Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

34901.

What is Shridharacharya\'s rule??

Answer» X=–b± under root b²–4ac/2a.
34902.

Is question from optional exercise of ncert book has been asked by board exam

Answer» You must practise NCERT completely. They may be asked.
34903.

if the pth term of an AP is q and its qth term is p then show that (p+q)th term is zero

Answer» Let a be the first term and d be the common differencepth\xa0term = a +(p - 1)d = q(given)-----(1)qth\xa0term = a +(q - 1) d = p(given)-----(2)subtracting (2) from (1)(p-q)d=q-p(p-q)d=-(p-q){tex}\\therefore{/tex}\xa0d = -1putting d=-1 in (i)a - (p - 1) = q{tex}\\therefore{/tex}\xa0a=p+q-1{tex}\\therefore{/tex}\xa0(p + q)th term = a + (p + q - 1)d= (p + q - 1) - (p + q - 1) = 0
34904.

If sec A +tan A =x then find SecA

Answer» secA=x-tanA
34905.

Cosec a-cot a = q then proved that q^2-1/q^2+1+cos a =0

Answer»
34906.

If any study in v.m vishvas schooladampur

Answer» So
34907.

What is Formula of frustum of cone

Answer» V=pie.h/3(R^2 +Rr+r^2)
34908.

2 cubes each of volume 64cm3 are joined end to end .find the surface area of resulting cuboid.

Answer» a^3=64a=4L =8cmB=4H=4Surface area =2(lb+bh+lh)=2(32+16+32)=2(80)=160cm2
34909.

28#&3*

Answer»
34910.

Question no. 18

Answer»
34911.

Difference between tangent and secent

Answer» When the line touches the circle at two points: It is called a secant.When the line touches the circle at exactly one point: It is called a tangent. The tangent segments to a circle from the same external\xa0point are equal.
34912.

Is Theorem is asked in board exam

Answer» Yaaa
Yes theorems are very important. Specially the theorems in Triangles
34913.

If alpha and beta are the zeroes of quadratic polynomial f(x)=5y^2-7y+1

Answer» Given that, α and β are the zeroes of the quadratic polynomial.p(y) = 5y2 - 7y + 1Here, sum of the zeroes = α + β =\xa0{tex}\\frac{{ - ( -7 ) }}{ 5} = \\frac {{ 7 }}{ 5 }{/tex}and product of the roots = αβ =\xa0{tex}\\frac{{ 1 }}{ 5 }{/tex}So,{tex}\\frac{1}{\\alpha } + \\frac{1}{\\beta } = \\frac{{\\alpha + \\beta }}{{\\alpha \\beta }} = \\frac{{ 7 }}{ 5 }\\times\\frac{{ 5 }}{ 1 } = \\frac{7}{1} = 7 {/tex}Hence, required value of\xa0{tex}\\frac{{ 1 }}{ \\alpha } + \\frac{{ 1 }}{ \\beta }{/tex}\xa0is 7
34914.

How to find d in statistics

Answer» Second term - first termA2-A1 or A3-A2
It is given in the text book read it from there
34915.

In triangle ABC angle A =60. Prove that BC sq=AB sq+ACsq - AB.AC

Answer» Given: In {tex}\\triangle{/tex}ABC,To prove: BC2\xa0= AB2\xa0+ AC2\xa0- AB.ACConstruction: Draw CE\xa0{tex}\\perp{/tex} ABProof: In {tex}\\triangle{/tex}BECBC2\xa0= CE2\xa0+ BE2\xa0..(i)In {tex}\\triangle{/tex}ACE, AC2\xa0= CE2\xa0+ AE2CE2\xa0= AC2\xa0- AE2\xa0..(ii)from (i) and (ii)BC2\xa0= AC2\xa0- AE2\xa0+ (AB - AE)2\xa0({tex}\\because{/tex} BE = AB - AE)BC2\xa0= AC2\xa0+ AB2\xa0- 2AB.AE - 2AB{tex}\\frac{1}{2}{/tex}ACSince side opposite to 30° angel is half hypoteneuse.In {tex}\\triangle{/tex}ACE, AE = {tex}\\frac{1}{2}{/tex}ACBC2 = AB2 + AC2 - AB.AC
34916.

If common different of an AP is –6,find a16-a12

Answer» a16= a+15d and a12=a+11d ; a16-a15= a+15d-a+11d = 26 d = 26 (6)=15 6
a+15d-(a + 11d)=4d d=-6=>4d=-24
-24
34917.

Find the positive root of 3x²+6=9

Answer» 1
3x2 + 6x = 93x2 + 6x - 9 = 03x2 + 9x - 3x - 9 = 03x(x + 3) - 3 (x +3) = 0(x + 3) ( 3x - 3)= 0x + 3 = 0 or 3x - 3 = 0x = -3 or 3x = 3x = -3 or x = 3/3 = 1
3x^2 + 6 =93x^2 = 9-63x^2 =3x^2 =3/3x^2 =1x= root 1So positive root is +1 and negative root is -1
34918.

What is syllabs

Answer» Thank
the education which we learn for succeding in our life
34919.

Which one is a best sample paper for 10th board maths

Answer» No one
Oswal\'s paper are very good.
Just do all the questions of ncert and ncert examplear
U like
isuceed or sahitya bhawan for best preparation
34920.

Which one is best book

Answer» Ocean publication
RD sharma or RS Aggarwal and NCERT exemplar is best because it is recommended by cbse
Examguru
Xam idea and U like
In maths.. Rd sharma
34921.

Send me solution of question 5of exercise 13.1 immediately

Answer» Why we plus csa ofhemisphere inthis question
Diameter of hemisphere = Edge of cube =LRadius of hemisphere =L/2Total surface area of solid = Surface area of cubical part + CSA of hemispherical part − Area of base of hemispherical part= 6 * L*L\xa0+ 2*.314* L/2*L/2- 3.14* L/2*L/2=6 L2\xa0+ 3.14 *L2/4
Surface area of solid=Total surface area of cube + Curved surface area of hemisphere --Area of circle Use this formula for fInding answer.
34922.

State and proof area theorem

Answer» Theorems on the area of similar trianglesTheorem: If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.To prove this theorem, consider two similar triangles ΔABC and ΔPQR;\xa0As, Area of triangle =\xa01/2\xa0× Base × HeightTo find the area of ΔABC and ΔPQR, draw the altitudes AD and PE from the vertex A and P of ΔABC and ΔPQR as shown in the figure given below:Now, area of ΔABC =\xa01/2\xa0× BC × ADarea of ΔPQR =\xa01/2\xa0× QR × PEThe ratio of the areas of both the triangles can now be given as:area\xa0of\xa0ΔABC / area\xa0of\xa0ΔPQR\xa0= (1/2×BC×AD) / (1/2×QR×PE)⇒\xa0area\xa0of\xa0ΔABC / area\xa0of\xa0ΔPQR\xa0=\xa0BC\xa0×\xa0AD / QR\xa0×\xa0PE\xa0……………. (1)Now in ∆ABD and ∆PQE, it can be seen that:∠ABC = ∠PQR (Since ΔABC ~ ΔPQR)∠ADB = ∠PEQ (Since both the angles are 90°)From AA criterion of similarity ∆ADB ~ ∆PEQ⇒\xa0AD/PE\xa0=\xa0AB/PQ …………….(2)Since it is known that ΔABC~ ΔPQR,AB/PQ\xa0=\xa0BC/QR\xa0=\xa0AC/PR\xa0…………….(3)Substituting this value in equation (1), we getarea\xa0of\xa0ΔABC/area\xa0of\xa0ΔPQR\xa0=\xa0AB/PQ\xa0×\xa0AD/PEUsing equation (2), we can writearea\xa0of\xa0ΔABC / area\xa0of\xa0ΔPQR\xa0=\xa0ABPQ\xa0×\xa0ADPE⇒area\xa0of\xa0ΔABCarea\xa0of\xa0ΔPQR\xa0=(AB/PQ)2Also from equation (3),area\xa0of\xa0ΔABC / area\xa0of\xa0ΔPQR\xa0=\xa0(AB/PQ)2\xa0=(BC/QR)2\xa0=\xa0(CA/RP)2This proves the theorem\xa0Note I could not post triangles pl draw yourself
34923.

tan A + sec A -1÷tan A-secA+1=1+sinA÷cosA

Answer» Proof:LHS=(tanA +secA) - (sec2A - tan2A) / tanA + 1 - secA as sec2A - tan2A=1=(tanA+ secA) (1 - (secA - tanA))/tanA + 1 - secA=(tanA +secA) (1 - secA + tanA) /\xa0(1 - secA+tanA )=sec A + tan A=1/cosA + sinA/cosA\xa0=(1 + sinA) / cosA =RHS\xa0\xa0
It is in this app itself. It is in the exercise 8.3 of exemplar problems of chapter intro to trigonometry
Prove this
34924.

Find the area of a sector sf a circle with radius 6 cm if angle of the sector is 60

Answer» The formula is theeta/360xπrsquare60/360x22/7x6x6= 132/7 cm square
18.84 cm2
Radius = 6cmAngle=60°Area of sector= 22 * 6* 6 * 60 7 360 =154/7 cm2
34925.

How to draw trignometry table

Answer»
34926.

A mettalic cylinder has radius 3cm...?...

Answer»
34927.

The surface area is 616 cm square find radius

Answer» Shape?
34928.

Tan theta + cot theta is equal to 7 and prove find that 10 square theta + cos square theta

Answer» Please correct your Question.
34929.

Find the value of m if the points are (5,1) , (-2,-3) , (8, 2m)

Answer»
34930.

Proof:- sin theta - cos theta + 1/sin theta + cos theta - 1 = 1/sec theta - tan theta

Answer» We have to prove that,{tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex} using identity\xa0{tex}sec^2\\theta=1+tan^2\\theta{/tex}LHS = {tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} {/tex}{tex} = \\frac{{\\tan \\theta - 1 + \\sec \\theta }}{{\\tan \\theta + 1 - \\sec \\theta }}{/tex} [ dividing the numerator and denominator by {tex}\\cos{\\theta}{/tex}.]{tex} = \\frac{{(\\tan \\theta + \\sec \\theta)-1 }}{{(\\tan \\theta - \\sec \\theta )+1}}{/tex}{tex}=\\frac{\\{{(\\tan\\theta+\\sec\\theta)-1\\}}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [ Multiplying and dividing by {tex}(\\tan{\\theta}-\\sec{\\theta}){/tex}]{tex}=\\frac{{(\\tan^2\\theta-\\sec^2\\theta)-}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [{tex}\\because (a-b)(a+b)=a^2-b^2{/tex}]{tex} = \\frac{{-1-\\tan \\theta + \\sec \\theta }}{{(\\tan \\theta - \\sec \\theta+1)(\\tan{\\theta}-\\sec{\\theta}) }}{/tex}[{tex}\\because \\tan^2\\theta-\\sec^2\\theta=-1{/tex}]{tex}=\\frac{-(\\tan\\theta-\\sec\\theta+1)}{(\\tan\\theta-\\sec\\theta+1)(\\tan\\theta-\\sec\\theta)}{/tex}{tex}=\\frac{-1}{\\tan{\\theta}-\\sec{\\theta}}{/tex}{tex} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex}=RHSHence Proved.
34931.

Total surface area of frustum

Answer» Pie l (r1+r2)+pie r1 square+ pie r2 square
34932.

Use Euclid divisions lemma to show That the cube of any positive integer is of form 9m, 9m+1,or 9m+8

Answer» Let a positivi integer x when divided by 3 gives remainder rThen by using euclids division lemmaX=3q+r. And. r=0,1or2Case 1:-. r=0 X^3= 3×3×3×q×q×q+0×0×0 =27q^3 =9×3q^3 =9m. ( Say 3q^3=m)Similarly in case 2 &3 we find 9m+1 and 9m+8 respectively.
34933.

2 add 3 is equal to

Answer» 5
Obviously, it is equal to 5.
5
Bkwas questionAnd answer is 5
34934.

Ex 5.3 4

Answer»
34935.

What is samroop organs

Answer» Medical Definition of Organ. Organ: A relatively independent part of the body that carries out one or more special functions. Examples of organs include the eyes, ears, heart, lungs, and liver.
34936.

100 +678913

Answer» 100 +678913= 679013
34937.

Solve for x 1/x+1 + 2/x+2 = 4/x+4 Where x≠-1, -2,-4

Answer» X=2+8^1/2 or X=2-8^1/2
Kya masala marr ke
Masala marr ke
34938.

I want lacture on circle theorem

Answer» Mtlab
Area related to circles muje nahi samajra
Lacture kya??
34939.

All formula of trignometry

Answer» [Exercise:-8.3]....sin (90°-A)=cos A,,,,,cos(90°-A)=sinA,,,,,Tan(90°-A)=cot,,,,Cot(90°-A)=tanA,,,SecA(90°-A)=cosecA,,,,Cosec(90°-A)=secA.......
[Exercise:-8.1].....sin= p\\h,,,cos=B\\H,,,tan=P\\B......nd [Exercise:-8.2]....u can read formula on NCERT book ......
34940.

How to prepare for science exam perfectly

Answer» Read the full ncert
34941.

Exercise 14.3 for class 10

Answer»
34942.

Find the area of shaded degine in fig when ABCD IS sq of shaded 10cm

Answer»
34943.

Cos(90-x)sec x tan(90- x)/sin^2(90- x) sec+90-x)

Answer» 1/cos^4
Sorry, can u type the question again clearly. Coz i am not sure where does the bracket open but closes at the end
34944.

Plz can you give me important questions of chapter 4 NCERT Maths

Answer» √2,√8,√18,√32.... Find the common difference d and write three more terms
34945.

If sec theta + tan theta = p find the value of cosec theta

Answer» Given,{tex}sec\\ \\theta+ tan\\ \\theta = p{/tex} ...(i)Also, we know that,\xa0{tex}sec^2\xa0\\theta - tan^2 \\theta = 1{/tex}{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0- tan\xa0{tex}\\theta{/tex}) (sec\xa0{tex}\\theta{/tex}\xa0+ tan\xa0{tex}\\theta{/tex}) = 1 [{tex}\\because a^2-b^2=(a+b)(a-b){/tex}]{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex})p = 1 [using equation (i)]{tex}\\Rightarrow{/tex}\xa0sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1}{p}{/tex}\xa0...(ii)(i)+(ii), we get,{tex}sec\\theta + tan\\theta+ sec\\theta - tan\\theta = p+ \\frac{1}{p}{/tex}{tex}\\Rightarrow 2sec\\theta = \\frac{p^2+1}{p}{/tex}{tex}\\Rightarrow sec\\theta = \\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow \\frac{1}{cos\\theta} =\\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow cos\\theta =\\frac{2p}{p^2+1}{/tex}------(iii)Now, we know that,{tex}sin\\theta = \\sqrt( 1- cos^2\\theta) {/tex}put the value of\xa0{tex}cos\\theta{/tex}\xa0from eq. (iii), we get,{tex}sin\\theta = \\sqrt(1-(\\frac{2p}{p^2+1})^2){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(1-\\frac{4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2+1)^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1+2p^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1-2p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2-1)^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\frac{p^2-1}{p^2+1}{/tex}{tex}cosec\\theta = \\frac{p^2+1}{p^2-1} [\\because cosec\\theta =\\frac{1}{sin\\theta}]{/tex}hence, {tex}cosec\\\xa0\\theta{/tex}\xa0{tex}=\\frac{1+p^{2}}{1-p^{2}}{/tex}
34946.

If two vertices of an equilateral triangle are(3,0) and (6,0), then find the third vertex

Answer» Let ABC be the equilateral triangle such that,A = (3,0), B=(6,0) and C=(x,y)Distance between:{tex}\\sqrt {( x_{2}-x_{1})^2+(y_{2} -y_{1})^{2} }{/tex}we know that,AB=BC=ACBy distance formula we get,AB=BC=AC=3unitsAC=BC{tex}\\sqrt{(3-x)^2+y^2}=\\sqrt{(6-x)^2+y^2}{/tex}{tex}9+x^2-6 x+y^2=36+x^2-12 x+y^2{/tex}{tex}6 x=27{/tex}{tex}x=27 / 6=9 / 2{/tex}BC = 3 units{tex}\\sqrt{(6-\\frac{27}{6})^2+y^2}=3{/tex}{tex}(\\frac{(36-27)}{6})^2+y^2=9{/tex}{tex}(\\frac{9}{6})^2+y^2=9{/tex}{tex}(\\frac{3}{2})^2+y^2=9{/tex}{tex}\\frac{9}{4}+y^2=9{/tex}{tex}9+4 y^2=36{/tex}{tex}4 y^2=27{/tex}{tex}y^2=\\frac{27}{4}{/tex}{tex}y=\\sqrt{(\\frac{27}{4})}{/tex}{tex}y=3 \\sqrt{\\frac{3}{2}}{/tex}{tex}(x, y)=(9 / 2,3 \\sqrt{\\frac{3}{2}}){/tex}Hence third vertex of equilateral triangle = C =\xa0{tex}(9 / 2,3 \\sqrt{\\frac{3}{2}}){/tex}
34947.

tan 60 cos 60 + tan 60 sec 30

Answer»
34948.

What is rel number and what is poly nomial and triangle and statistics

Answer»
34949.

Prove that :sinA-2sin3A/2cos3A-cosA=tanA

Answer» sinA (1-2sin2A)/cosA ( 2cos2A -1)SinA (1-2 (1-cos2A)/cosA (2cos2A -1)=sinA (2cos2A -1)/cosA ( 2cos2A -1)=sinA/ cosA =tanA
34950.

(3+4+1)×2

Answer» 16
16
(3 + 4 + 1) × 2= (8)\xa0× 2= 16