

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
601. |
Use suitable identities to find the following products :(i) (x + 4) (x + 10) (ii) (x + 8) (x – 10) (iii) (3x + 4) (3x – 5) (iv) (y2 + \(\frac{3}{2}\))(y2 - \(\frac{3}{2}\))(v) (3 – 2x) (3 + 2x) |
Answer» (i) (x + 4) (x + 10) Suitable identity is (x + a) (x + b) = x2 + (a + b)x + ab (x + 4) (x + 10) = x2 + (4 + 10)x + (4 × 10) = x2 + 14x + 40 (ii) (x + 8) (x- 10) Suitable identity is (x + a) (x + b) = x2 + (a + b)x + ab (x + 8) (x – 10) = (x)2 + (8 – 10)x + (8 × -10) = x2 + (-2)x + (-80) = x2 – 2x – 80 (iii) (3x + 4) (3x – 5) Suitable identity is (x + a) (x + b) = x2 + (a + b)x + ab (3x + 4) (3x – 5) = (3x)2 + (+4 – 5)3x + (4 x -5) = 9x2 + (-1)3x + (-20) = 9x2 – 3x – 20 (iv) Suitable identity is (a + b) (a – b) = a2 – b2 (v) (3 – 2x) (3 + 2x) Suitable identity is (a + b) (a – b) = a2 – b2 (3 – 2x) (3 + 2x) = (3)2 – (2x)2 = 9 – 4x2 . |
|
602. |
Factorise : (i) x2 – 2x2 – x + 2 (ii) x2 – 3x2 – 9x – 5 (iii) x3 + 13x2 + 32x + 20 (iv) 2y3 + y2 – 2y – 1 |
Answer» (i) x3 – 2x2 – x + 2 = x2(x – 2) – 1 (x – 2) = (x – 2) (x2 – 1) = (x – 2) (x + 1) (x- 1) (ii) x3 – 3x2 – 9x – 5 = x3 – 5x2 + 2x2 – 10x + x – 5 = x2(x – 5) + 2x(x – 5) + 1 (x – 5) = (x – 5) (x2 + 2x + 1) = (x – 5) {x2 + x + x + 1} = (x – 5) (x(x + 1) + 1(x + 1)} = (x- 5)(x + 1) (x + 1) (iii) x3 + 13x2 + 32x + 20 = x3 + 10x2 + 3x2 + 30x + 2x + 26 = x2(x + 10) + 3x(x + 10) + 2(x + 10) = (x + 10) (x2 + 3x + 2) = (x + 10) {x2 + 2x + x + 2) = (x + 10) {x(x + 2) + 1 (x + 2)) = (x + 10) (x + 2) (x + 1) (iv) 2y3 + y2 – 2y – 1 = y2(2y + 1) – 1(2y + 1) = (2y + 1) (y2– 1) = (2y + 1) {(y)2 – (1)2} = (2y+ 1) (y + 1) (y- 1) |
|
603. |
Factorise `(2x+3y)^(2)+14(2x+3y)(3x-y)-32(3x-y)^(2)`. |
Answer» Let 2x+3y=a and 3x-y=b `therefore` Given expression : `(2x+3y)^(2)+14(2x+3y)(3x-y)-32(3x-y)^(2)` `=a^(2)+14ab-32b^(2)=a^(2)+(16-2)ab-32b^(2)` `=a^(2)+16ab-2ab-32b^(2)=a(A+16b)-2b(a+16b)` =(a+16b)(a-2b) =[(2x+3y)+16(3x-y)][(2x+3y)-2(3x-y)] =(2x+3y+48x-16y)(2x+3y-6x+22y) =(50x-13y)(-4x+5y)=(50x-13y)(5y-4x) |
|
604. |
Factorise `99x^(2)-202xy+99y^(2)`. |
Answer» Here, a=99, b=-202, c=99 `therefore " " axx c=99xx99` Now, we take two factors of `99xx99` whose sum is -202. Let two such factors are m and n. `therefore " " m+n=-202` and `mn=99xx99` V know that `(m-n)^(2)=(m+n)^(2)-4mn` `=(-202)^(2)-4xx99xx99=40804-39204=1600` `implies m-n=40` Adding equations (1) and (2) 2m=-162 `implies m=-81` Put this value in equation (1) `-81+n=-202` `implies n=-121` The two factors of `99xx99` are -121 and -81. Now, `99x^(2)-202xy+99y^(2)=99x^(2)+(-121-81)-xy+99y^(2)=99x^(2)-121 xy-81xy+99y^(2)` `=11x(9x-11y)-9y(9x-11y)(11x-9y)` |
|
605. |
In rectangles with one side 1 centimetre shorter than the other, take the length of the shorter side as x centimetres.i. Taking their perimeters as p(x) centimetres, write the relation between p(x) and x as an equation,ii. Taking their areas as a(x) square centimetres, write the relation between a(x) and x as an equation.iii. Calculate p(1), p(2), p(3), p(4), p(5). Do you see any pattern?iv. Calculate a(1), a(2), a(3), a(4), a(5). Do you see any pattern? |
Answer» Let x be the shorter side, then the other side will be (x + 1). i. Perimeter = 2[x + (x + 1)] = 2(2x + 1) = 4x + 2 That is, p(x) = 4x + 2 ii. Area = x(x + 1) a(x) = x2 + x Area, a(x) = x2 + x iii. p(x) = 4x + 2 p(1) = 4 × 1 + 2 = 6 p(2) = 4 × 2 + 2 = 10 p(3) = 4 × 3 + 2= 14 p(4) = 4 × 4 + 2= 18 p(5) = 4 × 5 + 2 = 22 Perimeter is a sequence increasing by 4. iv. a(x) = x2 + x a(1) = 12 + 1 = 2 = 1 × 2 = 2 a(2) = 22 + 2 = 6 = 2 × 3 = 6 a(3) = 32 + 3 = 12 = 3 × 4 = 12 a(4) = 42 + 4 = 20 = 4 × 5 = 20 a(5) = 52 + 5 = 30 = 5 × 6 = 30 Area is the product of x and the number one more than x. |
|
606. |
Consider all rectangles that can be made with a 1-metre long rope. Take one of its sides as x centimetres and the area enclosed as a(x) square centimetres.i. Write the relation between a(x) and x as an equation.ii. Why are the numbers a(10) and a(40) equal?iii. To get the same number as a(x), for two different numbers as x, what must be the relation between the numbers? |
Answer» i. 1 m = 100 cm If one side is x cm, then the other side is 50 – x. Area of rectangle = a(x) = x(50 – x) = 50x – x2 cm2 a(x) = 50x – x2 ii. a(10) = 50 × 10 – 102 = 500 – 100 = 400 a(40) = 50 × 40 – 402 = 2000 – 1600 = 400 10 and 40 are the sides of rectangle, so a(10) and a(40) are same . iii. Numbers must be sides of rectangle. If we add the two numbers together we get the sum as half the length of the wire (50 cm) used to make it. |
|
607. |
If a + b + c = 0, then prove that a3 + b3 + c3 = 3abc. |
Answer» Given a + b + c = 0 ⇒ a + b = -c ……………..(1) Cubing on both sides (a + b)3 = (-c)3 a3 + b3 + 3ab (a + b) = -c3 a3 + b3 + 3ab (-c) =-c3 From(l) a3 + b3 – 3abc = -c3 a3 + b3 + c3 – 3abc |
|
608. |
If a+b+c=5 and ab+bc+ca=10, then prove that `a^(3)+b^(3)+c^(3)-3abc=-25`. |
Answer» We know that, `a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)` `=(a+b+c)[a^(2)+b^(2)+c^(2)-(ab+bc+ca)]` `=5{a^(2)+b^(2)+c^(2)-(ab+bc+ca)}=5(a^(2)+b^(2)+c^(2)-10)` Now, a+b+c=5 Squaring both sides, we get `(a+b+c)^(2)=5^(2)` `implies a^(2)+b^(2)+c^(2)+2(ab+bc+ca)=25` `therefore a^(2)+b^(2)+c^(2)+2(10)=25` `implies a^(2)+b^(2)+c^(2)=25-20=5` Now, `a^(3)+b^(3)+c^(3)-3abc-5(a^(2)+b^(2)+c^(2)-10)` =5(5-10)=5(-5)=-25 |
|
609. |
Prove that `(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)`. |
Answer» `(a+b+c)^(3)-a^(3)-b^(3)-c^(3)` `=(a+b+c)^(3)-(c )^(3)-(a^(3)+b^(3))` `=(a+b+c-c)[(a+b+c)^(2)+c(a+b+c)+(c )^(2)]-(a^(3)+b^(3))` `=(a+b)[a^(2)+b^(2)+c^(2)+2ab+2bc+2ca+ac+bc+c^(2)+c^(2)]-(a+b)(a^(2)-ab+b^(2))` `=(a+b)[a^(2)+b^(2)+c^(2)+2ab+3bc+3bc+3ca+c^(2)+c^(2)-a^(2)+ab-b^(2)]` `=(a+b)[3ab+3bc+3ca+3c^(2)]=3(a+b)[ab+bc+ca+c^(2)]` `=3(a+b)[b(a+c)+c(a+c)]=3(a+b)(a+c)(b+c)` =3(a+b)(b+c)(c+a) |
|
610. |
If one of the zeroes of the quadratic polynomial (k–1) x2 + k x + 1 is –3, then the value of k is (A) 4/3 (B) -4/3 (C) 2/3 (D) -2/3 |
Answer» (A) 4/3 Explanation: According to the question, -3 is one of the zeros of quadratic polynomial (k-1)x2+kx+1 Substituting -3 in the given polynomial, (k-1)(-3)2+k(-3)+1=0 (k-1)9+k(-3)+1 = 0 9k-9-3k+1=0 6k-8=0 k=8/6 Therefore, k = 4/3 Hence, option (A) is the correct answer. |
|
611. |
Find the value of a, if x – a is a factor of x3 – ax2 + 2x + a – 1. |
Answer» Let p(x) = x3 – ax2 + 2x + a – 1 Since x – a is a factor of p(x), so p(a) = 0. i.e., a3 – a(a)2 + 2a + a – 1 = 0 a3 – a3 + 2a + a – 1 = 0 3a = 1 Therefore, a = 1/3 |
|
612. |
without actually calculating , the cubes , find the valuse of (i) `((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)`(ii) `(0.2)^(3)-(0.3)^(3)+(0.1)^(3)` |
Answer» given , `((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)or ((1)/(2))^(3)+((1)/(3))^(3)+(-(5)/(6))^(3)` here , we see that , `(1)/(2) +(1)/(3)-(5)/(6)=(3+2-5)/(6)=(5-5)/(6)=0` `therefore ((1)/(2))^(3)+((1)/(3))^(3)-((5)/(6))^(3)=3xx(1)/(2)xx(1)/(3)xx(-(5)/(6))=-(5)/(12)` [using identity , if a+b+c=0 then `a^(3)+b^(3)+c^(3)`= 3abc] (ii) given `(0.2)^(3)-(0.3)^(3)+(0.1)^(3)or (0.2)^(3)+(-0.3)^(3)+(0.1^(3)` here , we see that , `0.2-0.3+0(.1)^(3)=3xx(0.2)xx(0.3)xx(0.1)` [using identity if `a+b+c =0` then `a^(3)+b^(3)+c^(3)=3abc`] `=-0.6xx0.03=-0.018` |
|
613. |
What should be subtracted from \((\frac{2x^2+2x-7}{x^2+x-6})\) to get \((\frac{x-1}{x+2})\)A) \(\frac{x-2}{x-3}\)B) \(\frac{x^2+6x-11}{x^2+x-6}\)C) \(\frac{x+2}{x-3}\)D) \(\frac{x-2}{x+3}\) |
Answer» Correct option is (B) \(\frac{x^2+6x-11}{x^2+x-6}\) Let p(x) should be subtracted from \(\left(\frac{2x^2+2x-7}{x^2+x-6}\right)\) to get \(\left(\frac{x-2}{x+3}\right)\) i.e., \(\frac{2x^2+2x-7}{x^2+x-6}-p(x)\) \(=\frac{x-2}{x+3}\) \(\Rightarrow\) \(p(x)=\frac{2x^2+2x-7}{x^2+x-6}\) \(-\frac{x-2}{x+3}\) \(=\frac{2x^2+2x-7-(x-2)^2}{(x+3)(x-2)}\) \(=\frac{2x^2+2x-7-x^2+4x-4}{(x-2)(x+3)}\) \(=\frac{x^2+6x-11}{x^2+x-6}\) Correct option is B) \(\frac{x^2+6x-11}{x^2+x-6}\) |
|
614. |
The expression 1/(1 - x) - 1/(1 + x) - x3/(1 - x) + x2/(1 + x) in lowest term is ……………A) x2 + 2x B) x2 – 2x C) x2+ 2 D) 2x + 1 |
Answer» Correct option is (A) x2 + 2x \(\frac{1}{1-x}-\frac{1}{1+x}-\frac{x^3}{1-x}+\frac{x^2}{1+x}\) \(=\frac{1-x^3}{1-x}+\frac{x^2-1}{1+x}\) \(=\frac{(1-x)(1+x+x^2)}{1-x}+\frac{(1+x)(x-1)}{1+x}\) \(=1+x+x^2+x-1\) \(=2x+x^2\) Correct option is A) x2 + 2x |
|
615. |
Without actually calculating the cubes, find the value of each of the following:(-12)3 + (7)3 + (5)3 |
Answer» (-12)3 + (7)3 + (5)3 Let x = −12, y = 7, and z = 5 It can be observed that, x + y + z = − 12 + 7 + 5 = 0 It is known that if x + y + z = 0, then x3 + y3 +z3 (-12)3 + (7)3 + (5)3 = 3(-12)(7)(5) = -1260 |
|
616. |
The lowest form of rational expression x2-4/xy+2y is ………………A) (x - 2)/yB) (x + 1)/yC) (x + 1)/xyD) (x - 2)/y |
Answer» Correct option is (D) (x - 2)/y \(\frac{x^2-4}{xy+2y}\) \(=\frac{(x-2)(x+2)}{y\,(x+2)}\) \(=\frac{x-2}{y}\) Correct option is D) (x - 2)/y |
|
617. |
Without finding the cubes, factorise (x – y)3 + (y – z) 3 + (z – x) 3. |
Answer» We know that x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx). If x + y + z = 0, then x3 + y3 + z3 – 3xyz = 0 or x3 + y3 + z3 = 3xyz. Here, (x – y) + (y – z) + (z – x) = 0 Therefore, (x – y)3 + (y – z)3 + (z – x)3 = 3(x – y) (y – z) (z – x). |
|
618. |
If `(x+2)` is a common factor of `(px^2+qx+r)` and `(qx^2+px+r)` thena) ` p=q` or `p+q+r=0`b)`p=r` or `p+q+r=0`c) `q=r` or `p+q+r=0`d)`p=q=-1/2r` |
Answer» `f(-2)=0` `P(-2)^2+q(-2)+r=0` `4p-2q+r=0-(1)` `g(-2)=0` `q(-2)^2+p(-2)+r=0` `4q-2p+r=0-(2)` from equation 1 and 2 `2q-4p=2p-4q` `2q+4q=2p+4p` `6q=6p` `q=p` `4p-2q+r=0` `4q-2q+r=0` `2q+r=0` `2q=-r` `P=q=-1/2r`. |
|
619. |
Simplify:`1/sqrt[11-2sqrt30]`-`3/sqrt[7-2sqrt10]`-`4/sqrt[8+4sqrt3]` |
Answer» `1/sqrt(11-2sqrt30) = 1/sqrt(11-2sqrt30)xxsqrt(11+2sqrt30)/sqrt(11+2sqrt30)` `=sqrt(11+2sqrt30)/(121-120) = sqrt(11+2sqrt30)` `3/(sqrt(7-2sqrt10)) = 3/sqrt(7-2sqrt10)xxsqrt(7+2sqrt10)/(sqrt(7+2sqrt10)` `=(3sqrt(7+2sqrt10))/(49-40) = sqrt(7+2sqrt10)` `4/sqrt(8+4sqrt3) = 4/sqrt(8+4sqrt3)xxsqrt(8-4sqrt3)/sqrt(8-4sqrt3)` `=(4sqrt(8-4sqrt3))/(64-48) = sqrt(8-4sqrt3)= sqrt(8-2sqrt12)` `:. 1/sqrt(11-2sqrt30) - 3/(sqrt(7-2sqrt10)) - 4/sqrt(8+4sqrt3) =sqrt(11+2sqrt30) - sqrt(7+2sqrt10)-sqrt(8-2sqrt12)` `=sqrt(sqrt6^2+sqrt5^2+2sqrt6sqrt5)-sqrt(sqrt5^2+sqrt2^2+2sqrt2sqrt5)-sqrt(sqrt6^2+sqrt2^2-2sqrt6sqrt2` `=sqrt((sqrt6+sqrt5)^2)-sqrt((sqrt5+sqrt2)^2)-((sqrt6-sqrt2)^2)` `=sqrt6+sqrt5-sqrt5-sqrt2-sqrt6+sqrt2 = 0` |
|
620. |
write the coefficient of `x^(2)` in each of the following (i) `(pi)/(6)x+x^(2)-1` (ii) 3x-5 (iii) `(x-1)(3x-4)` (iv) `(2x-5)(2x^(2)-3x+1)` |
Answer» (i) the coefficient of `x^(2) "in " (pi)/(6) x+x^(2)-1 "is" 0.` (ii) the coeficient of `x^(2) ` in `3x-5 "is "0.` (iii) Let `p(x)=(x-1)(3x-4)` `=3x^(2)-7x+4` `=3x^(2)-4x-3x+4` hence , the coefficient of `x^(2)` in p(x) is 3. (iv) Let p(X) `=(2x-5)(2x^(2)-3x+1)` `=x(2x^(2)-3x+1)-5(2x^(2)-3x+1)` `=4x^(3)-6x^(2)+2x-10x^(2)+15x-5` `=4x^(3) -16x^(2) +17x-5` Hence , the coefficient of `x^(2)` in p(x) is -16. |
|
621. |
HCF of \(x^3 - 1\) and \(x^4 + x^2 + 1\) will be(a) (x – 1) (b) x2 + x + 1(c) x2 - x + 1 (d) x2 - x - 1 |
Answer» (b) x2 + x + 1 \(x^3 - 1 = (x - 1)(x^2 + x +1)\) \(x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 = (x^2 + 1) - x^2\) = \((x^2+1-x)(x^2+1+x)\) ∴ Reqd. HCF = x2 + x + 1 |
|
622. |
If roots of quadratic equation (b – c)x2 + (c – a)x + (a – b) = 0 are real and equal, then prove that 2b = a + c |
Answer» Given equation is (b – c)x2 + (c – a)x + (a – b) = 0 Comparing it by general quadratic equation, a = (b – c), b = (c – a) and c = (a – b) Discriminant (D) = b2 – 4ac = (c – a)2 – 4(b – c)(a – b) = (c2 + a2 – 2ac) – 4(ab – ac – b2 + bc) = c2 + a2 – 2ac – 4ab + 4ac + 4b2 – 4bc = c2 + a2 + 2ac – 4ab – 4bc + 4b2 = (a + c)2 – 4 b(a + c) + 4b2 = (a + c)2 – 2 × (a + c) × 2b + (2b)2 = [(a + c) – 2b]2 Roots of equation are real and equal. D = 0 ⇒ [(a + c) – 2b]2 = 0 ⇒ (a + c) – 2b = 0 ⇒ a + c = 2b |
|
623. |
What is HCF of 8x2y2 , 12x3y2 and 24x4y3 z2? |
Answer» 8\(x\)2y2 = 2 x 2 x2 x \(x\) x \(x\) x y x y 12\(x\)3y2 = 2 x 2 x 3 x \(x\) x \(x\) x \(x\) x y x y 24\(x\)4y3 z2 = 2 x 2 x 2 x 3 x \(x\) x \(x\) x \(x\) x \(x\) x y x y x y x z x z. HCF of 8x2y2 , 12x3y2 and 24x4y3 z2 = 2 x 2 x \(x\) x \(x\) x y x y = 4x2y2. |
|
624. |
Evaluate : `(i) (98)^(3) " " (ii) (598)^(3) " " (iii) (1003)^(3)` |
Answer» Correct Answer - (i) 941192 (ii) 213847192 (iii) 1009027027 |
|
625. |
Find the HCF of x2 – 5x + 6 and x2 – 9. |
Answer» \(x\)2 - 5\(x\) + 6 = \(x\)2 - 2\(x\) - 3\(x\) + 6 = \(x\) (\(x\) –2) – 3 (\(x\) – 2) = (\(x\) –2) (\(x\) –3) x2 – 9 = (\(x\) –3) (\(x\) + 3) ∴ HCF of (\(x\)2 – 5\(x\) + 6) and (\(x\)2 – 9) = \(x\) – 3 |
|
626. |
If ax2 + 2a2 x + b3 is divisible by (x + a) then …………A) a2 + ab + b2 = 0 B) a = bC) either a = b or a2 + ab + b2 = 0 D) neither a = b nor a2 + ab + b2 = 0 |
Answer» Correct option is (C) either a = b or a2 + ab + b2 = 0 Given that \(ax^2 + 2a^2 x + b^3\) is divisible by (x+a). i.e., x = -a is a zero of \(ax^2 + 2a^2 x + b^3\) \(\therefore\) \(a(-a)^2+2a^2\times-a+b^3=0\) \(\Rightarrow\) \(a^3-2a^3+b^3=0\) \(\Rightarrow\) \(b^3-a^3=0\) \(\Rightarrow\) \((b-a)(b^2+ab+a^2)=0\) \(\Rightarrow\) Either b - a = 0 or \(b^2+ab+a^2=0\) \(\Rightarrow\) Either b = a or \(a^2 + ab + b^2 = 0\) Correct option is C) either a = b or a2 + ab + b2 = 0 |
|
627. |
If the zeroes of the rational expression (3x + 2a) (2x + 1) are -1/2 and b/c then the value of a is ………………A) -b/3B) -b/2C) -2b/3D) 2b/3 |
Answer» Correct option is (B) -b/2 \(\frac{b}{3}\) is a zero of expression (3x+2a) (2x+1) \(\therefore(3\times\frac b3+2a)(\frac{2b}3+1)=0\) \(\Rightarrow\) (b+2a) \(=\frac0{\frac{2b}3+1}=0\) \(\Rightarrow\) 2a = -b \(\Rightarrow\) a = \(\frac{-b}2\) Correct option is B) -b/2 |
|
628. |
Simplify the expression \(\frac{6p^2-150}{p^2-3x-40}\) |
Answer» \(\frac{6p^2-150}{p^2-3x-40}\) = \(\frac{6(p^2-25)}{p^2-8x+5x-40}\) = \(\frac{6(p-5)(p+5)}{p(p-8)+5(p-8)}\) = \(\frac{6(p-5)(p+5)}{(p-8)(p+8)}\) = \(\frac{6(p-5)}{p-8}.\) |
|
629. |
If the HCF of x3 – 343 and x2 – 9x + 14 and (x – 7), then find their LCM. |
Answer» x3 - 343 = x3 - (7)3 = (x - 7)(x2 + 7x + 49) x2 - 9x + 14 = x2 - 2x -7x + 14 = x(x - 2) - 7(x - 2) = (x - 7)(x - 2) HCF of the polynomials = (x – 7) ∴ Reqd. LCM = \(\frac{(x^3 -343)\times(x^2-9x+14)}{HCF}\) = \(\frac{(x-7)(x^2+7x+49)\times(x-7)(x-2)}{(x-7)}\) = (x - 7)(x - 2) x (x2 + 7x + 49) |
|
630. |
Find the LCM of 3y +12, y2 –16 and y4–64y. |
Answer» 3y + 12 = 3 (y + 4) y2 – 16 = (y +4) (y – 4) y4 - 64y = y(y3 - 64) - y(y - 4)(y2 + 4y + 16) ∴ LCM of given polynomials = 3y ( y – 4) ( y + 4) (y2 + 4y + 16) |
|
631. |
Expand : `(i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)^(3)`. |
Answer» Correct Answer - `(i) 8x^(3)+27y^(3)+36x^(2)y+54xy^(2) " " (ii) 125y^(3)-225y^(2)x+135yx^(2)-27x^(3) " " (iii) 8a^(3)+27b^(@)b+54ab^(2)` |
|
632. |
If (x – 1) and (x + 3) are the factors of x3 + 3x2 – x – 3 then the other factor is …………A) x + 1 B) x – 3 C) x + 2 D) x – 1 |
Answer» Correct option is (A) x + 1 x = 1 & x = -3 are zeros of polynomial \(x^3 + 3x^2 – x – 3 .\) Let the other zero be x. \(\therefore\) Sum of zeros \(=\frac{\text{-coefficient of }x^2}{\text{coefficient of }x^3}\) \(=\frac{-3}1\) = -3 \(\therefore\) 1 + (-3) + \(\alpha\) = -3 \(\Rightarrow\) \(\alpha\) = -1 \(\therefore\) x = -1 is another zero of polynomial \(x^3 + 3x^2 – x – 3 .\) \(\Rightarrow\) (x+1) is a other factor of polynomial \((x^3+3x^2-x-3).\) Correct option is A) x + 1 |
|
633. |
A rational expression whose numerator is a quadratic polynomial with zeroes, 1 and 2 and whose denominator is monomial with zero 3 is ...................A) \(\frac{x^2+x-2}{x+3}\)B) \(\frac{x^2-x-2}{x+3}\)C) \(\frac{x^2+x-2}{x-3}\)D) \(\frac{x^2-3x+2}{x-3}\) |
Answer» Correct option is (D) \(\frac{x^2-3x+2}{x-3}\) Quadratic polynomial whose zeros are 1 and 2 is (x - 1) (x - 2) \(=x^2-3x+2\) Monomial with zero 3 is (x-3). \(\therefore\) Required rational expression \(=\frac{x^2-3x+2}{x-3}\) Correct option is D) \(\frac{x^2-3x+2}{x-3}\) |
|
634. |
Factors of 81x4 – 25 areA) (9x2 + 5)2 B) (9x2 – 5)2 C) (9x2 + 5) (9x2 – 5) D) None |
Answer» Correct option is (C) (9x2 + 5) (9x2 – 5) \(81x^4-25=(9x^2)^2-5^2\) = \((9x^2+5)\) \((9x^2-5)\) C) (9x2 + 5) (9x2 – 5) |
|
635. |
The product of x3 + 2x2 – 3x + 4 and 2x2 – 5x + 1 is ………………… A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4B) 2x5 – x4 – 15x3 + 25x2 – 23x – 4C) 2x5 – x4 – 15x3 – 25x2 – 23x – 4D) 2x5 – x4 – 15x3 – 23x – 4 |
Answer» Correct option is (A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4 \((x^3 + 2x^2 – 3x + 4)\) \((2x^2 – 5x + 1)\) \(=2x^5+4x^4-6x^3+8x^2-5x^4-10x^3\) \(+15x^2-20x+x^3+2x^2-3x+4\) \(=2x^5-x^4-15x^3+25x^2-23x+4\) Correct option is A) 2x5 – x4 – 15x3 + 25x2 – 23x + 4 |
|
636. |
The product of x2 - 4/3-x and additive inverse of x2 - 9/2 + x is ………………A) x2 + x – 6 B) x2 – x – 6C) x2 – 5x + 6 D) x2 + 5x + 6 |
Answer» Correct option is (A) x2 + x – 6 Additive inverse of \(\frac{x^2-9}{2+x}\) is \(\frac{9-x^2}{2+x}.\) \(\therefore\) Product \(=(\frac{x^2-4}{3-x})(\frac{9-x^2}{2+x})\) \(=\frac{(x-2)(x+2)(3-x)(3+x)}{(3-x)(2+x)}\) = (x-2) (x+3) \(=x^2-2x+3x-6\) \(=x^2+x-6\) Correct option is A) x2 + x – 6 |
|
637. |
The HCF of two expressions is x and their LCM is x3 – 9x. If one of the expressions is x2 + 3x, then find the other expression. |
Answer» HCF = x, LCM = x3 - 9x = x(x2 - 9) = x(x + 3)(x - 3) Given expression = x2 + 3x = x(x + 3) ∴ Other expression = \(\frac{\text{HCF X LCM}}{\text{Given expression}}\) = \(\frac{x\times{x}\times(x+3)\times(x-3)}{x\times(x+3)}\) = x(x - 3) = x2 - 3x |
|
638. |
The additive inverse of 3x – 4 + x/(2x - 1) is...........A) -3x + 4 + x/(2x - 1)B) -3x + 4 – x/(1 - 2x)C) -3x + 4 – x/(2x - 1)D) -3x + 4 – x/(2x + 1) |
Answer» Correct option is (C) \(-3x + 4 - \frac{x}{2x-1}\) The additive inverse of 3x - 4 + \(\frac{x}{2x-1}\) is \(-3x + 4 - \frac{x}{2x-1}.\) \((\because\) Additive inverse of p(x) is -p(x)) Correct option is C) -3x + 4 - x/2x - 1 |
|
639. |
Simplify \(\cfrac{3x+2}{x^2-16}\) + \(\cfrac{x-5}{(x+y)^2}\)A) \(\cfrac{4x^2+5x+28}{x^3+4x^2+16x-64}\)B) \(\cfrac{4x^2+5x+28}{x^3-4x^2-16x-64}\)C) \(\cfrac{4x^2+5x-28}{x^3-4x^2-16x-64}\)D) \(\cfrac{4x^2+5x+28}{x^3+4x^2-16x-64}\) |
Answer» Correct option is D) \(\cfrac{4x^2+5x+28}{x^3+4x^2-16x-64}\) |
|
640. |
Simplify \(\frac{81x^4-16x^2+32x-16}{9x^2-4x+4}\)A) 9x2 – 2x – 8 B) 9x2 + 2x – 8 C) 9x2 – 4x – 4 D) 9x2 + 4x – 4 |
Answer» Correct option is (D) 9x2 + 4x – 4 \(\frac{81x^4 -16x^2 +32x-16}{9x^2-4x+4}\) \(=\frac{81x^4-(16x^2-32x+16)}{9x^2-4x+4}\) \(=\frac{(9x^2)^2-(4x-4)^2}{9x^2-4x+4}\) \(=\frac{(9x^2-(4x-4))(9x^2+4x-4)}{9x^2-4x+4}\) \(=\frac{(9x^2+4x-4)(9x^2-4x+4)}{9x^2-4x+4}\) \(=9x^2+4x-4\) Correct option is D) 9x2 + 4x – 4 |
|
641. |
Add : \(\frac{a}{3xy}+\frac{2b}{6yz}+\frac{3c}{15xz}\) |
Answer» The least common denominator (LCD) of the given expression is 30 xyz. \(\frac{a}{3xy}+\frac{2b}{6yz}+\frac{3c}{15xz}\) = \(\frac{10az + 10bx+6cy}{30xyz}\) = \(\frac{5az+5bx+3cy}{15xyz}.\) |
|
642. |
Which of the following expressions is a polynomial ?A) 3x2 - 2√5x + 7B) \(\frac{x^3-2x+1}{2x+5}\)C) \(\frac{x^2-5x+6}{x-3}\)D) \(\frac{x^2-2x+1}{2x+7}\) |
Answer» Correct option is (C) \(\frac{x^2-5x+6}{x-3}\) (A) \(3x^2-2\sqrt{5x}+7\) is not a polynomial because it consists term \(\sqrt x.\) (B) \(\frac{x^3-2x+1}{2x+5}\) \(=\frac{(x-1)(x^2+x-1)}{2x+5}\) which is a rational expression not a polynomial. (C) \(\frac{x^2-5x+6}{x-3}\) \(=\frac{(x-3)(x-2)}{x-3}\) = x - 2 which is a polynomial of degree 1. (D) \(\frac{x^2-2x+1}{2x+7}\) \(=\frac{(x-1)^2}{2x+7}\) which is a rational expression not a polynomial. Correct option is C) \(\frac{x^2-5x+6}{x-3}\) |
|
643. |
Write the polynomials in index form. i. (1, 2, 3) ii. (5, 0, 0, 0 ,-1) iii. (-2, 2, -2, 2) |
Answer» i. Number of coefficients = 3 ∴ Degree = 3 – 1 = 2 ∴ Taking x as variable, the index form is x2 + 2x + 3 ii. Number of coefficients = 5 ∴ Degree = 5 – 1=4 ∴ Taking x as variable, the index form is 5x4 + 0x3+ 0x2 + 0x – 1 iii. Number of coefficients = 4 ∴Degree = 4 – 1 = 3 ∴Taking x as variable, the index form is -2x3 + 2x2– 2x + 2 |
|
644. |
Write an example of a monomial, a binomial and a trinomial having variable x and degree 5. |
Answer» Monomial: x5 Binomial: x5 + x Trinomial: 2x5 – x2 + 5 |
|
645. |
If P = \(\frac{1+2x}{1-2x}\) and Q = \(\frac{1-2x}{1+2x}\) then \(\frac{P-Q}{P+Q}\) = ..................A) \(-\frac{4x}{1+4x^2}\)B) \(\frac{1+4x^2}{4x}\)C) \(\frac{-(1+4x^2)}{4x}\)D) \(\frac{4x}{1+4x^2}\) |
Answer» Correct option is (D) \(\frac{4x}{1+4x^2}\) We have P = \(\frac{1+2x}{1-2x}\) and Q = \(\frac{1-2x}{1+2x}\) \(\therefore\) \(\frac{P-Q}{P+Q}\) \(=\cfrac{\frac{1+2x}{1-2x}-\frac{1-2x}{1+2x}}{\frac{1+2x}{1-2x}+\frac{1-2x}{1+2x}}\) \(=\cfrac{\frac{(1+2x)^2-(1-2x)^2}{(1-2x)(1+2x)}}{\frac{(1+2x)^2+(1-2x)^2}{(1-2x)(1+2x)}}\) \(=\frac{(1+2x)^2-(1-2x)^2}{(1+2x)^2+(1-2x)^2}\) \(=\frac{(1+4x+4x^2)-(1-4x+4x^2)}{(1+4x+4x^2)+(1-4x+4x^2)}\) \(=\frac{8x}{2(1+4x^2)}\) \(=\frac{4x}{1+4x^2}\) Correct option is A) \(-\frac{4x}{1+4x^2}\) |
|
646. |
Write the appropriate polynomials in the boxes. |
Answer» i. Quadratic polynomial: x2 ; 2x2 + 5x + 10; 3x2+ 5x ii. Cubic polynomial: x3 + x2 + x + 5; x3 + 9 iii. Linear polynomial: x + 7 iv. Binomial: x + 7; x3 + 9; 3x2 + 5x v. Trinomial: 2x2 + 5x + 10 vi. Monomial: x2 |
|
647. |
If the zeroes of the rational expression (ax + b) (3x + 2) are -2/3 and 1/2 then a + b = .............A) -1 B) 0 C) -b D) 1 |
Answer» Correct option is (C) -b \(\because\) \(\frac{1}{2}\) is a zero of expression (ax+b) (3x+2). \(\therefore\) \((a\times\frac{1}{2}+b)\,(3\times\frac{1}{2}+2)=0\) \(\Rightarrow\) \(\frac{a+2b}2\times\frac72=0\) \(\Rightarrow\) a+2b = 0 \(\Rightarrow\) a+b+b = 0 \(\Rightarrow\) a+b = -b Correct option is C) -b |
|
648. |
Find the value of the polynomial 5x – 4x2 + 3 at (i) x = 0 (ii) x = -1 (iii) x = 2 |
Answer» (i) f(x) = 5x – 4x2 + 3 x = 0 then, f(0) = 5(0) – 4(0)2 + 3 =0 – 0 + 3 f(0) = 3 (ii) f(x) = 5x – 4x2 + 3 x = -1 then, f(-1) = 5(-1) – 4(-1)2 + 3 = -5 – 4(+1) + 3 = -5 – 4 + 3 = -9 + 3 f(-1) = -6 (iii) f(x) = 5x – 4x2 + 3 x = 2 then, f(2) = 5(2) – 4(2)2 + 3 = 5(2) – 4(4) + 3 = 10 – 16 + 3 = 13 – 16 f(2) = -3 |
|
649. |
Find f(4),f(-5),f (3.2) if f (x) = 6.2x2 – 4x3 + 4.28 ……………… A) f(4) = -152.53, f(-5) = 659.28, f(3.2) = 63.304 B) f(4) = -152.52, f(-5) = -659.28, f(3.2) = 63.304 C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304 D) f(4) = -152.52, f(-5) = 659.27, f(3.2) = -63.304 |
Answer» Correct option is (C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304 \(\because f(x)=6.2x^2-4x^3+4.28\) \(f(4)=6.2\times4^2-4\times4^3+4.28\) = 99.2 - 256 + 4.28 = 103.48 - 256.00 = -152.52 \(f(-5)=6.2\times(-5)^2-4(-5)^3+4.28\) = 155 + 500 + 4.28 = 659.28 \(f(3.2)=6.2\times(3.2)^2-4(3.2)^3+4.28\) = 63.488 - 131.072 + 4.28 = - 63.304 C) f(4) = -152.52, f(-5) = 659.28, f(3.2) = -63.304 |
|
650. |
Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2 |
Answer» (i) p(x)=4x-7 Now, p(x)=0 `implies 4x-7=0` `implies x=(7)/(4)` `therefore (7)/(4)` is zero of polynomial p(x). (ii) p(x)=2x-2 Now, `p(x)=0 implies 2x-2=0` `implies x=1` `therefore x=1` is a zero of the polynomial. |
|