InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
In an H.P., pth term is qr and qth term is pr, show that rth term is pq. |
|
Answer» Tp of H.P = qr ⇒ Tp of A.P. = \(\frac{1}{qr}\) ⇒ a + (p - 1)d = \(\frac{1}{qr}\) Where a and d are the first term and common difference respectively of the A.P Also Tq of H.P. = pr ⇒ Tq of A.P = \(\frac{1}{pr}\) ⇒ a + (q - 1)d = \(\frac{1}{pr}\) Eqn (ii) – Eqn (i) ⇒ (q – 1)d – (p – 1)d = \(\frac{1}{pr}\) - \(\frac{1}{qr}\) ⇒ (q – p)d = \(\frac{q-p}{pqr}\) ⇒ d = \(\frac{1}{pqr}\) ⇒ a + (p – 1)\(\frac{1}{pqr}\) = \(\frac{1}{qr}\) ⇒ a = \(\frac{1}{qr}\) - (p-1)\(\frac{1}{pqr}\) = \(\frac{1}{qr}\) - \(\frac{1}{qr}\) + \(\frac{1}{pqr}\) = \(\frac{1}{pqr}\) ∴ Tr of A.P = a + (r - 1)d = \(\frac{1}{pqr}\) + (r - 1)\(\frac{1}{pqr}\) = \(\frac{1}{pqr}\) + \(\frac{1}{pq}\) - \(\frac{1}{pqr}\) = \(\frac{1}{pq}\) ⇒ Tr of A.P = pq. |
|
| 2. |
If H be the harmonic mean between x and y, then prove that \(\frac{H+x}{H-x}\) + \(\frac{H+y}{H-y}\) = 2. |
|
Answer» H being the H.M. between x and y ⇒ H = \(\frac{2xy}{x+y}\) ⇒ \(\frac{H}{x}\) = \(\frac{2y}{x+y}\) and \(\frac{H}{y}\) = \(\frac{2x}{x+y}\) ⇒ \(\frac{H+x}{H-x}\) = \(\frac{2y+x+y}{2y-(x+y)}\) and \(\frac{H+y}{H-y}\) = \(\frac{2x+x+y}{2x-(x+y)}\) (Using Componendo and Dividendo) ⇒ \(\frac{H+x}{H-x}\) = \(\frac{3y+x}{y-x}\) and \(\frac{H+y}{H-y}\) = \(\frac{3x+y}{x-y}\) ∴ \(\frac{H+x}{H-x}\) + \(\frac{H+y}{H-y}\) = \(\frac{3y+x}{y-x}\) + \(\frac{3x+y}{x-y}\) = \(\frac{3y+x-3x-y}{y-x}\) = \(\frac{2(y-x)}{y-x}\) = 2. |
|
| 3. |
Insert three harmonic means between 5 and 6. |
|
Answer» 3 harmonic means between 5 and 6 ⇒ 3 arithmetic means between \(\frac{1}{5}\) and \(\frac{1}{6}\). Let A1, A2, A3 be the arithmetic means between \(\frac{1}{5}\) and \(\frac{1}{6}\). Then, \(\frac{1}{5}\), A1 , A2 A3, \(\frac{1}{6}\) from an A.P, Where t1 = a = \(\frac{1}{5}\), t5 = a + 4d = \(\frac{1}{6}\) ∴ \(\frac{1}{5}\)+ 4d = \(\frac{1}{6}\) ⇒ 4d = \(\frac{1}{6}\) - \(\frac{1}{5}\) = \(-\frac{1}{30}\) ⇒ d = \(-\frac{1}{120}\) ∴ A1 = a + d = \(\frac{1}{5}\) + \(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{23}{120}\) A2 = a + 2d = \(\frac{1}{5}\) + 2 x\(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{1}{5}\) - \(\frac{1}{60}\) = \(\frac{11}{60}\) A3 = a + 3d = \(\frac{1}{5}\) + 3 x\(\bigg(-\frac{1}{120}\bigg)\) = \(\frac{1}{5}\) - \(\frac{1}{40}\) = \(\frac{7}{40}\) ∴ Required harmonic means are \(\frac{120}{23}\),\(\frac{60}{11}\), \(\frac{40}{7}\). |
|
| 4. |
Find the harmonic mean of the roots of the equation (5+√2)\(x\)2 - (4 + √5)\(x\) + (8+2√5) = 0. |
|
Answer» Let the roots of the equation be α and β. Then, Sum of roots = α + β = \(\frac{(4+\sqrt5)}{5+\sqrt2}\) Product of roots = αβ = \(\frac{8+2\sqrt5}{5+\sqrt2}\) Now, Harmonic Mean of the roots, α and β = \(\frac{2\alpha\beta}{\alpha+\beta}\) = \(\frac{2\bigg(\frac{8+2\sqrt5}{5+\sqrt2}\bigg)}{\frac{(4+\sqrt5)}{5+\sqrt2}}\) = \(\frac{4(4+\sqrt5)}{4+\sqrt5}\) = 4. |
|
| 5. |
If A.M. between two numbers is to their G.M. as 5 : 4 and the difference of their G.M. and H.M. is \(\frac{16}{5}\), find the numbers. |
|
Answer» Let the two numbers be a and b. Then, A.M = \(\frac{a+b}{2}\) G.M. = \(\sqrt{ab}\) H.M. =\(\frac{2ab}{a+b}\) Given, A.M : G.M = 5 : 4 ⇒ \(\frac{\frac{(a+b)}{2}}{\sqrt{ab}}\) = \(\frac{5}{4}\) ⇒ \(\frac{a+b}{2\sqrt{ab}}\) = \(\frac{5}{4}\) .....(i) Also, G.M. – H.M. = \(\frac{16}{5}\) ⇒ \(\sqrt{ab}\) - \(\frac{2ab}{a+b}\) = \(\frac{16}{5}\) ......(ii) From (i), a + b = \(\frac{5\times2}{4}\)\(\sqrt{ab}\) ⇒ a + b \(\frac{5}{2}\)\(\sqrt{ab}\). ....(iii) Putting this value of (a + b) in (ii), we have \(\sqrt{ab}\) - \(\frac{2ab}{\sqrt{ab}}\) x \(\frac{2}{5}\) = \(\frac{16}{5}\) ⇒ \(\sqrt{ab}\) - \(\frac{4}{5}\)\(\sqrt{ab}\) = \(\frac{16}{5}\) ⇒ \(\frac{1}{5}\)\(\sqrt{ab}\) = \(\frac{16}{5}\) ⇒ \(\sqrt{ab}\) = 16 ⇒ ab = 256 ∴ From (iii), a + b = \(\frac{5}{2}\)x 16 = 40. ∴ (a – b)2 = (a + b)2 – 4ab = 402 – 4 × 256 = 1600 – 1024 = 576 ⇒ a – b = ± 24 Now solving a + b = 40 and a – b = ± 24, we get a = 32, b = 8 or a = 8, b = 32. ∴ The numbers are 8 and 32. |
|
| 6. |
Let the positive numbers a, b, c, d be in A.P. Then, abc, abd, acd, bcd are(a) NOT in A.P./G.P./H.P (b) In A.P. (c) In G.P. (d) In H.P |
|
Answer» (d) In H.P. If a, b, c, d are in A.P. ⇒ d, c, b, a are in A.P. ⇒ \(\frac{d}{abcd}\), \(\frac{c}{abcd}\), \(\frac{b}{abcd}\), \(\frac{a}{abcd}\) are in A.P. (Dividing all terms by abcd) ⇒ \(\frac{1}{abc}\), \(\frac{1}{abd}\), \(\frac{1}{acd}\), \(\frac{1}{bcd}\) are in A.P. ⇒ abc, abd, acd, bcd are in H.P. |
|
| 7. |
If a1, a2, a3, ....., an are in H.P. then what will (a1a2 + a2a3 + ..... + an – 1 an) equal to? |
|
Answer» a1, a2, a3 ..... , an are in H.P. ⇒ \(\frac{1}{a_1}\),\(\frac{1}{a_2}\),\(\frac{1}{a_3}\) ......., \(\frac{1}{a_n}\) are in A.P If d is the common difference of the A.P., then \(\frac{1}{a_2}\) - \(\frac{1}{a_1}\) = d, \(\frac{1}{a_3}\) - \(\frac{1}{a_2}\) = d,......, \(\frac{1}{a_n}\)- \(\frac{1}{a_{n-1}}\) = d ⇒ \(\frac{a_1-a_2}{a_1a_2}\) = d, \(\frac{a_2-a_3}{a_2a_3}\) = d, ....., \(\frac{a_{n-1}-a_n}{a_{n-1}\,a_n}\) = d ⇒ a1 – a2 = a1a2d, a2 – a3 = a2a3d, ..... , an – 1 – an = an – 1 and ⇒ (a1 – a2 + a2 – a3 + ..... + an – 1 – an) = a1a2d + a2a3d + ..... + an – 1 and ⇒ (a1 – an) = (a1a2 + a2a3 + ..... + an – 1 an)d ....(i) Also, \(\frac{1}{a_1}\),\(\frac{1}{a_2}\),.......\(\frac{1}{a_n}\) is an A.P with common difference d ⇒ \(\frac{1}{a_n}\) = \(\frac{1}{a_1}\) + (n - 1)d ⇒ (n - 1)d = \(\frac{1}{a_n}\) - \(\frac{1}{a_1}\) ⇒ (n - 1)d = \(\frac{a_1-a_n}{a_1a_n}\) ⇒ a1 – an = (n – 1)d a1an ...(ii) From (i) and (ii) (n – 1)d a1an = (a1a2 + a2a3 + .... + an – 1an) d ⇒ (a1a2 + a2a3 + .... + an – 1an) = (n – 1) a1an. |
|
| 8. |
If a and b are two real numbers such that 0 < a < b and the arithmetic mean between a and b is \(\frac{4}{3}\) times the harmonic mean between them, then \(\frac{b}{a}\) is equal to(a) \(\frac{2}{\sqrt3}\)(b) \(\frac{3}{2}\)(c) 3 (d) \(\frac{8}{3}\) |
|
Answer» (c) 3 Arithmetic mean between a and b is A = \(\frac{a+b}{2}\) Harmonic mean between a and b is H = \(\frac{2ab}{a+b}\) Given, A = \(\frac{4}{3}\)H ⇒ \(\frac{a+b}{2}\) = \(\frac{4}{3}\)\(\big(\frac{2ab}{a+b}\big)\) ⇒ 3(a + b)2 = 16ab ⇒ 3b2 – 10ab + 3a2 = 0 ⇒ 3\(\big(\frac{b}{a}\big)^2\) - 10\(\big(\frac{b}{a}\big)\) + 3 = 0 (Dividing throughout by a2) ⇒ \(\big(\frac{3b}{a}-1\big)\)\(\big(\frac{b}{a}-3\big)\) = 0 ⇒ \(\frac{b}{a}\) = \(\frac{1}{3}\) or \(\frac{b}{a}\) = 3 \(\bigg[\because\,0<a<b\implies\frac{b}{a}\neq\frac{1}{3}\bigg]\) ⇒ \(\frac{b}{a}\) = 3. |
|
| 9. |
If \(\frac{a-x}{px}\) = \(\frac{a-y}{qy}\) = \(\frac{a-z}{rz}\) and p, q, r are in A.P., show that x, y, z are in H.P. |
|
Answer» Let \(\frac{a-x}{px}\) = \(\frac{a-y}{qy}\) = \(\frac{a-z}{rz}\) = k Then, \(\frac{a-x}{px}\) = k ⇒ \(\frac{a-x}{kx}\) = p ⇒ p = \(\frac{1}{k}\)\(\bigg(\frac{a}{x}-1\bigg)\) Similarly, q = \(\frac{1}{k}\)\(\bigg(\frac{a}{y}-1\bigg)\), r = \(\frac{1}{k}\)\(\bigg(\frac{a}{z}-1\bigg)\) Now, p, q, r are in A.P \(\frac{1}{k}\)\(\bigg(\frac{a}{x}-1\bigg)\),\(\frac{1}{k}\)\(\bigg(\frac{a}{y}-1\bigg)\),\(\frac{1}{k}\)\(\bigg(\frac{a}{z}-1\bigg)\) are in A.P. ⇒ \(\frac{a}{x}-1\), \(\frac{a}{y}-1\), \(\frac{a}{z}-1\) are in A.P. (Multiplying each term by k) ⇒ \(\frac{a}{x}\), \(\frac{a}{y}\), \(\frac{a}{z}\) are in A.P. (Adding 1 to each term) ⇒ \(\frac{1}{x}\), \(\frac{1}{y}\),\(\frac{1}{z}\) are in A.P. (Dividing each term by a) ⇒ x, y, z are in H.P |
|
| 10. |
If x > 1, y > 1, z > 1 are in G.P., then show that \(\frac{1}{1+\text{log}\,x}\), \(\frac{1}{1+\text{log}\,y}\), \(\frac{1}{1+\text{log}\,z}\) are in H.p. |
|
Answer» x, y, z are in G.P. ⇒ y2 = xz ⇒ 2 log y = log x + log z ⇒ log x, log y, log z are in A.P. ⇒ 1 + log x, 1 + log y, 1 + log z are in A.P. (Adding 1 to each term) \(\frac{1}{1+\text{log}\,x}\), \(\frac{1}{1+\text{log}\,y}\), \(\frac{1}{1+\text{log}\,z}\) are in H.p. |
|
| 11. |
Let a, b be two positive real numbers. If a, A1, A2, b are in arithmetic progression,a, G1, G2, b are in geometric progression and a, H1, H2, b are in harmonic progression, then show that \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{A_1+A_2}{H_1+H_2}\) = \(\frac{(2a+b)(a+2b)}{9\,ab}\) |
|
Answer» a, A1, A2, b are in A.P. ⇒ A1 – a = b – A2 ⇒ A1 + A2 = a + b ...(i) a, G1, G2, b are in G.P. ⇒ \(\frac{G_1}{a}\) = \(\frac{b}{G_2}\) ⇒ G1 G2 = ab ....(ii) a, H1, H2, b are in H.P. ⇒ \(\frac{1}{a}\), \(\frac{1}{H_1}\), \(\frac{1}{H_2}\),\(\frac{1}{b}\) are in A.P. ⇒ \(\frac{1}{H_1}\)- \(\frac{1}{a}\) = \(\frac{1}{b}\) - \(\frac{1}{H_2}\) ⇒ \(\frac{1}{H_1}\) + \(\frac{1}{H_2}\) = \(\frac{1}{a}\) + \(\frac{1}{b}\) ⇒ \(\frac{H_1+H_2}{H_1H_2}\) = \(\frac{a+b}{ab}\) = \(\frac{A_1+A_2}{G_1G_2}\) (From (i) and (ii)) ⇒ \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{A_1+A_2}{H_1+H_2}\). Hence proved. Now, \(\frac{1}{a}\), \(\frac{1}{H_1}\), \(\frac{1}{H_2}\) are in A.P (∵ a, H1, H2, are in H.P.) ⇒ \(\frac{1}{H_1}\) - \(\frac{1}{a}\) = \(\frac{1}{H_2}\) - \(\frac{1}{H_1}\) ⇒ \(\frac{2}{H_1}\) - \(\frac{1}{H_2}\) = \(\frac{1}{a}\) ......(iii) Also, \(\frac{1}{H_1}\), \(\frac{1}{H_2}\),\(\frac{1}{b}\) are in A.P (∵ H1, H2, b are in H.P.) ⇒ \(\frac{1}{H_2}\) - \(\frac{1}{H_1}\) = \(\frac{1}{b}\) - \(\frac{1}{H_2}\) ⇒ \(\frac{2}{H_2}\) - \(\frac{1}{H_1}\) = \(\frac{1}{b}\) .....(iv) Eq. (iii) + 2 x Eqn. (iv) ⇒\(\bigg(\)\(\frac{2}{H_2}\) - \(\frac{1}{H_1}\)\(\bigg)\) +\(\bigg(\)\(\frac{4}{H_2}\) - \(\frac{2}{H_1}\)\(\bigg)\)= \(\frac{1}{a}\) + \(\frac{2}{b}\) ⇒ \(\frac{3}{H_2}\) = \(\frac{b + 2a}{ab}\) ⇒ H2 = \(\frac{3ab}{2a+b}\) Eq. (iv) + 2 x Eq. (iii) ⇒ \(\bigg(\)\(\frac{2}{H_2}\) - \(\frac{1}{H_1}\)\(\bigg)\) +\(\bigg(\)\(\frac{4}{H_2}\) - \(\frac{2}{H_1}\)\(\bigg)\)= \(\frac{1}{b}\) + \(\frac{2}{a}\) ⇒ \(\frac{3}{H_1}\) = \(\frac{a + 2b}{ab}\) ⇒ H1 = \(\frac{3ab}{a+2b}\) ∴ \(\frac{G_1G_2}{H_1H_2}\) = \(\frac{ab}{\frac{3ab}{(a+2b)}\times\frac{3ab}{(2a+b)}}\) = \(\frac{(2a+b)(a+2b)}{9\,ab}\) Hence proved. |
|
| 12. |
Five numbers are in H.P. The middle term is 1 and the ratio of the second and fourth terms is 2 : 1. Then, the sum of the first three terms is(a) \(\frac{11}{2}\) (b) 5 (c) 2 (d) \(\frac{14}{2}\) |
|
Answer» (d) \(\frac{11}{2}.\) Let the terms of the corresponding A.P. be a – 2d, a – d, a, a + d, a + 2d. Given, a = 1 and \(\frac{a-d}{a+d}\) = \(\frac{1}{2}\) ⇒ 2a – 2d = a + d ⇒ a = 3d ⇒ d = \(\frac{1}{3}\)a = \(\frac{1}{3}\) (∵ a = 1) ∴ First three terms of A.P are 1 - \(\frac{2}{3}\), 1 - \(\frac{1}{3}\), 1, i.e., \(\frac{1}{3}\),\(\frac{2}{3}\),1 ⇒ First three terms of corresponding H.P are 3, \(\frac{3}{2}\),1 ∴ Required sum = 3 + \(\frac{3}{2}\) + 1 = 5\(\frac{1}{2}\) = \(\frac{11}{2}.\) |
|
| 13. |
If for two numbers the ratio of their H.M. to G.M. is 20:29, then the numbers are in the ratio(a) 3 : 40 (b) 4 : 25 (c) 1 : 22 (d) 2 : 27 |
|
Answer» (b) 4 : 25 Let the two numbers be a and b. Given, \(\frac{\text{H.M}}{\text{G.M}}\) = \(\frac{20}{29}\) ⇒ \(\frac{\frac{2ab}{a+b}}{\sqrt{ab}}\) = \(\frac{20}{29}\) ⇒ \(\frac{2\sqrt{ab}}{a+b}\) = \(\frac{20}{29}\) ⇒ 58\(\sqrt{ab}\) = 20(a+b) ⇒ 20a - 58\(\sqrt{ab}\) + 20b = 0 ⇒ 20\(\frac{a}{b}-58\)\(\sqrt{\frac{a}{b}}\) + 20 = 0 (Dividing all terms by b) ⇒ 20x2 – 58x + 20 = 0 (where x = \(\sqrt{\frac{a}{b}}\)) ⇒ 20\(x\)2 – 50\(x\) – 8\(x\) + 20 = 0 ⇒ 10\(x\) (2\(x\) – 5) – 4 (2\(x\) – 5) = 0 ⇒ (10\(x\) – 4) (2\(x\) – 5) = 0 ⇒ \(x\) = \(\frac{2}{5}\) or \(\frac{5}{2}\) ⇒ \(\sqrt{\frac{a}{b}}\) = \(\frac{2}{5}\) or \(\frac{5}{2}\) ⇒ \({\frac{a}{b}}\) = \(\frac{4}{25}\) or \(\frac{25}{4}\) Thus from the given options, the two numbers are in the ratio 4 : 25. |
|
| 14. |
If 2(y – a) is the H.M. between y – x and y – z, then (x – a), (y – a), (z – a) are in(a) A.P. (b) G.P. (c) H.P. (d) None of these |
|
Answer» (b) G.P. Given, 2(y – a) is the H.M. between (y – x) and (y – z) ⇒ (y – x), 2 (y – a), (y – z) are in H.P ⇒ \(\frac{1}{y-x},\frac{1}{2(y-a)},\frac{1}{y-z}\) are in A.P. ⇒ \(\frac{1}{2(y-a)} - \frac{1}{(y-x)}\) = \(\frac{1}{(y-z)}-\frac{1}{2(y-a)}\) ⇒ \(\frac{y-x-2y+2a}{2(y-a)(y-x)}\) = \(\frac{2y-2a-y+z}{(y-z)\,2(y-a)}\) ⇒ \(\frac{-y-x-2y+2a}{(y-x)}\) = \(\frac{y+z-2a}{(y-z)}\) ⇒ \(\frac{x+y-2a}{x-y}\) = \(\frac{y+z-2a}{(y-z)}\) ⇒ \(\frac{(x-a)+(y-a)}{(x-a)-(y-a)}\) = \(\frac{(y-a)+(z-a)}{(y-a)-(z-a)}\) Now applying componendo and dividendo, we have \(\bigg(\text{By comp. and div,}\,\frac{x}{y}=\frac{a}{b}\implies\frac{x+y}{x-y}=\frac{a+b}{a-b}\bigg)\) ⇒\(\frac{2(x-a)}{2(y-a)}\) = \(\frac{2(y-a)}{2(z-a)}\) ⇒ (x – a) (z – a) = (y – a)2 ⇒ (x – a), (y – a), (z – a) are in G.P. |
|
| 15. |
If a, b, c are in H.P., then \(\bigg(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\bigg)\)\(\bigg(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\bigg)\) is equal to(a) \(\frac{4}{b^2}-\frac{3}{ac}\)(b) \(\frac{3}{b^2}-\frac{4}{ac}\)(c) \(\frac{4}{ac}-\frac{3}{b^2}\)(d) \(\frac{3}{b^2}+\frac{4}{ac}\) |
|
Answer» (c) \(\frac{4}{ac}-\frac{3}{b^2}\) If a, b, c are in H.P, then b = \(\frac{2ac}{a+c}\) ∴ \(\bigg(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\bigg)\)\(\bigg(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\bigg)\) = \(\bigg(\frac{1}{a}+\frac{a+c}{2ac}-\frac{1}{c}\bigg)\)\(\bigg(\frac{a+c}{2ac}+\frac{1}{c}-\frac{1}{a}\bigg)\) = \(\bigg(\frac{2c+a+c-2a}{2ac}\bigg)\)\(\bigg(\frac{a+c+2a-2c}{2ac}\bigg)\) = \(\bigg(\frac{3c-a}{2ac}\bigg)\)\(\bigg(\frac{3a-c}{2ac}\bigg)\) = \(\frac{10ac-3a^2-3c^3}{4a^2c^2}\) = \(\frac{16ac-(3a^2+3c^2+6ac)}{4a^2c^2}\) = \(\frac{16ac-3(a+b)^2}{4a^2c^2}\) = \(\frac{4}{ac}-3\bigg(\frac{a+c}{2ac}\bigg)^2\) = \(\frac{4}{ac}-\frac{3}{b^2}\) |
|
| 16. |
If a, b, c are in A.P. and a2, b2, c2 are in H.P., then which of the following statement can be true?(a) a, b, – \(\frac{c}{2}\) are in G.P. (b) a = b = c (c) Any of these (d) None of these |
|
Answer» (c) Any of these a, b, c are in A.P. ⇒ 2b = a + c ...(i) a2, b2, c2 are in H.P. ⇒ b2 = \(\frac{2a^2c^2}{a^2+c^2}\) ......(ii) From eqn (ii) b2 (a2 + c2) = 2a2c2 ⇒ b2 {(a + c)2 – 2ac} = 2a2c2 ⇒ b2 {4b2 – 2ac} = 2a2c2 (From (i) 2b = a + c) ⇒ 2b4 – b2ac – a2c2 = 0 ...(iii) ⇒ (b2 – ac) (2b2 + ac) = 0 ⇒ b2 – ac = 0 or 2b2 + ac = 0 ⇒ \(\bigg(\frac{a+c}{2}\bigg)^2\) - ac = 0 b2 = \(-\frac{ac}{2}\) ⇒ (a – c)2 = 0 a,b, \(-\frac{c}{2}\) are in G.P. ⇒ 2b = 2c (From (i)) ⇒ b = c. |
|
| 17. |
If the sum of the roots of the equation ax2 + bx + c = 0 is equal to sum of their squares, then \(\frac{c}{a},\frac{b}{a},\frac{c}{a}\) are in (a) A.P. (b) G.P (c) H.P (d) None of these |
|
Answer» (a) A.P. Let α, β be the roots of the equation ax2 + bx + c = 0. Then, α + β = \(-\frac{b}{a}\) , αβ = \(\frac{c}{a}\) Also, given α + β = α2 + β2 ⇒ α + β = (α + β)2 - 2αβ ⇒ \(-\frac{b}{a}\) = \(\bigg(-\frac{b}{a}\bigg)^2\) - \(\frac{2c}{a}\) ⇒ – ba = b2 – 2ac ⇒ b2 + ab = 2ac ⇒ b (b+ a) = 2ac ⇒ \(\frac{b}{c}\) + \(\frac{a}{c}\) = \(\frac{2a}{b}\) ⇒ \(\frac{c}{a},\frac{b}{a},\frac{c}{a}\) are in A.P. |
|
| 18. |
Find the 7th term of the H.P. \(\frac{2}{13}, \frac{1}{6}, \frac{2}{11}\),........... |
|
Answer» The reciprocals of the terms of the given H.P, i.e., \(\frac{13}{2},6,\frac{11}{2},\)...... form an A.P with first term = \(\frac{13}{2}\) and common difference = 6 - \(\frac{13}{2}\) = \(-\frac{1}{2}.\) ∴ 7th term of this A.P. = a + 6d = \(\frac{13}{2}\) + \(\bigg(-\frac{1}{2}\bigg)\) x 6 = \(\frac{7}{2}.\) Hence 7th of the given H.P. = \(\frac{1}{\frac{7}{2}}\) = \(\frac{2}{7}.\) |
|