Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Evaluate the following:(i) \(\displaystyle\sum_{n=1}^{11} (2 + 3^n)\)(ii) \(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\)(iii) \(\displaystyle\sum_{n=2}^{10} 4^n\)

Answer»

(i) \(\displaystyle\sum_{n=1}^{11} (2 + 3^n)\)

= (2 + 31) + (2 + 32) + (2 + 33) + … + (2 + 311)

= 2×11 + 31 + 32 + 33 + … + 311

= 22 + 3(311 – 1)/(3 – 1) [by using the formula, a(1 – rn )/(1 – r)]

= 22 + 3(311 – 1)/2

= [44 + 3(177147 – 1)]/2

= [44 + 3(177146)]/2

= 265741

(ii) \(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\)

= (2 + 30) + (22 + 3) + (23 + 32) + … + (2n + 3n-1)

= (2 + 22 + 23 + … + 2n) + (30 + 31 + 32 + …. + 3n-1)

Firstly let us consider,

(2 + 22 + 23 + … + 2n)

Where, a = 2, r = 22/2 = 4/2 = 2, n = n

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

= 2 (2n – 1)/(2 – 1)

= 2 (2n – 1)

Now, let us consider

(30 + 31 + 32 + …. + 3n)

Where, a = 30 = 1, r = 3/1 = 3, n = n

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

= 1 (3n – 1)/ (3 – 1)

= (3n – 1)/2

So,

\(\displaystyle\sum_{k=1}^{n} (2^k + 3^{k - 1})\)

= (2 + 22 + 23 + … + 2n) + (30 + 31 + 32 + …. + 3n)

= 2 (2n – 1) + (3n – 1)/2

= 1/2 [2n+2 + 3n – 4 – 1]

= 1/2 [2n+2 + 3n – 5]

(iii) \(\displaystyle\sum_{n=2}^{10} 4^n\)

= 42 + 43 + 44 + … + 410

Where, a = 42 = 16, r = 43/42 = 4, n = 9

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

= 16 (49 – 1)/(4 – 1)

= 16 (49 – 1)/3

= 16/3 [49 – 1]

102.

Five numbers are in A.P. with common difference ≠ 0. If 1st, 3rd and 4th terms are in G.P., then which term is always zero?

Answer»

Let the five numbers in A.P. be a – 2d, a – d, a, a + d, a + 2d. 

Since 1st, 3rd and 4th terms are in G.P. 

(t3)2 = t1 . t4 

⇒ a2 = (a – 2d) (a + d) 

⇒ a2 = a2 – ad – 2d2 

⇒ – ad = 2d2 ⇒ a = – 2d            ( d ≠ 0) 

⇒ a + 2d = 0 ⇒ t5 = 0

∴ 5th term is always zero.

103.

Find the sum of 2n terms of the series whose every even term is ‘a’ times the term before it and every odd term is ‘c’ times the term before it, the first term being unity.

Answer»

Let T indicate a term of the progression.T1, T2, T3, ..., Tn, ...T2nT1 = 1 T2 = a T3 = ca T4 = c.aT5 = c2.aTk if k is even = \(\frac{k}{a^2}.\frac{k}{C^2}-1\)

T2n\(\frac{2n}{a^2}\)\(\frac{2n}{C^2}-1\)

T2n = an. Cn-1

S2n = 1 + a + ca + c.a2 + c2.a2 + c2.a3 .....an. cn - 1= 1 + [ a + c.a2 + c2.a3.... + an.cn - 1]

+ [ca + c2.a2 + c3.a3..... + cn - 1.an - 1]The sum of a G.P. = \(\frac{a(r^{n-1})}{r-1}\)

For a + c.a2 + c2.a3.... + an.cn - 1 

a = a, r = ca, n = n 

⇒ \(\frac{a(ca^n-1)}{ca-1}\)

For [ ca + c2.a2 + c3.a3..... + cn - 1.an - 1

a = ca, r = ca, n = n

⇒ \(\frac{ca(ca^n-1)}{ca-1}\)

∴ The required result = 1 + \(\frac{a(ca^n-1)}{ca-1}\) + \(\frac{ca(ca^n-1)}{ca-1}\)

⇒ \(\cfrac{a(ca^n-1)+ca(ca^{n-1}) + ca -1}{ca-1}\)

104.

Find the 7th and nth terms of the GP 0.4, 0.8, 1.6….

Answer»

Given GP is 0.4, 0.8, 1.6…. 

The given GP is of the form, a, ar, ar2 , ar3…. 

Where r is the common ratio. 

First term in the given GP, a1 = a = 0.4 

Second term in GP, a2 = 0.8

Now, the common ratio, \(r = \frac{a_2}{a_1}\)

r = \(\frac{0.8}{0.4}\) = 2

Now, nth term of GP is, an = arn – 1 

So, the 7th term in the GP, 

a7 = ar6 

= 0.4 x 26 = 25.6 

nth term in the GP, an = arn – 1 = (0.4)(2)n – 1 

= (0.2)2n 

Hence, 7th term = 25.6 and nth term = (0.2)2n

105.

If the 5th term of a GP is 2, find the product of its first nine terms.

Answer»

Given: 5th term of a GP is 2. 

To find: the product of its first nine terms. 

First term is denoted by a, the common ratio is denote by r. 

∴ ar4 = 2 

We have to find the value of: a × ar1 × ar2 × ar3 × … × ar8 

= a9r1 + 2 + 3 + 4 + … + 8 

= a9r36 

= (ar4)9 

= (2)9 

= 512 .

106.

In a G.P, t2 + t5 = 216 and t4 : t6 = 1 : 4 and all the terms are integers, then its first term is(a) 16 (b) 14 (c) 12 (d) None of these

Answer»

(c) 12

Let a and r be the first term and common ratio respectively of the given G.P. Then, t2 = ar, t4 = ar3, t5 = ar4, t6 = ar

Given, t2 + t5 = ar + ar4 = 216                 ...(i) 

and \(\frac{t_4}{t_6}\) = \(\frac{ar^3}{ar^5}\) = \(\frac{1}{4}\) ⇒ \(\frac{1}{r^2}\) = \(\frac{1}{4}\) ⇒ \(\frac{1}{r}\) = \(\frac{1}{2}\)       ...(ii)

Now putting r = 2, in (i) we get 

2a + 16a = 216 ⇒ 18a = 216 ⇒ a = 12.

107.

If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.

Answer»

Given: Second, third and sixth terms of an A.P. are consecutive terms of a G.P.

Let the first term of AP be a and the common difference be d.

⇒ An = a+(n-1)d

⇒ A2 = a+d

⇒ A3 = a+2d

⇒ A6 = a+5d

If a,b,c are consecutive terms of GP then we can write b2 = a.c

∴ We can write (a+2d)2 = (a+d).(a+5d)

⇒ a2+4d2+4ad = a2+6ad+5d2

⇒ d2+2ad = 0

⇒ d(d+2a) = 0

∴ d = 0 or d = - 2a

When d = 0 then the GP becomes a, a, a.

∴ The common ration becomes 1.

When d = - 2a then the GP becomes – a, - 3a,- 9a

∴ The common ratio becomes 3.

108.

The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.

Answer»

Let the three numbers be \(\frac{a}{r}, a, ar.\)

⇒ \(\frac{a}{r}\) + a + ar = 14

⇒ a + ar + ar2 = 14r…(1)

First two terms are increased by 1, and third decreased by 1

\(\therefore\) \(\frac{a}{r}\) + 1, a + 1, ar -1

The above sequence is in AP.

We know in AP.

2b = a + c

\(\therefore\) 2(a + 1) = ar - 1 + \(\frac{a}{r} + 1\)

⇒ 2a + 2 = \(\frac{ar^2 + a}{r}\)

⇒ 2ar + 2r = ar2 + a 

⇒ ar2 – 2ar + a = 2r …(2)

Dividing 1 by 2 we get

⇒ \(\frac{a + ar + ar^2}{ar^2 - 2ar + a}\) = \(\frac{14r}{2r}\)

⇒ \(\frac{1+r+r^2}{r^2 - 2r + 1} = 7\)

⇒ 1 + r + r2 = 7r2 – 14r + 7 

⇒ 6r2 – 15r – 6 = 0 

⇒ 6r2 – 12r – 3r – 6 = 0 

⇒ 6r(r – 2) – 3(r – 2) = 0 

⇒ (6r – 3) (r – 2) = 0 

⇒ r = 2 or r = 1/2. 

Substituting r = 2 in 2 we get 

⇒ a(2)2 – 2a(2) + a = 2(2) 

⇒ 4a – 4a + a = 4 

⇒ a = 4

Substituting r = 1/2 in 2 we get 

⇒ a(1/2)2 – 2a(1/2) + a = 2(1/2) 

⇒ a = 4

∴ substituting a and r we get the numbers as 2,4,8.

109.

The value of a machine costing 80000 depreciates at the rate of 15% per annum. What will be the worth of this machine after 3 days?

Answer»

To find: 

The amount after three days Given: 

(i) Principal – 80000 

(ii) Time – 3 days 

(iii) Rate – 15% per annum 

Deduction = P × R × T

= 80000 \(\times \frac{15}{100} \times \frac{3}{365}\)

= 98.63 

The final amount after deduction = 80000 – 98.63

= 79901.37 

The value of the machine after 3 days is Rs. 79901.37

110.

Find the 4th term from the end of the G.P. 2/27, 2/9, 2/3, …., 162.

Answer»

The nth term from the end is given by:

an = l (1/r)n-1 where, l is the last term, r is the common ratio, n is the nth term

Given: last term, l = 162

r = t2/t1 = (2/9) / (2/27)

= 2/9 × 27/2

= 3

n = 4

So, an = l (1/r)n-1

a4 = 162 (1/3)4-1

= 162 (1/3)3

= 162 × 1/27

= 6

∴ 4th term from last is 6.

111.

Find three numbers in G.P. whose sum is 65 and whose product is 3375.

Answer»

Let the three numbers be a/r, a, ar

So, according to the question

a/r + a + ar = 65 … equation (1)

a/r × a × ar = 3375 … equation (2)
From equation (2) we get,

a3 = 3375

a = 15.

From equation (1) we get,

(a + ar + ar2)/r = 65
a + ar + ar2 = 65r … equation (3)

Substituting a = 15 in equation (3) we get

15 + 15r + 15r2 = 65r

15r2 – 50r + 15 = 0… equation (4)

Dividing equation (4) by 5 we get

3r2 – 10r + 3 = 0

3r2 – 9r – r + 3 = 0

3r(r – 3) – 1(r – 3) = 0

r = 3 or r = 1/3

Now, the equation will be

15/3, 15, 15×3 or

15/(1/3), 15, 15×1/3

So the terms are 5, 15, 45 or 45, 15, 5
∴ The three numbers are 5, 15, 45.

112.

Write the G.P. whose 4th term is 54 and 7th term is 1458.

Answer»

t4 = ar3 = 54             ...(i) 

t7 = ar6 = 1458          ...(ii)

∴ Dividing (ii) by (i), we get

\(\frac{t_7}{t_4}\) = r3\(\frac{1458}{54}\) = 27

⇒ r = 3

∴ From (i), a.(3)3 = 54 

⇒ 27a = 54 

⇒ a = 2

∴ The G.P. is 2, 2 x 3, 2 x 32, ..... , i.e. 2, 6, 18, 54, .... .

113.

Find the 4th term from the end of the G.P. 1/2, 1/6, 1/18, 1/54, … , 1/4374

Answer»

The nth term from the end is given by:

an = l (1/r)n-1 where, l is the last term, r is the common ratio, n is the nth term

Given: last term, l = 1/4374

r = t2/t1 = (1/6) / (1/2)

= 1/6 × 2/1

= 1/3

n = 4

So, an = l (1/r)n-1

a4 = 1/4374 (1/(1/3))4-1

= 1/4374 (3/1)3

= 1/4374 × 33

= 1/4374 × 27

= 1/162

∴ 4th term from last is 1/162.

114.

In a geometric progression consisting of positive terms, each term equals the sum of next two terms. Then, the common ratio of the progression equals(a) \(\frac{\sqrt5}{2}\)(b) \(\sqrt5\)(c) \(\frac{\sqrt5-1}{2}\)(d) \(\frac{\sqrt5+1}{2}\)

Answer»

(c) \(\frac{\sqrt5-1}{2}\)

Let the G.P. be a, ar, ar2, ...... 

As all the terms of the given G.P. are positive, a > 0, r > 0. 

Given, a = ar + ar2 

⇒ ar2 + ar – a = 0 

⇒ r2 + r – 1 = 0.

∴ r = \(\frac{-1\pm\sqrt{1-4}}{2}\) = \(\frac{-1\pm\sqrt{5}}{2}\)

⇒ r = \(\frac{\sqrt{5-1}}{2}\).            \(\big(\because\frac{-1-\sqrt5}{2}\,\text{is a negative quantity and }\,r>0\big)\)

115.

The first two terms of a geometric progression add up to 12. The sum of the third and fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is (a) – 4 (b) – 12 (c) 12 (d) 4

Answer»

(b) – 12

Let a and r be the first term and common ratio respectively of the given G.P.

Then a + ar = 12                  ...(i) 

ar2 + ar3 = 48                     ....(ii)

⇒ \(\frac{ar^2(1+r)}{a(1+r)}\) = \(\frac{48}{12}\)            (Dividing (ii) by (i)) 

⇒ r2 = 4 ⇒ r ± 2 ⇒ r = – 2 

as the terms of the G.P. are alternately positive and negative. 

Now a (1 + r) = 12 ⇒ a (1 – 2) = 12 ⇒ a = – 12.

116.

Which term of the progression 18, -12, 8, … is 512/729 ?

Answer»

By using the formula,

Tn = arn-1

a = 18

r = t2/t1 = (-12/18)

= -2/3

Tn = 512/729

n = ?

Tn = arn-1

512/729 = 18 (-2/3)n-1

29/(729 × 18) = (-2/3)n-1

29/36 × 1/2×32 = (-2/3)n-1

(2/3)8 = (-1)n-1 (2/3)n-1

8 = n – 1

n = 8 + 1

= 9

∴ 9th term of the Progression is 512/729

117.

Which term of the progression 18, -12, 8, … is 512/729, n = ?

Answer»

Tn = arn-1

a = 18, r =  \(\frac{-12}{18}\) = \(\frac{-2}{3}\), Tn = \(\frac{512}{729}, n = ?\)

\(\therefore\)\(\frac{512}{729}\) = 18 x (\(\frac{-2}{3}\))n-1

\(\Rightarrow\) \(\frac{512}{729}\) = 18 x  (\(\frac{-2}{3}\))n x \(\frac{-3}{2}\)

\(\Rightarrow\)\(\frac{512}{19683}\) = \((\frac{2}{3})^3\)

\(\Rightarrow\) n = 9

118.

If the first term of a G.P. is 729 and its 7th term is 64, then the sum of the first seven terms is(a) 2187 (b) 2059 (c) 1458 (d) 2123

Answer»

(b) 2059

Let the first term and common ratio of the G.P. be a and r respectively.

Then, T1 = a = 729, T7 = ar6 = 64

∴ \(\frac{ar^6}{a}\) = \(\frac{64}{729}\) ⇒ r\(\frac{64}{729}\) = \(\frac{2^6}{3^6}\) ⇒ r = \(\frac{2}{3}.\)

∴ S7\(\frac{a(1-r^n)}{1-r}\) = \(\frac{729\bigg(1-\big(\frac{2}{3}\big)^7\bigg)}{1-\frac{2}{3}}\)

\(\frac{729\bigg(1-\frac{128}{2187}\bigg)}{\frac{1}{3}}\) = 2187 \(\bigg(\frac{2187-128}{2187}\bigg)\) = 2059.

119.

The sum of n terms of the G.P. 3, 6, 12, … is 381. Find the value of n.

Answer»

Given:

Sum of GP = 381

Where, a = 3, r = 6/3 = 2, n = ?

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

381 = 3 (2n – 1)/ (2 - 1)

381 = 3 (2n – 1)

381/3 = 2n – 1

127 = 2n – 1

127 + 1 = 2n

128 = 2n

27 = 2n

n = 7

∴ value of n is 7

120.

How many terms of the sequence √3, 3, 3√3,… must be taken to make the sum 39 + 13√3 ?

Answer»

Given:

Sum of GP = 39 + 13√3

Where, a =√3, r = 3/√3 = √3, n = ?

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

39 + 13√3 = √3 (√3n – 1)/ (√3 – 1)

(39 + 13√3) (√3 – 1) = √3 (√3n – 1)

Let us simplify we get,

39√3 – 39 + 13(3) – 13√3 = √3 (√3n – 1)

39√3 – 39 + 39 – 13√3 = √3 (√3n – 1)

39√3 – 39 + 39 – 13√3 = √3n+1 – √3

26√3 + √3 = √3n+1

27√3 = √3n+1

√36 √3 = √3n+1

6+1 = n + 1

7 = n + 1

7 – 1 = n

6 = n

∴ 6 terms are required to make a sum of 39 + 13√3

121.

The fourth term of a G.P. is 27, and the 7th term is 729, find the G.P.

Answer»

Tn = arn-1 

a =a, r =?, Tn = 27 n = 4 

a =a, r =?, Tn = 729 n = 7 

∴ 27 = a.r4-1 

⇒ 27 =a.r3…(1) 

∴ 729 = a.r7-1 

⇒ 729 = a.r6…(2) 

Divide (2) by (1) we get 

\(\frac{729}{27}\)  = \(\frac{ar^6}{ar^3}\)

⇒ r3 = 27 

⇒ r = 3 

Substituting r in 1 we get 

a = 1 

∴ GP = 1,3,9…

122.

Insert 3 geometric means between 16 and 256.

Answer»

Let G1, G2, G3 be the required means.

Then 16, G1, G2, G3, 256 form a G.P. 

Let r be the common ratio. 

⇒ 256 = 5th term = ar4 = 16 × r4 

⇒ 16r4 = 256 ⇒ r4 = 16 ⇒ r = 2

∴ G1 = ar = 16 x 2 = 32

G2 = ar2 = 16 x 4 = 64 

G3 = ar3 = 16 x 8 = 128 

Hence 32, 64 and 128 are the required G.M’s between 16 and 256.

123.

Insert 5 geometric means between 16 and 1/4.

Answer»

Let the five terms be a1, a2, a3, a4, a5.

A = 27, B = 1/81

Now, these 5 terms are between A and B.

So the GP is: A, a1, a2, a3, a4, a5, B.

So we now have 7 terms in GP with the first term being 16 and seventh being 1/4.

We know that, Tn = arn–1

Here, Tn = 1/4, a = 16 and

1/4 = 16r7-1

1/(4 × 16) = r6

r = 1/2

a1 = Ar = 16 × 1/2 = 8  

a2 = Ar2 = 16 × 1/4 = 4   

a3 = Ar3 = 16 × 1/8 = 2   

a4 = Ar4 = 16 × 1/16 = 1   

a5 = Ar5 = 16 × 1/32 = 1/2   

∴ The five GM between 16 and 1/4 are 8, 4, 2, 1, 1/2

124.

The two geometric means between the numbers 1 and 64 are A. 1 and 64 B. 4 and 16 C. 2 and 16 D. 8 and 16

Answer»

Let the GM be y,z 

∴ 1,y,z,64 

y2 = 1.z ; z2 =64y 

y4 = z2 

∴ y4 =64y 

⇒ y = 4 

∴ Z =16

∴ The two GM are 4,16.

125.

The two geometric means between the numbers 1 and 64 areA. 1 and 64B. 4 and 16C. 2 and 16D. 8 and 16

Answer»

Let the GM be y,z

∴ 1,y,z,64

y2 = 1.z ; z2 = 64y

y4 = z2

∴ y4 = 64y

⇒ y = 4

∴ Z = 16

∴ The two GM are 4,16.

126.

Which term of the GP√3, 3, 3√3… is 729?

Answer»

Given GP is √3, 3, 3√3…. 

The given GP is of the form, a, ar, ar2 , ar3…. 

Where r is the common ratio. 

First term in the given GP, 

a1 = a = √3 

Second term in GP, a2 = 3 

Now, the common ratio, \(r = \frac{a_2}{a_1}\)

r = \(\frac{3}{√3}\) = √3

Let us consider 729 as the nth term of the GP. Now, nth term of GP is, an = arn – 1 

729 = √3 (√3)n – 1 

√3n = √312 

n = 12 

So, 729 is the 12th term in GP.

127.

Find the sum of 10 terms of a GP whose 8th term is 768 and the common ratio is 2.

Answer»

t8 = 768

= ar7

r = 2

t10 = ar9 

= ar7 × r × r

= 768 × 2 × 2

= 3072

128.

Find the geometric series whose 5th and 8th terms are 80 and 640 respectively.

Answer»

The nth term of a GP is an = arn-1 

It’s given in the question that 5th term of the GP is 80 and 8th term of GP is 640. 

So, a5 = ar4 = 80 → (1)

a8 = ar7 = 640 → (2)

\(\cfrac{(2)}{(1)}_\longrightarrow \cfrac{ar^7}{ar^4}\) = r3 = \(\cfrac{640}{80}\)= 8

Common ratio, r = 2, 

ar4 = 80 

16a = 80 a = 5 

The required GP is of the form a, ar, ar2 , ar3 , ar4…. 

First term of GP, a = 5 

Second term of GP, ar = 5 x 2 =10 

Third term of GP, ar2 = 5 x 22 = 20

Fourth term of GP, ar3 = 5 x 23 = 40 

Fifth term of GP, ar4 = 5 x 24 = 80 

And so on... 

The required GP is 5, 10, 20, 40, 80…

129.

In a G.P. if the (m+n)th term is p and (m - n)th term is q, then its mth term isA. 0B. pqC. √pqD. 1/2(p+q)

Answer»

⇒ Let the first term be a and the common ratio be r.

∴ According to the question,

am+n = p.

am-n = q.

an = arn-1

am+n = a.rm+n-1

am-n = a.rm-n-1

∴ a.rm+n-1 = p.

a.rm-n-1 = n.

Multiplying above two equations we get

a2r(m+n-1+(m-n-1) = a2r(2m-2)

a2r(2m-2) = p.q

(ar)2(m-1) = p.q

∴ arm-1 =√p.q

⇒ Mth term is given by a.rm-1

∴ arm-1 =√p.q

130.

The sum of first three terms of a GP is \(\frac{39}{10}\) and their product is 1. Find the common ratio and these three terms.

Answer»

Let the first three terms of G.P. be \(\frac{a}{r}\), a, ar

It is  given that \(\frac{a}{r} \times a \times ar = 1\)

\(\Rightarrow\) a3 = 1

⇒ a = 1

And

\(\frac{a}{r} + a + ar = \frac{39}{10}\)

\(\Rightarrow\) a\(\left(\frac{1}{r} + 1 + r\right)\) = \(\frac{39}{10}\)

\(\Rightarrow\)\(\left(\frac{1}{r} + 1 + r\right)\) = \(\frac{39}{10}\) .....(a=1)

\(\Rightarrow\) \(\left(\frac{1}{r} + r\right)\) = \(\frac{39}{10}\) - 1 = \(\frac{29}{10}\)

⇒ 10(1 + r2 ) = 29r 

⇒ 10r2 - 29r + 10 = 0 

⇒ 10r2 - 25r - 4r + 10 = 0 

⇒ 5r(2r - 5) - 2(2r - 5) = 0 

⇒ (2r - 5)(5r - 2) = 0

⇒ r = \(\frac{5}{2}, \frac{2}{5}\)

Therefore the first three terms are:

(i) if r = \(\frac{5}{2}\) then

\(\frac{2}{5}, 1 , \frac{5}{2}\)

(ii) if r = \(\frac{2}{5}\)then

\(\frac{5}{2},1,\frac{2}{5}\)

Hence, the Common ratio r = \(\frac{5}{2},\frac{2}{5}\) and the first three terms are:

(i) if r = \(\frac{5}{2}\) then

\(\frac{2}{5},1,\frac{5}{2}\)

(ii) If r = \(\frac{2}{5}\) then

\(\frac{5}{2},1,\frac{2}{5}\)

131.

If 2nd, 3rd and 6th terms of an AP are the three consecutive terms of a GP then find the common ratio of the GP.

Answer»

We have been given that 2nd, 3rd and 6th terms of an AP are the three consecutive terms of a GP. 

Let the three consecutive terms of the G.P. be a,ar,ar2

Where a is the first consecutive term and r is the common ratio. 

2nd, 3rd terms of the A.P. are a and ar respectively as per the question. 

∴ The common difference of the A.P. = ar - a 

And the sixth term of the A.P. = ar2 

Since the second term is a and the sixth term is ar2 (In A.P.) 

We use the formula: t = a + (n - 1)d 

∴ ar2 = a + 4(ar - a)…(the difference between 2nd and 6th term is 4(ar - a)) 

⇒ ar2 = a + 4ar - 4a 

⇒ ar2 + 3a - 4ar = 0 

⇒ a(r2 - 4r + 3) = 0 

⇒ a(r - 1)(r - 3) = 0 

Here, we have 3 possible options: 

1) a = 0 which is not expected because all the terms of A.P. and G.P. will be 0. 

2) r = 1,which is also not expected because all th terms would be equal to first term. 

3) r = 3,which is the required answer. 

Hence, Common ratio = 3

132.

If a, b, c are in GP and a1/x = b1/y = c1/z then prove that x, y, z are in AP.

Answer»

It is given that: 

a 1/x = b1/y = c1/z 

Let a1/x = b1/y = c1/z = k 

⇒ a 1/x = k 

⇒ (a1/x) x = kx…(Taking power of x on both sides.) 

⇒ a 1/x × x = k

⇒ a = kx 

Similarly b = ky 

And c = kz 

It is given that a,b,c are in G.P. 

⇒ b2 = ac 

Substituting values of a,b,c calculated above, we get: 

⇒ (ky )2 = kxk z 

⇒ k2y = kx + z 

Comparing the powers we get, 

2y = x + z 

Which is the required condition for x,y,z to be in A.P. 

Hence, proved that x,y,z, are in A.P.

133.

How many terms of the series 2 + 6 + 18 + …. Must be taken to make the sum equal to 728?

Answer»

Given: 

Sum of GP = 728 

∴ Common Ratio = r = \(\frac{6}{2}\) = 3

 a = 2

 To find: Number of terms = n. 

Sum of GP for n terms = \(\frac{a(r^n-1)}{r-1}\)

⇒ 728 = \(\cfrac{2(3^n -1)}{3-1}\)

⇒ 728 = 3n - 1 

⇒ 729 = 3n 

⇒ 36 = 3

∴ n = 6.