Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Six positive numbers are in G.P, such that their product is 1000. If the fourth term is 1, then the last term is(a) 1000 (b) 100 (c) \(\frac{1}{100}\)(d) \(\frac{1}{1000}\)

Answer»

(c) \(\frac{1}{100}.\)

Let the six numbers in G.P. be \(\frac{a}{r^5}\)\(\frac{a}{r^3}\)\(\frac{a}{r}\), ar, ar3, ar5

given, \(\frac{a}{r^5}\) x \(\frac{a}{r^3}\) x \(\frac{a}{r}\) x ar x ar3 x ar= 1000

⇒ a6 = 1000 ⇒ a = \(\sqrt{10}\)

Given, T4 = ar = 1 ⇒ \(\sqrt{10}\)r = 1 ⇒ = \(\frac{1}{\sqrt{10}}\)

∴ Last term of G.P. = ar5\(\sqrt{10}\) x \(\frac{1}{\sqrt{(10)}^5}\) = \(\frac{1}{100}.\)

52.

Find the value of \(0.2\overline{34}\) regarding it as a geometric series.

Answer»

\(0.2\overline{34}\) = 0.234 34 34 ....... 

= 0.2 + 0.034 + 0.00034 + 0.0000034 + ...... + ∞

\(\frac{2}{10}\) + \(\frac{34}{1000}\) + \(\frac{34}{100000}\) + \(\frac{34}{10000000}\) + ..... + ∞

\(\frac{2}{10}\) + \(\frac{34}{10^3}\)\(\bigg[1+\frac{1}{10^2}+\frac{1}{10^4}+.......\infty\bigg]\)

\(\frac{2}{10}\) + \(\frac{34}{10^3}\) x \(\bigg(\frac{1}{1-\frac{1}{10^2}}\bigg)\)          \(\big(\because\,S_{\infty}=\frac{a}{1-r}.\text{Here}\,a = 1,\,r=\frac{1}{10^2}\big)\)

\(\frac{2}{10}\) + \(\frac{34}{1000}\) x \(\frac{100}{99}\) = \(\frac{198+34}{990}\) = \(\frac{232}{990}\) = \(\frac{116}{495}.\)

53.

Construct a quadratic in x such that A.M. of its roots is A and G.M. is G.

Answer»

Let the root of the quadratic equation be a and b.

According to the given condition,

⇒ AM = a+b/2 = A

⇒ a + b = 2A …..(1)

⇒ GM = √ab = G

= ab = G2…(2)

The quadratic equation is given by,

x2– x (Sum of roots) + (Product of roots) = 0

x2 – x (2A) + (G2) = 0

x2 – 2Ax + G2 = 0 [Using (1) and (2)]

Thus, the required quadratic equation is x2 – 2Ax + G2 = 0.

54.

If a and b are the roots of x2 – 3x + p = 0 and c, d are the roots x2 – 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q – p) = 17 : 15.

Answer»

Given that a and b are roots of x2 – 3x + p = 0 

⇒ a + b = 3 and ab = p ...(i) 

It is given that c and d are roots of x2 – 12x + q = 0 

⇒ c + d = 12 and cd = q...(ii) 

Also given that a, b, c, d are in G.P. 

Let a, b, c, d be the first four terms of a G.P.

⇒ a = a, b = ar c = ar2d = ar3

Now, 

∴a + b = 3 

⇒ a + ar = 3 

⇒ a(1 + r) = 3…(iii) 

c + d = 12 

⇒ ar2 + ar3 = 12 

⇒ ar2(1 + r) = 12.....(iv) 

From (iii) and (iv) we get 

3.r2 = 12 

⇒ r2 = 4 

⇒ r = ±2 

Substituting the value of r in (iii) we get a = 1 

⇒ b = ar = 2

∴ c = ar2 = 22 = 4 

d = ar3 = 23 = 8 

⇒ ab = p = 2 and cd = 4×8 = 32 

⇒ q + p = 32 + 2 = 34 and q−p = 32−2 = 30

⇒ q + p:q−p = 34:30 = 17:15 

Hence, proved.

55.

In a sequence of 21 terms, the first 11 terms are in A.P. with common difference 2 and the last 11 terms are in G.P with common ratio 2. If the middle term of A.P. be equal to the middle term of G.P., then the middle term of the entire sequence is(a) \(\frac{-10}{31}\)(b) \(\frac{10}{31}\)(c) \(\frac{32}{31}\)(d) \(\frac{-31}{32}\)

Answer»

(a) \(\frac{-10}{31}.\)

Let the first term of the A.P. be a and common difference d.

Given d = 2 ⇒ T11 of A.P. = a + 10d = a + 20. 

Let the first term of the G.P. be b and common ratio r. 

Given r = 2. Now, the middle term of A.P = middle term of G.P 

⇒ T6 of A.P = a + 5d = T6 of G.P = br5 

⇒ a + 5d = br5 

⇒ a + 10 = 32b              ( r = 2)                   ...(i) 

Also the last term of A.P. is the first term of G.P.

∴ b = T11 of A.P = a + 20                    ...(ii)

∴ From (i) and (ii) 

a + 10 = 32.(a + 20) 

⇒ 31a = – 630 ⇒ a = \(\frac{-630}{31}\)

∴ Middle term of the entire sequence of 21 terms = 11th term 

= a + 10d

\(\frac{-630}{31}\) + 20 = \(\frac{-630+620}{31}\) = \(\frac{-10}{31}.\)

56.

The sum of the first 20 terms of the sequence 0.7, 0.77, 0.777, ..... is(a) \(\frac{7}{81}(179-10^{-20})\)(b) \(\frac{7}{9}(99-10^{-20})\)(c) \(\frac{7}{81}(179+10^{-20})\)(d) \(\frac{7}{9}(99+10^{-20})\)

Answer»

(c) \(\frac{7}{81}(179+10^{-20})\)

Let S20 = 0.7 + 0.77 + 0.777 + ..... upto 20 terms 

= 7(0.1 + 0.11 + 0.111 + ..... upto 20 terms) 

= \(\frac{7}{9}\) (0.9 + 0.99 + 0.999 + ..... upto 20 terms) 

= \(\frac{7}{9}\) [(1 – 0.1) + (1 – 0.01) + (1 – 0.001) + upto 20 terms) 

= \(\frac{7}{9}\) [(1 + 1 + 1 + ..... upto 20 terms) – (0.1 + 0.01 + 0.001 + ..... upto 20 terms)]

\(\frac{7}{9}\)\(\bigg[20-\frac{0.1\{1-(0.1)^2\}}{(0-0.1)}\bigg]\)           \(\bigg(\because\,S_n=\frac{a(1-r^n)}{1-r}, \text{when}\,r<1\bigg)\)

\(\frac{7}{9}\)\(\bigg[20-\frac{1}{9}\bigg(1-\big({\frac{1}{10}\big)^{20}}\bigg)\bigg]\) = \(\frac{7}{9}\)\(\bigg[20-\frac{1}{9}+\frac{10}{9}^{-20}\bigg]\)

\(\frac{7}{9}\)\(\bigg[\frac{179+10^{-20}}{9}\bigg]\) = \(\frac{7}{81}(179+10^{-20})\).

57.

Show that the sequence defined by an = 2/3n, n ∈ N is a G.P.

Answer»

Given:

an = 2/3n

Let us consider n = 1, 2, 3, 4, … since n is a natural number.

So,

a1 = 2/3

a2 = 2/32 = 2/9

a3 = 2/33 = 2/27

a4 = 2/34 = 2/81

In GP,

a3/a2 = (2/27) / (2/9)

= 2/27 × 9/2

= 1/3

a2/a1 = (2/9) / (2/3)

= 2/9 × 3/2

= 1/3

∴ Common ratio of consecutive term is 1/3. Hence n ∈ N is a G.P.

58.

Find the sum of the GP : 1 – a + a2 – a3 + …to n terms ( a ≠ 1)

Answer»

Sum of a G.P. series is represented by the formula, Sn = a\(\frac{r^n -1}{r-1}\), when r≠1. 

‘Sn’ represents the sum of the G.P. series up to nth terms, 

‘a’ represents the first term, 

‘r’ represents the common ratio and 

‘n’ represents the number of terms. 

Here, 

a = 1 

r = (ratio between the n term and n-1 term) -a \(\div\) 1 = -a

n terms

\(\therefore\) Sn = 1 \(\times\) \(\frac{(-a)^n -1}{-a-1}\)

[Multiplying both numerator and denominator by -1]

\(\Rightarrow\)  Sn = \(\frac{1-(-a)^n}{1+a}\)

59.

Evaluate the following :\(\displaystyle\sum_{n =2}^{10}\) 4n

Answer»

 \(\displaystyle\sum_{n =2}^{10}\) 4n

Now this term is in GP. 

16, 64, 256…to 10 terms 

∴ Common Ratio = r = \(\frac{64}{16} = 4\)

∴ Sum of GP for n terms = \(\frac{a(r^n -1)}{r-1} \) ........(1)

⇒ a = 16, r = 4, n = 10 

∴ Substituting the above values in (1) we get

⇒ \(\cfrac{16(4^{10} - 1)}{4-1}\)

⇒ 5592400

60.

What is the sum of the 100 terms of the series 9 + 99 + 999 + ....?(a) \(\frac{10}{9}\) (10100 – 1) – 100 (b) \(\frac{10}{9}\) (1099 – 1) – 100 (c) 100 (10010 – 1) (d) \(\frac{9}{100}\) (10100 – 1)

Answer»

(a) \(\frac{10}{9}\) (10100 – 1) – 100 

Let S100 = 9 + 99 + 999 + ...... upto 100 terms 

= (10 – 1) + (100 – 1) + (1000 – 1) + ..... + upto 100 terms 

= (10 + 102 + 103 + .... upto 100 terms) – (1 + 1 + 1 + ..... upto 100 terms)

\(\frac{10(10^{100}-1)}{10-1}-100\)                  \(\bigg(\because\,S_n=\frac{a(r^n-1)}{r-1}\,\text{when}\,r>1\bigg)\)

\(\frac{10}{9}\) (10100 – 1) – 100.

61.

The sum of first three terms of a G.P. is 13/12, and their product is – 1. Find the G.P.

Answer»

Let the three numbers be a/r, a, ar

So, according to the question

a/r + a + ar = 13/12 … equation (1)

a/r × a × ar = -1 … equation (2)
From equation (2) we get,

a3 = -1

a = -1

From equation (1) we get,

(a + ar + ar2)/r = 13/12

12a + 12ar + 12ar2 = 13r … equation (3)

Substituting a = – 1 in equation (3) we get

12( – 1) + 12( – 1)r + 12( – 1)r2 = 13r

12r2 + 25r + 12 = 0

12r2 + 16r + 9r + 12 = 0… equation (4)

4r (3r + 4) + 3(3r + 4) = 0

r = -3/4 or r = -4/3 

Now the equation will be

-1/(-3/4), -1, -1×-3/4 or -1/(-4/3), -1, -1×-4/3

4/3, -1, 3/4 or 3/4, -1, 4/3

∴ The three numbers are 4/3, -1, 3/4 or 3/4, -1, 4/3

62.

The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is 87 1/2. Find them.

Answer»

Let the three numbers be a/r, a, ar

So, according to the question

a/r × a × ar = 125 … equation (1)

From equation (1) we get,

a3 = 125

a = 5

a/r × a + a × ar + ar × a/r = 87 1/2

a/r × a + a × ar + ar × a/r = 195/2

a2/r + a2r + a2 = 195/2

a2 (1/r + r + 1) = 195/2

Substituting a = 5 in above equation we get,

52 [(1 + r+ r)/r] = 195/2

1 + r+ r = (195r/2 × 25)

2(1 + r+ r) = 39r/5

10 + 10r2 + 10r = 39r

10r2 – 29r + 10 = 0

10r2 – 25r – 4r + 10 = 0

5r(2r - 5) – 2(2r  -5) = 0

r = 5/2, 2/5

So G.P is 10, 5, 5/2 or 5/2, 5, 10

∴ The three numbers are 10, 5, 5/2 or 5/2, 5, 10

63.

Find: the 12th term of the G.P. \(\frac{1}{{a^3 x^3}}\) = a4x4

Answer»

Tn = arn-1

a = \(\frac{1}{a^3x^3}\), r = \(\cfrac{ax}{\frac{1}{a^3x^3}}\) = \({a^4}{x^4}\)

 \(\therefore\) T12 = \(\frac{1}{a^3x^3}(a^4 x^4)^{12-1}\)

\(\frac{1}{a^3x^3}(a^4x^4)^{11}\)

= a41x41

∴ The 12 term is a41 x41.

64.

Find: The 8th term of the G.P., 0.3, 0.06, 0.012, ….

Answer»

Tn = arn-1

a = \(\frac{3}{100}\), r =\(\cfrac{\frac{6}{100}}{\frac{3}{10}}\) = \(\frac{2}{10}\)

\(\therefore\) T8 = \(\frac{3}{100} \times (\frac{2}{10})^{8-1}\)

\(\frac{3}{100}\times \frac{2^7}{10^7}\)

\(\frac{3.2^7}{10^9}\)

\(\therefore \) The 10 term is \(\frac{3.2^7}{10^9}\)

65.

The sum of the first three terms of a G.P. is 39/10, and their product is 1. Find the common ratio and the terms.

Answer»

Let the three numbers be a/r, a, ar

So, according to the question

a/r + a + ar = 39/10 … equation (1)

a/r × a × ar = 1 … equation (2)
From equation (2) we get,

a3 = 1

a = 1

From equation (1) we get,

(a + ar + ar2)/r = 39/10

10a + 10ar + 10ar2 = 39r … equation (3)

Substituting a = 1 in 3 we get

10(1) + 10(1)r + 10(1)r2 = 39r

10r2 – 29r + 10 = 0

10r2 – 25r – 4r + 10 = 0… equation (4)

5r(2r – 5) – 2(2r – 5) = 0

r = 2/5 or 5/2

so now the equation will be,

1/(2/5), 1, 1 × 2/5 or 1/(5/2), 1, 1 × 5/2

5/2, 1, 2/5 or 2/5, 1, 5/2

∴ The three numbers are 2/5, 1, 5/2

66.

Find: The 10th term of the G.P. \(-\frac{3}{4}, \frac{1}{2}, -\frac{1}{3}, \frac{2}{9}\)....

Answer»

Tn = arn-1

a = \(\frac{-3}{4}\), r = \(\cfrac{\frac{1}{2}}{\frac{-3}{4}}\) = \(\frac{-2}{3}\)

\(\therefore\) T9 = \(\frac{-3}{4}(-\frac{2}{3})^{10-1}\)

\(\frac{-3}{4} \times \frac{-2^9}{3^9}\)

\(\frac{2^7}{3^8}\)

\(\therefore\) The 10 Term is \(\frac{2^7}{3^8}\)

67.

Find: the 9th term of the G.P. 1, 4, 16, 64, ….

Answer»

Tn = arn-1 

a = 4, r = \(\frac{16}{4}\) = 4

∴ T9 = 4.(49-1

= 4.48 

= 49 

∴ The 9 term is 49

68.

If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a – b, d – c are in G.P.

Answer»

a, b, c are in AP 

So, 2b = a + c …(1) 

b, c, d are in GP 

So, b2 = ad …(2) 

Multiply first equation with a and subtract it from 2nd. 

b2 – 2ab = ad – ac – a2 

a2 + b2 – 2ab = a(d – c) 

⇒ (a – b)2 = a(d – c) 

As a, (a – b), (d – c) satisfy the geometric mean relationship 

Hence a, (a – b),(d – c) are in G.P.

69.

If a, b, c are in G.P., prove that : (a2 + b2), (b2 + c2), (c2 + d2) are in G.P.

Answer»

a, b, c, d are in G.P. 

Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

To prove: (a2 + b2), (b2 + c2), (c2 + d2) are in G.P, 

we need to prove that: 

(a2 + b2) (c2 + d2) = (b2 + c2)2 {deduced using GM relation} 

∴ RHS = (b2 + c2)2 = b4 + c4 + 2b2c2 

= a2c2 + b2d2 + a2d2 + b2c2 {using equation 2 and 3} 

= c2(a2 + b2) + d2(a2 + b2

= (a2 + b2) (c2 + d2) = LHS 

∴ (a2 + b2), (b2 + c2), (c2 + d2) are in G.P 

Hence proved.

70.

Show that the sequence defined by an = \(\frac{2}{3^n}\), n∈N is a G.P.

Answer»

Put n = 1,2,3,4… 

a1, a2, a3, a4

\(\Rightarrow\) a1 = \(\frac{2}{3}\), a2 = \(\frac{2}{9}\), a3 = \(\frac{2}{27}\), a4 = \(\frac{2}{81}\), .....

If a1, a2, a3......

\(\Rightarrow\) (a2)2 = a1,a3

\(\Rightarrow\) \((\frac{2}{9})^2\) = \(\frac{2}{3}\) = \(\frac{2}{27}\)

\(\Rightarrow\) \(\frac{4}{81}\) 

So, It is GP.

Common ratio = r= \(\cfrac{\frac{1}{3}}{\frac{1}{2}}\) = \(\frac{2}{3}\)

71.

Find the sum of the following geometric progressions : (a2 - b2), (a-b), \((\frac{a-b}{a+b})\),........ to n terms

Answer»

Common Ratio = r = \(\frac{(a^2 - b^2)}{(a-b)}\) = \(\frac{(a+b)(a-b)}{(a-b)}\) = a+ b

∴ Sum of GP for n terms = \(\frac{a(r^n-1)}{r-1}\) ...... (1)

⇒ a = (a2 - b2), r = (a + b), n = n 

∴ Substituting the above values in (1) we get

⇒ \(\frac{(a^2-b^2)((a+b)^n-1)}{a+b-1}\) 

72.

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.

Answer»

Let first term of GP be a and common ratio be r 

As nth term of GP is given as – Tn = arn – 1 

∴ T4 = ar4 – 1 = ar3 Similarly T10 = ar9 

And T16 = ar15 

∴ x = ar3, y = ar9 & z = ar15 

Clearly we observed that x, y, z have a common ratio. 

∴ x,y,z are in GP with common ratio r6.

Hence proved.

73.

Find the sum of the following geometric progressions : 4, 2, 1, 1/2 ….. to 10 terms.

Answer»

Common Ratio = r = \(\frac{2}{4} = \frac{1}{2}\)

∴ Sum of GP for n terms = \(\frac{a(r^n-1)}{r-1}\) ....... (1)

⇒ a = 4, r = \(\frac{1}{2}\), n = 10

∴ Substituting the above values in (1) we get,

⇒ \(\cfrac{\big(4(\frac{1}{2})^8 - 1\big)}{\frac{1}{2} - 1}\)

⇒ \(\frac{-4 \times 255 \times 2}{-1 \times 256}\)

⇒ \(\frac{255}{32}\)

74.

Find the sum of the following geometric progressions : 1, -1/2,1/4,-1/8

Answer»

Common Ratio = r = \(\frac{\frac{-1}{2}}{1}\) = \(\frac{-1}{2}\)

∴ Sum of GP till infinity = \(\frac{a}{1-r}\) ........ (1)

⇒ a = 1, r = \(\frac{-1}{2}\)

∴ Substituting the above values in (1), we get,

⇒ \(\frac{1}{1-(\frac{-1}{2})}\)

⇒ \(\frac{1}{\frac{3}{2}}\)

⇒ \(\frac{2}{3}\)

75.

Find the sum of the following geometric progressions : 1,3,9,27,.... to 8 terms

Answer»

Common Ratio = r = \(\frac{3}{1}\) = 3

\(\therefore\) Sum of GP for n terms = \(\frac{a(r^n -1)}{r-1}\)..... (1)

⇒ a = 1, r = 3, n = 8

∴ Substituting the above values in (1) we get

⇒ \(\frac{1(3^8 -1)}{3-1}\)

⇒ \(\frac{3^8 -1}{2}\)

⇒ 3280

76.

If a, b, c are in G.P., prove that the following are also in G.P. : a2 + b2, ab + bc, b2 + c2

Answer»

a, b, c are in G.P 

Therefore 

b2 = ac … (1) 

We have to prove a2 + b2, ab + bc, b2 + c2 are in GP or we need to prove: 

(ab + bc)2 = (a2 + b2).(b2 + c2) {using GM} Take LHS and proceed: 

⇒ LHS = (ab + bc)2 = a2b2 + 2ab2c + b2c2 

∵ b2 = ac 

⇒ LHS = a2b2 + 2b2(b2) + b2c2 

⇒ LHS = a2b2 + 2b4 + b2c2 

⇒ LHS = a2b2 + b4 + a2c2 + b2c2 {again using b2 = ac } 

⇒ LHS = b2(b2 + a2) + c2(a2 + b2

⇒ LHS = (a2 + b2)(b2 + c2) = RHS 

Hence a2 + b2, ab + bc, b2 + c2 are in GP.

77.

If a, b, c are in G.P., prove that the following are also in G.P. : a3, b3, c3

Answer»

As a, b, c are in G.P. 

Therefore b2 = ac … (1) 

We have to prove a3, b3, c3 are in GP or we need to prove: (b3)2 = (a3c3) {using idea of GM} 

On cubing equation 1 we get, 

⇒ b6 = a3c3 

⇒ (b3)2 = (a3c3

Hence a3,b3,c3 are in GP.

78.

Find the two numbers whose A.M. is 25 and GM is 20.

Answer»

Given: A.M = 25, G.M = 20.

G.M = √ab

A.M = (a + b)/2

So,

√ab = 20 ……. (1)

(a + b)/2 = 25……. (2)

a + b = 50

a = 50 – b

Putting the value of ‘a’ in equation (1), we get,

√[(50 - b)b] = 20
50b – b2 = 400

b2 – 50b + 400 = 0

b2 – 40b – 10b + 400 = 0

b(b – 40) – 10(b – 40) = 0

b = 40 or b = 10

If b = 40 then a = 10

If b = 10 then a = 40

∴ The numbers are 10 and 40.

79.

Show that each one of the following progressions is a G.P. Also, find the common ratio in each case :i. 4,-2,1,\(\frac{1}{2}\), .........ii. -\(\frac{2}{3}\), -6, -54iii. a, \(\frac{3a^2}{4}, \frac{9a^3}{16}\), .....iv. \(\frac{1}{2}, \frac{1}{3}, \frac{2}{9}, \frac{4}{27}\), ......

Answer»

(i) Let a = 4, b = -2, c = 1. 

In GP, b2= ac 

⇒ (-2)2 = 4.1 

⇒ 4 = 4 

Common ratio = r = \(\frac{-2}{4}\) = \(\frac{-1}{2}\)

(ii) Let a = \(\frac{-2}{3}\) , b = -6, c = -54. 

In GP, b2= ac 

⇒ (-6)2 = \(\frac{-2}{3}\) x -54 

⇒ 36 = 36 

Common ratio = r = \(\cfrac{-6}{\frac{-2}{3}}\) = 9

(iii) Let a = a, b = \(\frac{3a^2}{4}, \) C = \(\frac{9a^2}{16}\)

In GP, b2 = ac

\(\Rightarrow\) \((\frac{3a^2}{4})^2\) = \(\frac{9a^2}{16} \times a\)

\(\Rightarrow\) \(\frac{9a^4}{4} = \frac{9a^4}{16}\)

Common ratio = r = \(\frac{\frac{3a^2}{4}}{a}\) = \(\frac{3a}{4}\)

(iv) Let a = \(\frac{1}{2}\), b = \(\frac{1}{3}\), c = \(\frac{2}{9}\)

In GP, b2 = ac

\(\Rightarrow\) \((\frac{1}{3})^2\) = \(\frac{1}{2} \times \frac{2}{9}\)

\(\Rightarrow\) \(\frac{1}{9} = \frac{1}{9}\)

Common ratio = r = \(\cfrac{\frac{1}{3}}{\frac{1}{2}}\) = \(\frac{2}{3}\)

80.

If a, b, c are in G.P., prove that : (a2 – b2), (b2 – c2), (c2 – d2) are in G.P.

Answer»

a, b, c, d are in G.P. Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

To prove: (a2 – b2), (b2 – c2), (c2 – d2) are in G.P, we need to prove that: 

(a2 – b2) (c2 – d2) = (b2 – c2)2 {deduced using GM relation} 

∴ RHS = (b2 – c2)2 

= b4 + c4 – 2b2c2 

= a2c2 + b2d2 – a2d2 – b2c2 {using equation 2 and 3} 

= c2(a2 – b2) – d2(a2 – b2

= (a2 – b2) (c2 – d2) = LHS 

∴ (a2 – b2), (b2 – c2), (c2 – d2) are in G.P

Hence proved.

81.

Show that each one of the following progressions is a G.P. Also, find the common ratio in each case:(i) 4, -2, 1, -1/2, ….(ii) -2/3, -6, -54, ….(iii) a, 3a2/4, 9a3/16, ….(iv) 1/2, 1/3, 2/9, 4/27, …

Answer»

(i) 4, -2, 1, -1/2, ….

Let a = 4, b = -2, c = 1

In GP,

b= ac

(-2)2 = 4(1)

4 = 4

So, the Common ratio = r = -2/4 = -1/2

(ii) -2/3, -6, -54, ….

Let a = -2/3, b = -6, c = -54

In GP,

b= ac

(-6)2 = -2/3 × (-54)

36 = 36

So, the Common ratio = r = -6/(-2/3) = -6 × 3/-2 = 9

(iii) a, 3a2/4, 9a3/16, ….

Let a = a, b = 3a2/4, c = 9a3/16

In GP,

b= ac

(3a2/4)2 = 9a3/16 × a

9a4/4 = 9a4/16

So, the Common ratio = r = (3a2/4)/a = 3a2/4a = 3a/4

(iv) 1/2, 1/3, 2/9, 4/27, …

Let a = 1/2, b = 1/3, c = 2/9

In GP,

b= ac

(1/3)2 = 1/2 × (2/9)

1/9 = 1/9

So, the Common ratio = r = (1/3)/(1/2) = (1/3) × 2 = 2/3

82.

If a, b, c, d are in G.P, prove that : (b + c) (b + d) = (c + a) (c + d)

Answer»

a, b, c, d are in G.P. 

Therefore,

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

LHS = b2 + bd + bc + cd

 ⇒ LHS = ac + bd + bc + cd {on substituting value of b2 } …(1) 

RHS = c2 + cd + ac + ad 

⇒ RHS = bd + cd + ac + bc {putting value of c2} …(2) 

From equation 1 and 2 we can say that 

LHS = RHS 

Hence proved

83.

If a is the G.M. of 2 and 1/4 find a.

Answer»

We know that GM between a and b is √ab

Let a = 2 and b = 1/4

GM = √(2 × 1/4)

= √(1/2)

= 1/√2

∴ value of a is 1/√2

84.

If a, b, c are in G.P., prove that : \(\frac{1}{a^2 + b^2}, \frac{1}{b^2 +c^2}, \frac{1}{c^2 + d^2}\) are in G.P

Answer»

a, b, c, d are in G.P. Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3)

To prove: \(\frac{1}{a^2 + b^2}\)\(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\) are in G.P, we need to prove that:

\(\frac{1}{(c^2 + d^2)(a^2 + b^2)}\) = \(\frac{1}{(b^2 + c^2)^2}\) {deduced using GM relation}

Or, (b2 + c2)2 = (a2 + b2)(c2 + d2

Take LHS and proceed to prove 

LHS = (b2 + c2)2 

= b4 + c4 + 2b2c2 

= a2c2 + b2d2 + a2d2 + b2c2 {using equation 2 and 3} 

= c2(a 2 + b2) + d2(a2 + b2

= (a2 + b2) (c2 + d2) = RHS

\(\therefore\)  \(\frac{1}{a^2 + b^2}\)\(\frac{1}{b^2 +c^2},\)\(\frac{1}{c^2 + d^2}\)  are in GP

Hence proved

85.

If (a – b), (b – c), (c – a) are in G.P., then prove that (a + b + c)2 = 3(ab + bc + ca)

Answer»

Given as (a – b), (b – c), (c – a) are in G.P

\(\therefore\) \(\frac{b-c}{a-b}\) = \(\frac{c-a}{b-c}\) = common ratio

⇒ (b – c)2 = (a – b)(c – a) 

As we have to prove :(a + b + c)2 = 3(ab + bc + ca) so we proceed as follows: 

⇒ b2 + c2 – 2bc = ac – a2 – bc + ab 

⇒ a2 + b2 + c2 = ac + ab + bc 

Add 2(ac + ab + bc) to both sides: 

⇒ a2 + b2 + c2 + 2(ac + ab + bc) = ac + ab + bc + 2(ac + ab + bc)

⇒ (a + b + c)2 = 3(ab + bc + ca) 

Hence Proved.

86.

If a, b, c are in G.P., prove that the following are also in G.P.:(i) a2, b2, c2(ii) a3, b3, c3(iii) a2 + b2, ab + bc, b2 + c2

Answer»

(i) a2, b2, c2

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

on squaring both the sides we get,

(b2)2 = (ac)2

(b2)2 = a2c2

∴ a2, b2, c2 are in G.P.

(ii) a3, b3, c3

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

on squaring both the sides we get,

(b2)3 = (ac)3

(b2)3 = a3c3

(b3)2 = a3c3

∴ a3, b3, c3 are in G.P.

(iii) a2 + b2, ab + bc, b2 + c2

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

a2 + b2, ab + bc, b2 + c2 or (ab + bc)2 = (a2 + b2) (b2 + c2) [by using the property of GM]

Let us consider LHS: (ab + bc)2

Upon expansion we get,

(ab + bc)2 = a2b2 + 2ab2c + b2c2

= a2b2 + 2b2(b2) + b2c2 [Since, ac = b2]

= a2b2 + 2b4 + b2c2

= a2b2 + b4 + a2c2 + b2c2 {again using b2 = ac }

= b2(b2 + a2) + c2(a2 + b2)

= (a2 + b2)(b2 + c2)

= RHS

∴ LHS = RHS

Hence a2 + b2, ab + bc, b2 + c2 are in GP.

87.

The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.

Answer»

Let the first term of an A.P. be ‘a’ and its common difference be‘d’.

b = a + d; c = a + 2d.

Given:

a + b + c = 18

3a + 3d = 18 or a + d = 6.

d = 6 – a … (i)

Now, according to the question:

a + 4, a + d + 4, and a + 2d + 36

they are now in GP, that is:

(a + d + 4)/(a + 4) = (a + 2d + 36)/(a + d + 4)
(a + d + 4)2 = (a + 2d + 36)(a + 4)

a2 + d2 + 16 + 8a + 2ad + 8d = a2 + 4a + 2da + 36a + 144 + 8d

d2 – 32a – 128

(6 – a)2 – 32a – 128 = 0

36 + a2 – 12a – 32a – 128 = 0

a2 – 44a – 92 = 0

a2 – 46a + 2a – 92 = 0

a(a – 46) + 2(a – 46) = 0

a = – 2 or a = 46

d = 6 –a

d = 6 – (– 2) or d = 6 – 46

d = 8 or – 40

Then,

For a = -2 and d = 8, the A.P is -2, 6, 14

For a = 46 and d = -40, the A.P is 46, 6, -34

∴ The numbers are – 2, 6, 14 or 46, 6, – 34

88.

Find the geometric means of the following pairs of numbers:(i) 2 and 8(ii) a3b and ab3(iii) –8 and –2

Answer»

(i) 2 and 8

GM between a and b is √ab

Let a = 2 and b = 8

GM = √2 × 8

= √16

= 4

(ii) a3b and ab3

GM between a and b is √ab

Let a = a3b and b = ab3

GM = √(a3b × ab3)

= √a4b4

= a2b2

(iii) –8 and –2

GM between a and b is √ab

Let a = –2 and b = –8

GM = √(–2 × –8)

= √–16

= -4

89.

If a, b, c are in G.P., prove that : a(b2 + c2) = c(a2 + b2)

Answer»

Now, as a,b,c are in GP. 

Using the idea of geometric mean we can write

∴ b2 = ac …(1) 

Put in the LHS of the given equation to be proved 

LHS = a(ac + c2) {putting b2 = ac} 

⇒ LHS = a2c + ac2 

⇒ LHS = c(a2 + ac) 

Again put ac = b2 

⇒ LHS = c(a2 + b2) = RHS 

∴ L.H.S = R.H.S 

Hence proved

90.

If a, b, c are in G.P., prove that : (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.

Answer»

As, 

a, b, c, d are in G.P, let r be the common ratio. 

Therefore, 

b = ar … (1) 

c = ar2 … (2) 

d = ar3 … (3) 

If we show that: (ab + bc + cd)2 = (a2 + b2 + c2) (b2 + c2 + d2

we can say that: 

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P 

As, (ab + bc + cd)2 = (a2r + a2r3 + a2r5)2 

⇒ (ab + bc + cd)2 = a4r2(1 + r2 + r4)2 …(4) 

As, 

(a2 + b2 + c2)( b2 + c2 + d2) = (a2 + a2r2 + a2r4)(a2r2 + a2r4 + a2r6

⇒ (a2 + b2 + c2)( b2 + c2 + d 2) = a4r2(1 + r2 + r4)(1 + r2 + r4

⇒ (a2 + b2 + c2)( b2 + c 2 + d2) = a4r2(1 + r2 + r4)2 …(5) 

From equation 4 and 5, we have: 

(ab + bc + cd)2 = (a2 + b2 + c2)(b2 + c2 + d2

Hence, 

We can say that (a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.

91.

If a, b, c, d are in G.P, prove that : (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2

Answer»

a, b, c, d are in G.P. 

Therefore, 

bc = ad … (1) 

b2 = ac … (2) 

c2 = bd … (3) 

If somehow we use RHS and Make it equal to LHS, our job will be done. 

we can manipulate the RHS of the given equation as 

Note: Here we are manipulating RHS because working with a simpler algebraic equation is easier and this time RHS is looking simpler. 

RHS = (a + b)2 + 2(b + c)2 + (c + d)

⇒ RHS = a2 + b2 + 2ab + 2(c2 + b2 + 2cb) + c2 + d2 + 2cd 

⇒ RHS = a2 + b2 + c2 + d2 + 2ab + 2(c2 + b2 + 2cb) + 2cd

Put c2 = bd and b2 = ac, we get

⇒ RHS = a2 + b2 + c2 + d2 + 2(ab + ad + ac + cb + cd) 

You can visualize the above expression by making separate terms for (a + b + c)2 + d2 + 2d(a + b + c) = {(a + b + c) + d}2 

⇒ RHS = (a + b + c + d)2 = LHS 

Hence Proved.

92.

The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.

Answer»

Let the three numbers be a, ar, ar2 

According to the question

a + ar + ar2 = 56 … (1)

Let us subtract 1,7,21 we get,

(a – 1), (ar – 7), (ar2 – 21)
The above numbers are in AP.

If three numbers are in AP, by the idea of the arithmetic mean, we can write 2b = a + c

2 (ar – 7) = a – 1 + ar2 – 21

= (ar2 + a) – 22

2ar – 14 = (56 – ar) – 22
2ar – 14 = 34 – ar

3ar = 48

ar = 48/3

ar = 16

a = 16/r …. (2)

Now, substitute the value of a in equation (1) we get,

(16 + 16r + 16r2)/r = 56

16 + 16r + 16r2 = 56r

16r2 – 40r + 16 = 0

2r2 – 5r + 2 = 0

2r2 – 4r – r + 2 = 0

2r(r – 2) – 1(r – 2) = 0

(r – 2) (2r – 1) = 0

r = 2 or 1/2

Substitute the value of r in equation (2) we get,

a = 16/r

= 16/2 or 16/(1/2)

= 8 or 32

∴ The three numbers are (a, ar, ar2) is (8, 16, 32)

93.

If a, b, c, d are in G.P., prove that:(i) (ab – cd) / (b2 – c2) = (a + c) / b(ii) (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2(iii) (b + c) (b + d) = (c + a) (c + d)

Answer»

(i) (ab – cd) / (b2 – c2) = (a + c) / b

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

bc = ad

c2 = bd

Let us consider LHS: (ab – cd) / (b2 – c2)

(ab – cd) / (b2 – c2) = (ab – cd) / (ac – bd)

= (ab – cd)b / (ac – bd)b

= (ab2 – bcd) / (ac – bd)b

= [a(ac) – c(c2)] / (ac – bd)b

= (a2c – c3) / (ac – bd)b

= [c(a2 – c2)] / (ac – bd)b

= [(a+c) (ac – c2)] / (ac – bd)b

= [(a+c) (ac – bd)] / (ac – bd)b

= (a+c) / b

= RHS

∴ LHS = RHS

Hence proved.

(ii) (a + b + c + d)2 = (a + b)2 + 2(b + c)2 + (c + d)2

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

bc = ad

c2 = bd

Let us consider RHS: (a + b)2 + 2(b + c)2 + (c + d)2

Let us expand

(a + b)2 + 2(b + c)2 + (c + d)2 = (a + b)2 + 2 (a+b) (c+d) + (c+d)2

= a2 + b2 + 2ab + 2(c2 + b2 + 2cb) + c2 + d2 + 2cd

= a2 + b2 + c2 + d2 + 2ab + 2(c2 + b2 + 2cb) + 2cd

= a2 + b2 + c2 + d2 + 2(ab + bd + ac + cb +cd) [Since, c2 = bd, b2 = ac]

You can visualize the above expression by making separate terms for (a + b + c)2 + d2 + 2d(a + b + c) = {(a + b + c) + d}2

∴ RHS = LHS

Hence proved.

(iii) (b + c) (b + d) = (c + a) (c + d)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

bc = ad

c2 = bd

Let us consider LHS: (b + c) (b + d)

Upon expansion we get,

(b + c) (b + d) = b2 + bd + cb + cd

= ac + c2 + ad + cd [by using property of geometric mean]

= c (a + c) + d (a + c)

= (a + c) (c + d)

= RHS

∴ LHS = RHS

Hence proved.

94.

If A = 1 + ra + r2a + r3a + ..... ∞, B = 1 + rb + r2b + r3b + ..... ∞, then show that \(\frac{a}{b}\) = \(\text{log}_{\big(\frac{B-1}{B}\big)}\)\({\big(\frac{A-1}{A}\big)}\).

Answer»

A = 1 + ra + r2a + r3a + ..... ∞

⇒ A = \(\frac{a}{1-r^a}\)      \(\big(\because\,S_\infty = \frac{a}{1-r}.\text{Here}\,a=1, \text{common ratio}=r^a\big)\)

⇒ 1 - ra\(\frac{1}{A}\) ⇒ ra = 1 - \(\frac{1}{A}\)\(\frac{A-1}{A}\) ⇒ a log r = log \(\big(\frac{A-1}{A}\big)\)

⇒ a = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\,r}\)                        .....(i)

Now,  B = 1 + rb + r2b + r3b + .... ∞

 ⇒ B = \(\frac{a}{1-r^b}\)  ⇒ 1 - rb\(\frac{1}{B}\) ⇒ rb = 1 - \(\frac{1}{B}\)\(\frac{B-1}{B}\) ⇒ log rb = log \(\big(\frac{B-1}{B}\big)\)

⇒ b log r = log \(\big(\frac{B-1}{B}\big)\) ⇒ b = \(\frac{\text{log}\big(\frac{B-1}{B}\big)}{\text{log}\,r}\)                .....(ii)

∴ \(\frac{a}{b}\) = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\,r}\) x \(\frac{\text{log}\,r}{\text{log}\big(\frac{B-1}{B}\big)}\)                  (From (i) and (ii))

⇒ \(\frac{a}{b}\) = \(\frac{\text{log}\big(\frac{A-1}{A}\big)}{\text{log}\big(\frac{B-1}{B}\big)}\) = \(\text{log}_{\big(\frac{B-1}{B}\big)}\)\({\big(\frac{A-1}{A}\big)}\).              \(\bigg[\because\frac{\text{log}\,a}{\text{log}\,b}\) = logb a\(\bigg].\)

95.

If a, b, c are in G.P., prove that:(i) a(b2 + c2) = c(a2 + b2)(ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3(iii) (a+b+c)2 / (a2 + b2 + c2) = (a+b+c) / (a-b+c)(iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2)(v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2

Answer»

(i) a(b2 + c2) = c(a2 + b2)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: a(b2 + c2)

Now, substituting b2 = ac, we get

a(ac + c2)

a2c + ac2

c(a2 + ac)

Substitute ac = b2 we get,

c(a2 + b2) = RHS

∴ LHS = RHS

Hence proved.

(ii) a2b2c2 [1/a3 + 1/b3 + 1/c3] = a3 + b3 + c3

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: a2b2c2 [1/a3 + 1/b3 + 1/c3]

a2b2c2/a3 + a2b2c2/b3 + a2b2c2/c3

b2c2/a + a2c2/b + a2b2/c

(ac)c2/a + (b2)2/b + a2(ac)/c [by substituting the b2 = ac]

ac3/a + b4/b + a3c/c

c3 + b3 + a3 = RHS

∴ LHS = RHS

Hence proved.

(iii) (a + b + c)2 / (a2 + b2 + c2) = (a + b + c) / (a - b + c)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: (a + b + c)2 / (a2 + b2 + c2)

(a + b + c)2 / (a2 + b2 + c2) = (a + b + c)2 / (a2 – b2 + c2 + 2b2)

= (a + b + c)2 / (a2 – b2 + c2 + 2ac) [Since, b2 = ac]

= (a + b + c)2 / (a + b + c)(a - b + c) [Since, (a + b + c)(a - b + c) = a2 – b2 + c2 + 2ac]

= (a + b + c) / (a - b + c)

= RHS

∴ LHS = RHS

Hence proved.

(iv) 1/(a2 – b2) + 1/b2 = 1/(b2 – c2)

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: 1/(a2 – b2) + 1/b2

Let us take LCM

1/(a2 – b2) + 1/b2 = (b2 + a2 – b2)/(a2 – b2)b2

= a/ (a2b2 – b4)

= a2 / (a2b2 – (b2)2)

= a2 / (a2b2 – (ac)2) [Since, b2 = ac]

= a2 / (a2b2 – a2c2)

= a2 / a2(b2 – c2)

= 1/ (b2 – c2)

= RHS

∴ LHS = RHS

Hence proved.

(v) (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2

Given that a, b, c are in GP.

By using the property of geometric mean,

b2 = ac

Let us consider LHS: (a + 2b + 2c) (a – 2b + 2c)

Upon expansion we get,

(a + 2b + 2c) (a – 2b + 2c) = a2 – 2ab + 2ac + 2ab – 4b2 + 4bc + 2ac – 4bc + 4c2

= a2 + 4ac – 4b2 + 4c2

= a2 + 4ac – 4(ac) + 4c2 [Since, b2 = ac]

= a2 + 4c2

= RHS

∴ LHS = RHS

Hence proved.

96.

If \(x\) = 1 + a + a2 + ..... ∞ and y = 1 + b + b2 + ...... ∞, where a and b are proper fractions, then 1 + ab + a2b2 + ... ∞ equals(a) \(\frac{x+y}{x-y}\)(b) \(\frac{x^2+y^2}{x-y}\)(c) \(\frac{x^2+y^2}{x+y-1}\)(d) \(\frac{xy}{x+y-1}\)

Answer»

(d) \(\frac{xy}{x+y-1}\)

Since a and b are proper fractions, | a | < 1, | b | < 1 

\(x\) = 1 + a + a2 + ..... ∞ = \(\frac{1}{1-a}\)           \(\big(\because\,S_\infty=\frac{a}{1-r}\big)\)

and y = 1 + b + b2 + ..... ∞ = \(\frac{1}{1-b}\) 

Also, 1 + ab + a2b2 + .....∞ = \(\frac{1}{1-ab}\)        ....(i)  

Now  \(x\) = \(\frac{1}{1-a}\) ⇒ \(x\) – \(x\)a = 1

⇒ \(x\)a = \(x\) – 1 ⇒ a = \(\frac{x-1}{x}\)                 .....(ii)

y = \(\frac{1}{1-b}\)  ⇒ y – yb = 1

⇒ yb = y – 1 ⇒ b = \(\frac{y-1}{y}\)                  .....(iii)

∴ Putting the values of a & b from (ii) and (iii) in (i), we get 

Reqd. sum = \(\frac{1}{1-ab}\) = \(\frac{1}{1-\big(\frac{x-1}{x}\big)\big(\frac{y-1}{y}\big)}\)

\(\frac{xy}{xy-(xy-x-y+1)}\) = \(\frac{xy}{x+y-1}\).

97.

If a, b, c are in G.P., prove that : (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2.

Answer»

As,

a, b, c are in G.P, let r be the common ratio. 

Therefore, 

b = ar … (1) 

c = ar2 … (2) 

To prove: (ab + bc + cd)2 = (a + 2b + 2c) (a – 2b + 2c) = a2 + 4c2 

As, LHS = (a + 2b + 2c) (a – 2b + 2c) 

⇒ LHS = (a + 2ar + 2ar2)(a – 2ar + 2ar2

⇒ LHS = a2(1 + 2r + 2r2)(1 – 2r + 2r2

⇒ LHS = a2 (1 + 4r2 + 4r4 – 4r2

⇒ LHS = a2(1 + 4r4

And RHS = a2 + 4a 2r4 = a2(1 + 4r4

Clearly, LHS = RHS 

Hence proved

98.

How many terms of the G.P. 3, 3/2, 3/4, … Be taken together to make 3069/512 ?

Answer»

Given:

Sum of G.P = 3069/512

Where, a = 3, r = (3/2)/3 = 1/2, n = ?

By using the formula,

Sum of GP for n terms = a(rn – 1 )/(r – 1)

3069/512 = 3 ((1/2)n – 1)/ (1/2 – 1)

3069/512 × 3 × 2 = 1 – (1/2)n

3069/3072 – 1 = – (1/2)n

(3069 – 3072)/3072 = – (1/2)n

-3/3072 = – (1/2)n

1/1024 = (1/2)n

(1/2)10 = (1/2)n

10 = n

∴ 10 terms are required to make 3069/512

99.

If a, b, c are in G.P. and 4a, 5b, 4c are in A.P. such that a + b + c = 70, then what is the value of the smallest of the numbers a, b and c?

Answer»

a, b, c are in G.P. ⇒ b2 = ac               ...(i) 

4a, 5b, 4c are in A.P. ⇒ 2 x 5b = 4a + 4c 

⇒ 10b = 4a + 4c ⇒ 5b = 2a + 2c               ...(ii) 

Also, given a + b + c = 70                   ...(iii) 

⇒ 2a + 2b + 2c = 140 ⇒ 5b + 2b = 140                 (From (ii)) 

⇒ 7b = 140 ⇒ b = 20. 

Now, from (i), 400 = ac.            ( b = 20) 

Also, from (ii), a + 20 + c = 70 ⇒ a + c = 50 

∴ (a – c)2 = (a + c)2 – 4ac 

= 2500 – 1600 = 900 

⇒ a – c = ± 30             

∴ a + c = 50  and a - c = ± 30 ⇒ a = 40, c = 10 or a = 10, c = 40. 

∴ The least value out of a, b and c is 10.

100.

Find the sum of n terms of the series 1 + (1 + x) + (1 + x + x2) + .....?

Answer»

1 + (1 + x) + (1 + x + x2) + ....... n terms 

⇒ Required sum = \(\frac{1}{(1-x)}\) [(1 – x) + (1 – x) (1 + x) + (1 – x) (1 + x + x2) + ..... n terms]

\(\frac{1}{(1-x)}\) [(1 – x) + (1 – x2) + (1 – x3) + ..... n terms]

\(\frac{1}{(1-x)}\) [(1 + 1 + 1 + .... n terms) – (x + x2 + x3 + ..... n terms]

\(\frac{1}{(1-x)}\)\(\bigg[n-\frac{x(1-x^n)}{(1-x)}\bigg]\)       \(\bigg(\because{S_n}=\frac{a(1-r^n)}{(1-r)},\text{Here}\,a= x, r=x\bigg)\)

\(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\).