Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

Use suitable identities to find the following products :(i) (x + 4) (x + 10) (ii) (x + 8) (x – 10) (iii) (3x + 4) (3x – 5) (iv) (y2 + \(\frac{3}{2}\))(y2 - \(\frac{3}{2}\))(v) (3 – 2x) (3 + 2x)

Answer»

(i) (x + 4) (x + 10) 

Suitable identity is (x + a) (x + b) 

= x2 + (a + b)x + ab (x + 4) (x + 10) 

= x2 + (4 + 10)x + (4 × 10) 

= x2 + 14x + 40 

(ii) (x + 8) (x- 10) 

Suitable identity is (x + a) (x + b) 

= x2 + (a + b)x + ab (x + 8) (x – 10)

= (x)2 + (8 – 10)x + (8 × -10) 

= x2 + (-2)x + (-80) 

= x2 – 2x – 80 

(iii) (3x + 4) (3x – 5) 

Suitable identity is (x + a) (x + b) 

= x2 + (a + b)x + ab (3x + 4) (3x – 5) 

= (3x)2 + (+4 – 5)3x + (4 x -5) 

= 9x2 + (-1)3x + (-20) 

= 9x2 – 3x – 20 

(iv) Suitable identity is (a + b) (a – b) 

= a2 – b2 

(v) (3 – 2x) (3 + 2x) 

Suitable identity is (a + b) (a – b) 

= a2 – b2 (3 – 2x) (3 + 2x) 

= (3)2 – (2x)2 = 9 – 4x2 .

602.

Factorise : (i) x2 – 2x2 – x + 2 (ii) x2 – 3x2 – 9x – 5 (iii) x3 + 13x2 + 32x + 20 (iv) 2y3 + y2 – 2y – 1

Answer»

(i) x3 – 2x2 – x + 2 

= x2(x – 2) – 1 (x – 2) 

= (x – 2) (x2 – 1) 

= (x – 2) (x + 1) (x- 1) 

(ii) x3 – 3x2 – 9x – 5 

= x3 – 5x2 + 2x2 – 10x + x – 5 

= x2(x – 5) + 2x(x – 5) + 1 (x – 5) 

= (x – 5) (x2 + 2x + 1) 

= (x – 5) {x2 + x + x + 1} 

= (x – 5) (x(x + 1) + 1(x + 1)} 

= (x- 5)(x + 1) (x + 1) 

(iii) x3 + 13x2 + 32x + 20 

= x3 + 10x2 + 3x2 + 30x + 2x + 26 

= x2(x + 10) + 3x(x + 10) + 2(x + 10) 

= (x + 10) (x2 + 3x + 2) 

= (x + 10) {x2 + 2x + x + 2) 

= (x + 10) {x(x + 2) + 1 (x + 2)) 

= (x + 10) (x + 2) (x + 1) 

(iv) 2y3 + y2 – 2y – 1 

= y2(2y + 1) – 1(2y + 1) 

= (2y + 1) (y2– 1)

= (2y + 1) {(y)2 – (1)2

= (2y+ 1) (y + 1) (y- 1)

603.

Factorise `(2x+3y)^(2)+14(2x+3y)(3x-y)-32(3x-y)^(2)`.

Answer» Let 2x+3y=a and 3x-y=b
`therefore` Given expression : `(2x+3y)^(2)+14(2x+3y)(3x-y)-32(3x-y)^(2)`
`=a^(2)+14ab-32b^(2)=a^(2)+(16-2)ab-32b^(2)`
`=a^(2)+16ab-2ab-32b^(2)=a(A+16b)-2b(a+16b)`
=(a+16b)(a-2b)
=[(2x+3y)+16(3x-y)][(2x+3y)-2(3x-y)]
=(2x+3y+48x-16y)(2x+3y-6x+22y)
=(50x-13y)(-4x+5y)=(50x-13y)(5y-4x)
604.

Factorise `99x^(2)-202xy+99y^(2)`.

Answer» Here, a=99, b=-202, c=99
`therefore " " axx c=99xx99`
Now, we take two factors of `99xx99` whose sum is -202.
Let two such factors are m and n.
`therefore " " m+n=-202`
and `mn=99xx99`
V know that `(m-n)^(2)=(m+n)^(2)-4mn`
`=(-202)^(2)-4xx99xx99=40804-39204=1600`
`implies m-n=40`
Adding equations (1) and (2)
2m=-162
`implies m=-81`
Put this value in equation (1)
`-81+n=-202`
`implies n=-121`
The two factors of `99xx99` are -121 and -81.
Now, `99x^(2)-202xy+99y^(2)=99x^(2)+(-121-81)-xy+99y^(2)=99x^(2)-121 xy-81xy+99y^(2)`
`=11x(9x-11y)-9y(9x-11y)(11x-9y)`
605.

In rectangles with one side 1 centimetre shorter than the other, take the length of the shorter side as x centimetres.i. Taking their perimeters as p(x) centimetres, write the relation between p(x) and x as an equation,ii. Taking their areas as a(x) square centimetres, write the relation between a(x) and x as an equation.iii. Calculate p(1), p(2), p(3), p(4), p(5). Do you see any pattern?iv. Calculate a(1), a(2), a(3), a(4), a(5). Do you see any pattern?

Answer»

Let x be the shorter side, then the other side will be (x + 1).

i. Perimeter = 2[x + (x + 1)] = 2(2x + 1) = 4x + 2

That is, p(x) = 4x + 2

ii. Area = x(x + 1)

a(x) = x2 + x

Area, a(x) = x2 + x

iii. p(x) = 4x + 2

p(1) = 4 × 1 + 2 = 6 

p(2) = 4 × 2 + 2 = 10 

p(3) = 4 × 3 + 2= 14 

p(4) = 4 × 4 + 2= 18 

p(5) = 4 × 5 + 2 = 22

Perimeter is a sequence increasing by 4.

iv. a(x) = x2 + x

a(1) = 12 + 1 = 2 = 1 × 2 = 2 

a(2) = 22 + 2 = 6 = 2 × 3 = 6 

a(3) = 32 + 3 = 12 = 3 × 4 = 12 

a(4) = 42 + 4 = 20 = 4 × 5 = 20 

a(5) = 52 + 5 = 30 = 5 × 6 = 30

Area is the product of x and the number one more than x.

606.

Consider all rectangles that can be made with a 1-metre long rope. Take one of its sides as x centimetres and the area enclosed as a(x) square centimetres.i. Write the relation between a(x) and x as an equation.ii. Why are the numbers a(10) and a(40) equal?iii. To get the same number as a(x), for two different numbers as x, what must be the relation between the numbers?

Answer»

i. 1 m = 100 cm

If one side is x cm, then the other side is 50 – x.

Area of rectangle = a(x) = x(50 – x)

= 50x – x2 cm2

a(x) = 50x – x2

ii. a(10) = 50 × 10 – 102 = 500 – 100 = 400

a(40) = 50 × 40 – 402 = 2000 – 1600 = 400 

10 and 40 are the sides of rectangle, so a(10) and a(40) are same .

iii. Numbers must be sides of rectangle. If we add the two numbers together we get the sum as half the length of the wire (50 cm) used to make it.

607.

If a + b + c = 0, then prove that a3 + b3 + c3 = 3abc.

Answer»

Given a + b + c = 0 

⇒ a + b = -c ……………..(1)

Cubing on both sides 

(a + b)3 = (-c)3 

a3 + b3 + 3ab (a + b) = -c3

a3 + b3 + 3ab (-c) =-c3 From(l) 

a3 + b3 – 3abc = -c3 

a3 + b3 + c3 – 3abc

608.

If a+b+c=5 and ab+bc+ca=10, then prove that `a^(3)+b^(3)+c^(3)-3abc=-25`.

Answer» We know that, `a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`=(a+b+c)[a^(2)+b^(2)+c^(2)-(ab+bc+ca)]`
`=5{a^(2)+b^(2)+c^(2)-(ab+bc+ca)}=5(a^(2)+b^(2)+c^(2)-10)`
Now, a+b+c=5
Squaring both sides, we get
`(a+b+c)^(2)=5^(2)`
`implies a^(2)+b^(2)+c^(2)+2(ab+bc+ca)=25`
`therefore a^(2)+b^(2)+c^(2)+2(10)=25`
`implies a^(2)+b^(2)+c^(2)=25-20=5`
Now, `a^(3)+b^(3)+c^(3)-3abc-5(a^(2)+b^(2)+c^(2)-10)`
=5(5-10)=5(-5)=-25
609.

Prove that `(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)`.

Answer» `(a+b+c)^(3)-a^(3)-b^(3)-c^(3)`
`=(a+b+c)^(3)-(c )^(3)-(a^(3)+b^(3))`
`=(a+b+c-c)[(a+b+c)^(2)+c(a+b+c)+(c )^(2)]-(a^(3)+b^(3))`
`=(a+b)[a^(2)+b^(2)+c^(2)+2ab+2bc+2ca+ac+bc+c^(2)+c^(2)]-(a+b)(a^(2)-ab+b^(2))`
`=(a+b)[a^(2)+b^(2)+c^(2)+2ab+3bc+3bc+3ca+c^(2)+c^(2)-a^(2)+ab-b^(2)]`
`=(a+b)[3ab+3bc+3ca+3c^(2)]=3(a+b)[ab+bc+ca+c^(2)]`
`=3(a+b)[b(a+c)+c(a+c)]=3(a+b)(a+c)(b+c)`
=3(a+b)(b+c)(c+a)
610.

If one of the zeroes of the quadratic polynomial (k–1) x2 + k x + 1 is –3, then the value of k is  (A) 4/3 (B) -4/3 (C)  2/3 (D) -2/3

Answer»

(A) 4/3

Explanation:

According to the question,

-3 is one of the zeros of quadratic polynomial (k-1)x2+kx+1

Substituting -3 in the given polynomial,

(k-1)(-3)2+k(-3)+1=0

(k-1)9+k(-3)+1 = 0

9k-9-3k+1=0

6k-8=0

k=8/6

Therefore, k = 4/3

Hence, option (A) is the correct answer.

611.

Find the value of a, if x – a is a factor of x3 – ax2 + 2x + a – 1.

Answer»

Let p(x) = x3 – ax2 + 2x + a – 1 

Since x – a is a factor of p(x), so p(a) = 0. 

i.e., a3 – a(a)2 + 2a + a – 1 = 0 

a3 – a3 + 2a + a – 1 = 0 

3a = 1 

Therefore, a = 1/3

612.

without actually calculating , the cubes , find the valuse of (i) `((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)`(ii) `(0.2)^(3)-(0.3)^(3)+(0.1)^(3)`

Answer» given , `((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)or ((1)/(2))^(3)+((1)/(3))^(3)+(-(5)/(6))^(3)`
here , we see that , `(1)/(2) +(1)/(3)-(5)/(6)=(3+2-5)/(6)=(5-5)/(6)=0`
`therefore ((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)=3xx(1)/(2)xx(1)/(3)xx(-(5)/(6))=-(5)/(12)`
[using identity , if a+b+c=0 then `a^(3)+b^(3)+c^(3)`= 3abc]
(ii) given `(0.2)^(3)-(0.3)^(3)+(0.1)^(3)or (0.2)^(3)+(-0.3)^(3)+(0.1^(3)`
here , we see that , `0.2-0.3+0(.1)^(3)=3xx(0.2)xx(0.3)xx(0.1)`
[using identity if `a+b+c =0` then `a^(3)+b^(3)+c^(3)=3abc`]
`=-0.6xx0.03=-0.018`
613.

What should be subtracted from \((\frac{2x^2+2x-7}{x^2+x-6})\) to get \((\frac{x-1}{x+2})\)A) \(\frac{x-2}{x-3}\)B) \(\frac{x^2+6x-11}{x^2+x-6}\)C) \(\frac{x+2}{x-3}\)D) \(\frac{x-2}{x+3}\)

Answer»

Correct option is (B) \(\frac{x^2+6x-11}{x^2+x-6}\)

Let p(x) should be subtracted from

\(\left(\frac{2x^2+2x-7}{x^2+x-6}\right)\) to get \(\left(\frac{x-2}{x+3}\right)\)

i.e.\(\frac{2x^2+2x-7}{x^2+x-6}-p(x)\) \(=\frac{x-2}{x+3}\)

\(\Rightarrow\) \(p(x)=\frac{2x^2+2x-7}{x^2+x-6}\) \(-\frac{x-2}{x+3}\)

\(=\frac{2x^2+2x-7-(x-2)^2}{(x+3)(x-2)}\)

\(=\frac{2x^2+2x-7-x^2+4x-4}{(x-2)(x+3)}\)

\(=\frac{x^2+6x-11}{x^2+x-6}\)

Correct option is B) \(\frac{x^2+6x-11}{x^2+x-6}\)

614.

The expression 1/(1 - x) - 1/(1 + x) - x3/(1 - x) + x2/(1 + x) in lowest term is ……………A) x2 + 2x B) x2 – 2x C) x2+ 2 D) 2x + 1

Answer»

Correct option is (A) x2 + 2x

\(\frac{1}{1-x}-\frac{1}{1+x}-\frac{x^3}{1-x}+\frac{x^2}{1+x}\)

\(=\frac{1-x^3}{1-x}+\frac{x^2-1}{1+x}\)

\(=\frac{(1-x)(1+x+x^2)}{1-x}+\frac{(1+x)(x-1)}{1+x}\)

\(=1+x+x^2+x-1\)

\(=2x+x^2\)

Correct option is A) x2 + 2x

615.

Without actually calculating the cubes, find the value of each of the following:(-12)3 + (7)3 + (5)3

Answer»

(-12)3 + (7)3 + (5)3

Let x = −12, y = 7, and z = 5

It can be observed that,

x + y + z = − 12 + 7 + 5 = 0

It is known that if x + y + z = 0, then

x3 + y3 +z3

(-12)3 + (7)3 + (5)3

= 3(-12)(7)(5)

= -1260

616.

The lowest form of rational expression x2-4/xy+2y is ………………A) (x - 2)/yB) (x + 1)/yC) (x + 1)/xyD) (x - 2)/y

Answer»

Correct option is (D) (x - 2)/y

\(\frac{x^2-4}{xy+2y}\) \(=\frac{(x-2)(x+2)}{y\,(x+2)}\)

\(=\frac{x-2}{y}\)

Correct option is D) (x - 2)/y

617.

Without finding the cubes, factorise (x – y)3 + (y – z) 3 + (z – x) 3.

Answer»

We know that x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx). 

If x + y + z = 0, then x3 + y3 + z3 – 3xyz = 0 or x3 + y3 + z3 = 3xyz. 

Here, (x – y) + (y – z) + (z – x) = 0 

Therefore, (x – y)3 + (y – z)3 + (z – x)3 

= 3(x – y) (y – z) (z – x).

618.

If `(x+2)` is a common factor of `(px^2+qx+r)` and `(qx^2+px+r)` thena) ` p=q` or `p+q+r=0`b)`p=r` or `p+q+r=0`c) `q=r` or `p+q+r=0`d)`p=q=-1/2r`

Answer» `f(-2)=0`
`P(-2)^2+q(-2)+r=0`
`4p-2q+r=0-(1)`
`g(-2)=0`
`q(-2)^2+p(-2)+r=0`
`4q-2p+r=0-(2)`
from equation 1 and 2
`2q-4p=2p-4q`
`2q+4q=2p+4p`
`6q=6p`
`q=p`
`4p-2q+r=0`
`4q-2q+r=0`
`2q+r=0`
`2q=-r`
`P=q=-1/2r`.
619.

Simplify:`1/sqrt[11-2sqrt30]`-`3/sqrt[7-2sqrt10]`-`4/sqrt[8+4sqrt3]`

Answer» `1/sqrt(11-2sqrt30) = 1/sqrt(11-2sqrt30)xxsqrt(11+2sqrt30)/sqrt(11+2sqrt30)`
`=sqrt(11+2sqrt30)/(121-120) = sqrt(11+2sqrt30)`

`3/(sqrt(7-2sqrt10)) = 3/sqrt(7-2sqrt10)xxsqrt(7+2sqrt10)/(sqrt(7+2sqrt10)`
`=(3sqrt(7+2sqrt10))/(49-40) = sqrt(7+2sqrt10)`

`4/sqrt(8+4sqrt3) = 4/sqrt(8+4sqrt3)xxsqrt(8-4sqrt3)/sqrt(8-4sqrt3)`
`=(4sqrt(8-4sqrt3))/(64-48) = sqrt(8-4sqrt3)= sqrt(8-2sqrt12)`

`:. 1/sqrt(11-2sqrt30) - 3/(sqrt(7-2sqrt10)) - 4/sqrt(8+4sqrt3) =sqrt(11+2sqrt30) - sqrt(7+2sqrt10)-sqrt(8-2sqrt12)`
`=sqrt(sqrt6^2+sqrt5^2+2sqrt6sqrt5)-sqrt(sqrt5^2+sqrt2^2+2sqrt2sqrt5)-sqrt(sqrt6^2+sqrt2^2-2sqrt6sqrt2`
`=sqrt((sqrt6+sqrt5)^2)-sqrt((sqrt5+sqrt2)^2)-((sqrt6-sqrt2)^2)`
`=sqrt6+sqrt5-sqrt5-sqrt2-sqrt6+sqrt2 = 0`
620.

write the coefficient of `x^(2)` in each of the following (i) `(pi)/(6)x+x^(2)-1` (ii) 3x-5 (iii) `(x-1)(3x-4)` (iv) `(2x-5)(2x^(2)-3x+1)`

Answer» (i) the coefficient of `x^(2) "in " (pi)/(6) x+x^(2)-1 "is" 0.`
(ii) the coeficient of `x^(2) ` in `3x-5 "is "0.`
(iii) Let `p(x)=(x-1)(3x-4)`
`=3x^(2)-7x+4`
`=3x^(2)-4x-3x+4`
hence , the coefficient of `x^(2)` in p(x) is 3.
(iv) Let p(X) `=(2x-5)(2x^(2)-3x+1)`
`=x(2x^(2)-3x+1)-5(2x^(2)-3x+1)`
`=4x^(3)-6x^(2)+2x-10x^(2)+15x-5`
`=4x^(3) -16x^(2) +17x-5`
Hence , the coefficient of `x^(2)` in p(x) is -16.
621.

HCF of \(x^3 - 1\) and \(x^4 + x^2 + 1\) will be(a) (x – 1) (b) x2 + x + 1(c) x2 - x + 1 (d) x2 - x - 1

Answer»

(b) x2 + x + 1

\(x^3 - 1 = (x - 1)(x^2 + x +1)\)

\(x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1) - x^2\) 

\((x^2+1-x)(x^2+1+x)\)

∴ Reqd. HCF = x2 + x + 1

622.

If roots of quadratic equation (b – c)x2 + (c – a)x + (a – b) = 0 are real and equal, then prove that 2b = a + c

Answer»

Given equation is (b – c)x2 + (c – a)x + (a – b) = 0

Comparing it by general quadratic equation, a = (b – c), b = (c – a) and c = (a – b)

Discriminant (D) = b2 – 4ac

= (c – a)2 – 4(b – c)(a – b)

= (c2 + a2 – 2ac) – 4(ab – ac – b2 + bc)

= c2 + a2 – 2ac – 4ab + 4ac + 4b2 – 4bc

= c2 + a2 + 2ac – 4ab – 4bc + 4b2

= (a + c)2 – 4 b(a + c) + 4b2

= (a + c)2 – 2 × (a + c) × 2b + (2b)2

= [(a + c) – 2b]2

Roots of equation are real and equal.

D = 0

⇒ [(a + c) – 2b]2 = 0

⇒ (a + c) – 2b = 0

⇒ a + c = 2b

623.

What is HCF of 8x2y2 , 12x3y2 and 24x4y3 z2?

Answer»

8\(x\)2y2 = 2 x 2 x2 x \(x\) x \(x\) x y x y

12\(x\)3y= 2 x 2 x 3 x \(x\) x \(x\) x \(x\) x y x y

24\(x\)4yz= 2 x 2 x 2 x 3 x \(x\) x \(x\) x \(x\) x \(x\) x y x y x y x z x z.

HCF of 8x2y2 , 12x3y2 and 24x4y3 z= 2 x 2 x \(x\) x \(x\) x y x y = 4x2y2.

624.

Evaluate : `(i) (98)^(3) " " (ii) (598)^(3) " " (iii) (1003)^(3)`

Answer» Correct Answer - (i) 941192 (ii) 213847192 (iii) 1009027027
625.

Find the HCF of x2 – 5x + 6 and x2 – 9.

Answer»

\(x\)2 - 5\(x\) + 6 = \(x\)2 - 2\(x\) - 3\(x\) + 6

\(x\) (\(x\) –2) – 3 (\(x\) – 2) = (\(x\) –2) (\(x\) –3)

x2 – 9 = (\(x\) –3) (\(x\) + 3) 

∴ HCF of (\(x\)2 – 5\(x\) + 6) and (\(x\)2 – 9) = \(x\) – 3

626.

If ax2 + 2a2 x + b3 is divisible by (x + a) then …………A) a2 + ab + b2 = 0 B) a = bC) either a = b or a2 + ab + b2 = 0 D) neither a = b nor a2 + ab + b2 = 0

Answer»

Correct option is (C) either a = b or a2 + ab + b2 = 0

Given that \(ax^2 + 2a^2 x + b^3\) is divisible by (x+a).

i.e., x = -a is a zero of \(ax^2 + 2a^2 x + b^3\)

\(\therefore\) \(a(-a)^2+2a^2\times-a+b^3=0\)

\(\Rightarrow\) \(a^3-2a^3+b^3=0\)

\(\Rightarrow\) \(b^3-a^3=0\)

\(\Rightarrow\) \((b-a)(b^2+ab+a^2)=0\)

\(\Rightarrow\) Either b - a = 0 or \(b^2+ab+a^2=0\)

\(\Rightarrow\) Either b = a or \(a^2 + ab + b^2 = 0\)

Correct option is C) either a = b or a2 + ab + b2 = 0

627.

If the zeroes of the rational expression (3x + 2a) (2x + 1) are -1/2 and b/c then the value of a is ………………A) -b/3B) -b/2C) -2b/3D) 2b/3

Answer»

Correct option is (B) -b/2

\(\frac{b}{3}\) is a zero of expression (3x+2a) (2x+1)

\(\therefore(3\times\frac b3+2a)(\frac{2b}3+1)=0\)

\(\Rightarrow\) (b+2a) \(=\frac0{\frac{2b}3+1}=0\)

\(\Rightarrow\) 2a = -b

\(\Rightarrow\) a = \(\frac{-b}2\)

Correct option is B) -b/2

628.

Simplify the expression \(\frac{6p^2-150}{p^2-3x-40}\)

Answer»

\(\frac{6p^2-150}{p^2-3x-40}\) = \(\frac{6(p^2-25)}{p^2-8x+5x-40}\)

\(\frac{6(p-5)(p+5)}{p(p-8)+5(p-8)}\) = \(\frac{6(p-5)(p+5)}{(p-8)(p+8)}\) = \(\frac{6(p-5)}{p-8}.\)

629.

If the HCF of x3 – 343 and x2 – 9x + 14 and (x – 7), then find their LCM.

Answer»

x3 - 343 = x3 - (7)3 = (x - 7)(x2 + 7x + 49)

x2 - 9x + 14 = x2 - 2x -7x + 14

= x(x - 2) - 7(x - 2) = (x - 7)(x - 2)

HCF of the polynomials = (x – 7)

∴ Reqd. LCM = \(\frac{(x^3 -343)\times(x^2-9x+14)}{HCF}\) 

\(\frac{(x-7)(x^2+7x+49)\times(x-7)(x-2)}{(x-7)}\)

= (x - 7)(x - 2) x (x2 + 7x + 49)

630.

Find the LCM of 3y +12, y2 –16 and y4–64y.

Answer»

3y + 12 = 3 (y + 4)

y2 – 16 = (y +4) (y – 4)

y4 - 64y = y(y3 - 64) - y(y - 4)(y2 + 4y + 16)

∴ LCM of given polynomials = 3y ( y – 4) ( y + 4) (y2 + 4y + 16)

631.

Expand : `(i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3)`.

Answer» Correct Answer - `(i) 8x^(3)+27y^(3)+36x^(2)y+54xy^(2) " " (ii) 125y^(3)-225y^(2)x+135yx^(2)-27x^(3) " " (iii) 8a^(3)+27b^(@)b+54ab^(2)`
632.

If (x – 1) and (x + 3) are the factors of x3 + 3x2 – x – 3 then the other factor is …………A) x + 1 B) x – 3 C) x + 2 D) x – 1

Answer»

Correct option is (A) x + 1

x = 1 & x = -3 are zeros of polynomial \(x^3 + 3x^2 – x – 3 .\)

Let the other zero be x.

\(\therefore\) Sum of zeros \(=\frac{\text{-coefficient of }x^2}{\text{coefficient of }x^3}\) \(=\frac{-3}1\) = -3

\(\therefore\) 1 + (-3) + \(\alpha\) = -3

\(\Rightarrow\) \(\alpha\) = -1

\(\therefore\) x = -1 is another zero of polynomial \(x^3 + 3x^2 – x – 3 .\)

\(\Rightarrow\) (x+1) is a other factor of polynomial \((x^3+3x^2-x-3).\)

Correct option is A) x + 1

633.

A rational expression whose numerator is a quadratic polynomial with zeroes, 1 and 2 and whose denominator is monomial with zero 3 is ...................A) \(\frac{x^2+x-2}{x+3}\)B) \(\frac{x^2-x-2}{x+3}\)C) \(\frac{x^2+x-2}{x-3}\)D) \(\frac{x^2-3x+2}{x-3}\)

Answer»

Correct option is (D) \(\frac{x^2-3x+2}{x-3}\)

Quadratic polynomial whose zeros are 1 and 2 is

(x - 1) (x - 2) \(=x^2-3x+2\)

Monomial with zero 3 is (x-3).

\(\therefore\) Required rational expression \(=\frac{x^2-3x+2}{x-3}\)

Correct option is D) \(\frac{x^2-3x+2}{x-3}\)

634.

Factors of 81x4 – 25 areA) (9x2 + 5)2 B) (9x2 – 5)2 C) (9x2 + 5) (9x2 – 5) D) None

Answer»

Correct option is (C) (9x2 + 5) (9x2 – 5)

\(81x^4-25=(9x^2)^2-5^2\)

\((9x^2+5)\) \((9x^2-5)\)

C) (9x2 + 5) (9x2 – 5) 

635.

The product of x3 + 2x2 – 3x + 4 and 2x2 – 5x + 1 is ………………… A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4B) 2x5 – x4 – 15x3 + 25x2 – 23x – 4C) 2x5 – x4 – 15x3 – 25x2 – 23x – 4D) 2x5 – x4 – 15x3 – 23x – 4

Answer»

Correct option is (A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4

\((x^3 + 2x^2 – 3x + 4)\) \((2x^2 – 5x + 1)\)

\(=2x^5+4x^4-6x^3+8x^2-5x^4-10x^3\) \(+15x^2-20x+x^3+2x^2-3x+4\)

\(=2x^5-x^4-15x^3+25x^2-23x+4\)

Correct option is A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4

636.

The product of x2 - 4/3-x and additive inverse of x2 - 9/2 + x is ………………A) x2 + x – 6 B) x2 – x – 6C) x2 – 5x + 6 D) x2 + 5x + 6

Answer»

Correct option is (A) x2 + x – 6

Additive inverse of \(\frac{x^2-9}{2+x}\) is \(\frac{9-x^2}{2+x}.\)

\(\therefore\) Product \(=(\frac{x^2-4}{3-x})(\frac{9-x^2}{2+x})\)

\(=\frac{(x-2)(x+2)(3-x)(3+x)}{(3-x)(2+x)}\)

= (x-2) (x+3)

\(=x^2-2x+3x-6\)

\(=x^2+x-6\)

Correct option is A) x2 + x – 6

637.

The HCF of two expressions is x and their LCM is x3  – 9x. If one of the expressions is x2  + 3x, then find the other expression.

Answer»

HCF = x,

LCM = x3 - 9x = x(x2 - 9) = x(x + 3)(x - 3)

Given expression = x2 + 3x = x(x + 3)

∴ Other expression = \(\frac{\text{HCF X LCM}}{\text{Given expression}}\)

\(\frac{x\times{x}\times(x+3)\times(x-3)}{x\times(x+3)}\)

= x(x - 3) = x2 - 3x

638.

The additive inverse of 3x – 4 + x/(2x - 1) is...........A) -3x + 4 + x/(2x - 1)B) -3x + 4 – x/(1 - 2x)C) -3x + 4 – x/(2x - 1)D) -3x + 4 – x/(2x + 1)

Answer»

Correct option is (C) \(-3x + 4 - \frac{x}{2x-1}\)

The additive inverse of 3x - 4 + \(\frac{x}{2x-1}\) is \(-3x + 4 - \frac{x}{2x-1}.\)

\((\because\) Additive inverse of p(x) is -p(x))

Correct option is C) -3x + 4 - x/2x - 1

639.

Simplify \(\cfrac{3x+2}{x^2-16}\) + \(\cfrac{x-5}{(x+y)^2}\)A) \(\cfrac{4x^2+5x+28}{x^3+4x^2+16x-64}\)B) \(\cfrac{4x^2+5x+28}{x^3-4x^2-16x-64}\)C) \(\cfrac{4x^2+5x-28}{x^3-4x^2-16x-64}\)D) \(\cfrac{4x^2+5x+28}{x^3+4x^2-16x-64}\)

Answer»

  Correct option is D) \(\cfrac{4x^2+5x+28}{x^3+4x^2-16x-64}\)

640.

Simplify \(\frac{81x^4-16x^2+32x-16}{9x^2-4x+4}\)A) 9x2 – 2x – 8 B) 9x2 + 2x – 8 C) 9x2 – 4x – 4 D) 9x2 + 4x – 4

Answer»

Correct option is (D) 9x2 + 4x – 4

\(\frac{81x^4 -16x^2 +32x-16}{9x^2-4x+4}\) \(=\frac{81x^4-(16x^2-32x+16)}{9x^2-4x+4}\)

\(=\frac{(9x^2)^2-(4x-4)^2}{9x^2-4x+4}\)

\(=\frac{(9x^2-(4x-4))(9x^2+4x-4)}{9x^2-4x+4}\)

\(=\frac{(9x^2+4x-4)(9x^2-4x+4)}{9x^2-4x+4}\)

\(=9x^2+4x-4\)

Correct option is D) 9x2 + 4x – 4

641.

Add : \(\frac{a}{3xy}+\frac{2b}{6yz}+\frac{3c}{15xz}\)

Answer»

The least common denominator (LCD) of the given expression is 30 xyz.

\(\frac{a}{3xy}+\frac{2b}{6yz}+\frac{3c}{15xz}\) = \(\frac{10az + 10bx+6cy}{30xyz}\)

\(\frac{5az+5bx+3cy}{15xyz}.\)

642.

Which of the following expressions is a polynomial ?A) 3x2 - 2√5x + 7B) \(\frac{x^3-2x+1}{2x+5}\)C) \(\frac{x^2-5x+6}{x-3}\)D) \(\frac{x^2-2x+1}{2x+7}\)

Answer»

Correct option is (C) \(\frac{x^2-5x+6}{x-3}\)

(A) \(3x^2-2\sqrt{5x}+7\) is not a polynomial because it consists term \(\sqrt x.\)

(B) \(\frac{x^3-2x+1}{2x+5}\) \(=\frac{(x-1)(x^2+x-1)}{2x+5}\) which is a rational expression not a polynomial.

(C) \(\frac{x^2-5x+6}{x-3}\) \(=\frac{(x-3)(x-2)}{x-3}\) = x - 2 which is a polynomial of degree 1.

(D) \(\frac{x^2-2x+1}{2x+7}\) \(=\frac{(x-1)^2}{2x+7}\) which is a rational expression not a polynomial.

Correct option is C) \(\frac{x^2-5x+6}{x-3}\)

643.

Write the polynomials in index form. i. (1, 2, 3) ii. (5, 0, 0, 0 ,-1) iii. (-2, 2, -2, 2)

Answer»

i. Number of coefficients = 3 

∴ Degree = 3 – 1 = 2 

∴ Taking x as variable, the index form is x2 + 2x + 3 

ii. Number of coefficients = 5 

∴ Degree = 5 – 1=4 

Taking x as variable, the index form is 5x4 + 0x3+ 0x2 + 0x – 1

iii. Number of coefficients = 4 

∴Degree = 4 – 1 = 3 

∴Taking x as variable, the index form is -2x3 + 2x2– 2x + 2

644.

Write an example of a monomial, a binomial and a trinomial having variable x and degree 5.

Answer»

Monomial: x5 

Binomial: x5 + x 

Trinomial: 2x5 – x2 + 5

645.

If P = \(\frac{1+2x}{1-2x}\) and Q = \(\frac{1-2x}{1+2x}\) then \(\frac{P-Q}{P+Q}\) = ..................A) \(-\frac{4x}{1+4x^2}\)B) \(\frac{1+4x^2}{4x}\)C) \(\frac{-(1+4x^2)}{4x}\)D) \(\frac{4x}{1+4x^2}\)

Answer»

Correct option is (D) \(\frac{4x}{1+4x^2}\)

We have P = \(\frac{1+2x}{1-2x}\) and Q = \(\frac{1-2x}{1+2x}\)

\(\therefore\) \(\frac{P-Q}{P+Q}\) \(=\cfrac{\frac{1+2x}{1-2x}-\frac{1-2x}{1+2x}}{\frac{1+2x}{1-2x}+\frac{1-2x}{1+2x}}\) \(=\cfrac{\frac{(1+2x)^2-(1-2x)^2}{(1-2x)(1+2x)}}{\frac{(1+2x)^2+(1-2x)^2}{(1-2x)(1+2x)}}\)

\(=\frac{(1+2x)^2-(1-2x)^2}{(1+2x)^2+(1-2x)^2}\) \(=\frac{(1+4x+4x^2)-(1-4x+4x^2)}{(1+4x+4x^2)+(1-4x+4x^2)}\)

\(=\frac{8x}{2(1+4x^2)}\) \(=\frac{4x}{1+4x^2}\)

Correct option is A) \(-\frac{4x}{1+4x^2}\)

646.

Write the appropriate polynomials in the boxes.

Answer»

i. Quadratic polynomial: x2 ; 2x2 + 5x + 10; 3x2+ 5x 

ii. Cubic polynomial: x3 + x2 + x + 5; x3 + 9 

iii. Linear polynomial: x + 7 

iv. Binomial: x + 7; x3 + 9; 3x2 + 5x

v. Trinomial: 2x2 + 5x + 10 

vi. Monomial: x2

647.

If the zeroes of the rational expression (ax + b) (3x + 2) are -2/3 and 1/2 then a + b = .............A) -1 B) 0 C) -b D) 1

Answer»

Correct option is (C) -b

\(\because\) \(\frac{1}{2}\) is a zero of expression (ax+b) (3x+2).

\(\therefore\) \((a\times\frac{1}{2}+b)\,(3\times\frac{1}{2}+2)=0\)

\(\Rightarrow\) \(\frac{a+2b}2\times\frac72=0\)

\(\Rightarrow\) a+2b = 0

\(\Rightarrow\) a+b+b = 0

\(\Rightarrow\) a+b = -b

Correct option is C) -b

648.

Find the value of the polynomial 5x – 4x2 + 3 at (i) x = 0 (ii) x = -1 (iii) x = 2

Answer»

(i) f(x) = 5x – 4x2 + 3 x = 0 then, 

f(0) = 5(0) – 4(0)2 + 3 

=0 – 0 + 3 

f(0) = 3 

(ii) f(x) = 5x – 4x2 + 3 

x = -1 then, f(-1) = 5(-1) – 4(-1)2 + 3 

= -5 – 4(+1) + 3 = -5 – 4 + 3 

= -9 + 3 f(-1) = -6 

(iii) f(x) = 5x – 4x2 + 3 

x = 2 then, 

f(2) = 5(2) – 4(2)2 + 3 

= 5(2) – 4(4) + 3 

= 10 – 16 + 3 

= 13 – 16 

f(2) = -3

649.

Find f(4),f(-5),f (3.2) if f (x) = 6.2x2 – 4x3 + 4.28 ……………… A) f(4) = -152.53, f(-5) = 659.28, f(3.2) = 63.304 B) f(4) = -152.52, f(-5) = -659.28, f(3.2) = 63.304 C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304 D) f(4) = -152.52, f(-5) = 659.27, f(3.2) = -63.304

Answer»

Correct option is (C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304

\(\because f(x)=6.2x^2-4x^3+4.28\)

\(f(4)=6.2\times4^2-4\times4^3+4.28\)

= 99.2 - 256 + 4.28

= 103.48 - 256.00

= -152.52

\(f(-5)=6.2\times(-5)^2-4(-5)^3+4.28\)

= 155 + 500 + 4.28

= 659.28

\(f(3.2)=6.2\times(3.2)^2-4(3.2)^3+4.28\)

= 63.488 - 131.072 + 4.28

= - 63.304

C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304

650.

Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2

Answer» (i) p(x)=4x-7
Now, p(x)=0
`implies 4x-7=0`
`implies x=(7)/(4)`
`therefore (7)/(4)` is zero of polynomial p(x).
(ii) p(x)=2x-2
Now, `p(x)=0 implies 2x-2=0`
`implies x=1`
`therefore x=1` is a zero of the polynomial.