullet\) It shows the actual number of different types of atoms present in one molecule of the compound. |
|
| 120978. |
In the reaction 2 AuCl3 + 3 SnCl2 → 2 Au + 3 SnCl4 which is an oxidising agent? (a) AuCl3 (b) Au (c) SnCl2 (d) Both AuCl3 and SnCl2 |
|
Answer» (a) AuCl3 AuCl3 undergoes reduction. So, it is an oxidising agent. |
|
| 120979. |
Write the steps to be followed for writing empirical formula. |
|
Answer» Empirical formula shows the ratio of number of atoms of different elements in one molecule of the compound. Steps for finding the Empirical formula: The percentage of the elements in the compound is determined by suitable methods and from the data collected; the empirical formula is determined by the following steps. 1. Divide the percentage of each element by its atomic mass. This will give the relative number of atoms of various elements present in the compound. 2. Divide the atom value obtained in the above step by the smallest of them so as to get a simple ratio of atoms of various elements. 3. Multiply the figures so obtained, by a suitable integer if necessary in order to obtain whole number ratio. 4. Finally write down the symbols of the various elements side by side and put the above numbers as the subscripts to the lower right hand of each symbol. This will represent the empirical formula of the compound. 5. Percentage of Oxygen = 100 – (Sum of the percentage masses of all the given elements). |
|
| 120980. |
What is the steps involve in the calculation of molecular formula from empirical formula? |
|
Answer» Molecular mass and empirical formula are used to deduce molecular formula of the compound. Steps to calculate molecular formula: \(\bullet\) If Empirical formula is found out from the percentage composition of elements \(\bullet\) Empirical formula mass can be found from the empirical formula \(\bullet\) Molecular mass is found out from the given data \(\bullet\) Molecular formula = (Empirical formula)n \(\bullet\) where, n = (Molecular mass) / (Empirical formula mass) |
|
| 120981. |
The equivalent mass of NaCl is ……(a) 40 (b) 58.5 (c) 35.5 (d) 23 |
|
Answer» (b) 58.5 NaCl = Salt Molar mass = 23 + 35.5 = 58.5 Equivalent mass of Salt = Molar mass of Salt. |
|
| 120982. |
The empirical formula of Alkene is …(a) CH(b) CH2 (c) CH3 (d) CH3O |
|
Answer» (b) CH2 Alkene C2H2n Molecular formula E.F. = M.F./2 ∴ Empirical formula = CH2 |
|
| 120983. |
Avogadro’s number is the number of molecules present in ……(a) 1 g of molecule (b) 1 g atom of molecule (c) gram molecular mass (d) I lit of molecule |
|
Answer» (c) gram molecular mass |
|
| 120984. |
Oxidation number f Fluorine in all compounds is ……(a) + 1 (b) -1 (c) 0 (d) – 2 |
|
Answer» Answer: (b) – 1 |
|
| 120985. |
Among the following molecules in which Chlorine shows maximum oxidation state? (a) Cl21 (b) KCl (c) KClO3 (d) Cl2O7 |
|
Answer» (d) Cl2O7 Cl2O7 2x - 14 = 0 2x = +14 x = +7 |
|
| 120986. |
The approximate production of Na2CO3 per month is 424 x 106 g while that of methyl alcohol is 320 x 106 g. Which is produced more in terms of moles? |
|
Answer» Na2CO3 mass = 424 x 106 g Molecular mass of Na2CO3 = (23 x 2) + 12 + (16 x 3) = 46+ 12 +48 = 106 g No. of moles of Na2 CO3 = (Mass of Na2CO3) / (Molecular mass of Na2CO3) = (424 x 106 g) / 106 g = 4 x 106 moles Methyl alcohol mass = 320 x 106 g Molecular mass of CH3OH = 12 + (1 x 4)+ 16 = 12 + 4 + 16 = 32 g No. of moles of Methyl alcohol = (Mass of Methyl alcohol) / (Molecular mass of Methyl alcohol) = (320 x 106 g) / 32 g = 10 x 106 moles. ∴ Methyl alcohol is more produced in terms of moles. |
|
| 120987. |
The mass of one molecule of AgCl in grams is …… (a) 108 g (b) 143.5 g (c) 35.5 g (d) 243.5 g |
|
Answer» (b) 143.5 g Mass of AgCl = 108 + 35.5 = 143.5 g |
|
| 120988. |
The mass in grams of 0.45 mole of CO2 ions ……(a) 1.8 (b) 40 (c) 36 (d) 18 |
|
Answer» (d) 18 Ca = Atomic mass = 40 Ca → Ca2+ + 2e- 41 g of Ca = 1 mole (for Ca2+ Atomic mass remains same) 1 mole of Ca2+ = 40 g ∴ 0.45 mole of Ca2+ = 40/(1 x 0.45) = 18g |
|
| 120989. |
How many grams are contained in 1 gram atom of Na? (a) 13 g (b) 1 g (c) 23 g (d) 1/23 g |
|
Answer» (c) 23 g 1 gram atom of Na Na = Atomic mass 23 g (or) 23 amu 1 gram atom of Na = 1 mole = 23 g. |
|
| 120990. |
Which of the following halogens do not exhibit positive oxidation number in its compounds?(a) Fluorine (b) Chlorine (c) Iodine (d) Bromine |
|
Answer» (a) Fluorine |
|
| 120991. |
The number of grams of oxygen in 0.10 mol of Na2CO3 . 10H2O is ……(a) 20.8 g (b) 18 g (c) 108 g (d) 13 g |
|
Answer» (a) 20.8 g Na2CO2 .10H2O = 1 mole 1 mole of Na2CO3 . 10H2O contains 13 oxygen atoms. Mass of 13 oxygen atoms = 13 x 16 = 208 1 mole of Na2CO3 .10H2O contains 208 g of oxygen. ∴ 0.10 mole of Na2CO3.10H2O contains 208/1 x 0.12 = 08 g. |
|
| 120992. |
The mass of an atom of nitrogen is... |
|
Answer» (a) \(\frac{14}{6.023\times10^{23}}g\) |
|
| 120993. |
How many molecules are present in 32 g of methane? (a) 2 x 6.023 x 1023 (b) 6.023 x 1023 (c) 6.023 x 1023 (d) 3.011 x 1023 |
|
Answer» (a) 2 x 6.023 x 1023 Methane (CH4) – Molar mass = 12 + 4 = 16g. 16 g contains 6.023 x 1023 molecules. ∴ 32 g of methane will contain =\(\frac{6.023\times10^{23}}{16}\) x 322 = 2 x 6.023 x 1023 |
|
| 120994. |
22 g of CO2 contains molecules of CO2 (a) 6.023 x 1023 (b) 6.023 x 1023 (c) 3.0115 x 1023 (d) 3.0115 x 1023 |
|
Answer» (c) 3.0115 x 1023 44 g of CO2 contains 6.023 x 1023 molecules. ∴ 22 g of CO2 will contain = \(\frac{6.023 \times10^{23}}{44}\)x 22 = 3.0115 x 1023 |
|
| 120995. |
The number of molecules in 16 g of methane is ……(a) 3.023 x 1023 (b) 6.023 x 1023 (c) 16 / 6.023 x 1023 (d) 6.023 / 3 x 1023 |
|
Answer» (b) 6.023 x 1023 Methane: CH4 Molecular mass 12 + 4 = 16 16 g of methane contains Avogadro number of molecules 6.023 x 1023 molecules. |
|
| 120996. |
The number of molecules in a drop of water (0.0018 ml) at room temperature is ……(a) 6.02 x 1023 (b) 1.084 x 1023 (c) 4.84 x 1023 (d) 6.02 x 1023 |
|
Answer» (a) 6.02 x 1023 0.0018 ml – drop of water = 0.0018 g H2O = molecular mass = 18 g. Number of molecules in 18 g = 6.023 x 1023 ∴ Number of molecules in 0.0018 g 6.023 x 1023 x 0.0018 = 6.023 x 1023 x 105 = 6.023 x 1019 molecules. or Density of water at 25°C = 997.0479 g / L Mass of 0.0018 ml (or) 0.00 18 x 10-3 L = D x V = 997.05 x 0.0018 x 10-3 = 1.795 x 10-3 g Molar mass of water = 18 g Mole = Mass/ (Molecular mass) = (1.795 x 10-3) / 18 = 9.971 x 10-5 ∴ Number of molecules in 0.0018 ml = moles x (Avogadro number) = 9.971 x 10-5 x 6.023 x 1023 = 6 x 1019 molecules. |
|
| 120997. |
A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle. The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire when the mass is at the lowest point of its path. |
|
Answer» L = 1 m W = 2 revolutions/s A = 0.065 cm2 = 6.5 x 10-6 m2 F = mg + mlw2 = 14.5 × 9.8 +14.5 × 1 × (2)2 = 200.1 N ∆L = \(\frac{FI}{AY}\) [∵ Y = \(\frac{FI}{AΔI}]\) Young’s modulus of steel is 2 × 1011 Nm-2 ∆L = \(\frac{200.1 \times 1}{6.5 \times 10^{-6} \times 2 \times 10^{11}}m\) = 1.539 × 10-4m. |
|
| 120998. |
A steel cable with a radius of 1.5 cm supports a chair lift at a ski area. If the maximum stress is not exceed 108 Nm-2, What is the maximum load the cable can support? |
|
Answer» r = radius of cable = 1.5 cm. = π(0.015)2 m2 max stress = 108 Nm-2 Let F be the maximum force. stress = \(\frac{F}{A}\) ∴ F = max stress × area. = 108 × π × (0.015)2 = 7.065 × 104N = 70,650 N ∴ The maximum load is 70,650 N. |
|
| 120999. |
A rod of length l and negligible mass is suspended at its two ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths (Fig. 9.4). The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively.(a) Mass m should be suspended close to wire A to have equal stresses in both the wires.(b) Mass m should be suspended close to B to have equal stresses in both the wires.(c) Mass m should be suspended at the middle of the wires to have equal stresses in both the wires.(d) Mass m should be suspended close to wire A to have equal strain in both wires. |
|
Answer» (b) Mass m should be suspended close to B to have equal stresses in both the wires. (d) Mass m should be suspended close to wire A to have equal strain in both wires. |
|
| 121000. |
Which of the following is not a scalar? (a) viscosity (b) surface tension (c) pressure(d) stress |
|
Answer» Correct answer is (d) stress |
|