Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

Determine which of the following polynomial has x-2 a factor (i) `3x^(2)+6x-24` (ii) `4x^(2)+x-2`

Answer» (i) let `p(X) =3x^(2)+6x-24`
On putting x=2 in Eq (i) We get
`p(2)=3(2)^(2)+6(2)-24`
`=3xx4+12-24=12-12=0`
hence ,x-2 is a factor of p(x) .
(ii) Let p(x) `=4x^(2)+x-2`
On putting x=2 in Eq (i) we get
`p(2)=2(2)^(2)+2-2=4xx4+0`
`16=16ne 0`
hence ,x-2 is not a factor of p(x).
702.

Determine which of the following polynomial has x – 2 a factor (i) 3x2 + 6x – 24 (ii) 4x2+ x – 2

Answer»

(i) According to the question,

Let p(x) =3x2 + 6x−24 and g(x) = x – 2

g(x) = x – 2

zero of g(x) ⇒ g(x) = 0

x – 2 = 0

x = 2

Therefore, zero of g(x) = 2

So, substituting the value of x in p(x), we get,

p(2) = 3(2)2 + 6 (2) – 24

= 12 + 12 – 24

= 0

Since, the remainder = zero,

We can say that,

g(x) = x – 2 is factor of p(x) = 3x2 + 6x−24

(ii) According to the question,

Let p(x) = 4x2 + x − 2 and g(x) = x – 2

g(x) = x – 2

zero of g(x) ⇒ g(x) = 0

x – 2 = 0

x = 2

Therefore, zero of g(x) = 2

So, substituting the value of x in p(x), we get,

p(2) = 4(2)2 + 2−2

= 16 ≠ 0

Since, the remainder = zero,

We can say that,

g(x) = x – 2 is factor of p(x) = 4x2 + x −2

703.

The value of a for which `x^3-7x+5` is a factor of `x^5-2x^4-4x^3+19x^2-31x+21+a`

Answer» Here, `f(x) = x^5-2x^4-4x^3+19x^2-31x+21+a`
`g(x) = x^3-7x+5`
For `g(x)` to be a factor of `f(x)`, `f(x)` should be completely divisible by `0`.
`:.` Remainder of `f(x)/g(x)` should be `0`.
If we divide `f(x)` by `g(x)`, we get,
`x^5-2x^4-4x^3+19x^2-31x+21+a = (x^3-7x+5)(x^2-2x+3) +(6+a)`
As remainder is `0`,
`:. 6+a = 0=> a = -6`
704.

Find a polynomial `p(x)` of degree 4, which has `x^2-3x+2` as a factor and also given that `p(-1)=24,p(-2)=132` and ` p(0)=2`.

Answer» `p(x)=(x^2-3x+2)(ax^2+bx+c)`
put x=0
`P(0)=2c=2`
`c=1`
put x=-1
`p(-1)=(1+3+2)(a-b+1)=24`
`6(a-b+1)=24`
`a-b=3-(1)`
put x=-2
`p(-2)=(4+6+2)(4a-2b+1)=132`
`12(4a-2b+1)=132`
`2a-b=5-(2)`
subtracting equation 1 from equation 2
`a=2`
`b=-1`
`P(x)=(x^2-3x+2)(ax^2+bx+c)`
`P(x)=(x^2-3x+2)(2x^2-x+1)`.
705.

Factorise : 6x2 + 19x + 15

Answer»

6x2 + 19x + 15 = 6x2 + 10x + 9x + 15 

= 2x (3x + 5) + 3 (3x + 5) 

= (3x + 5) (2x + 3)

706.

Factorise : 10m2 – 31m – 132

Answer»

10m2 – 31m – 132 

= 10m2 – 55m + 24m – 132 

= 5m (2m- 11) + 12 (2m- 11) 

= (2m – 11) (5m + 12)

707.

Factorise:2x2 - 7x - 15

Answer»

2x− 7x − 15

= 2x− 10x + 3x − 15

= 2x(x − 5) +3(x − 5)

= (x − 5)(2x + 3)

708.

Factorise : 12x2 + 11x + 2

Answer»

12x2 + 11x + 2

= 12x2 + 8x + 3x + 2 

= 4x (3x + 2) + 1 (3x + 2) 

= (3x + 2) (4x + 1)

709.

Factorise `x^(3)-7x+6`.

Answer» Here, constant term=6
Factors of `6=+-1, +-2,+-3,+-6`
Let `p(x)=x^(3)-7x+6`
Put x=1
Remainder `=p(1)=1^(3)-7(1)+6=1-7+6=0`
`therefore (x-1)`, is factor of p(x).
Now, `p(x)=x^(3)-7x+6=x^(2)(x-1)+x^(2)-7x+6`
`=x^(2)(x-1)+x(x-1)-6x+6`
`=x^(2)(x-1)+x(x-1)-6(x-1)`
`=(x-1)(x^(2)+x-6)`
`=(x-1)[x^(2)+3x-2x-6]`
`=(x-1)[x(+3)-2(x+3)]`
=(x-1)(x+3)(x-2)
710.

Which of the following is a polynomial with only one zero ? A) p(x) = 2x2 – 3x + 4 B) p(x) = x2 – 2x + 1 C) p(x) = 2x + 3 D) p(x) = 5

Answer»

Correct option is (C) p(x) = 2x + 3

If a polynomial equation has n degree then number of zeros of that polynomial equation is n.

In among all options p(x) = 2x+3 is a linear polynomial which is a polynomial of degree 1.

Thus, it has only 1 zero.

Correct option is C) p(x) = 2x + 3

711.

Factorise `x^(3)+6x^(2)+11x+6`.

Answer» Here, constant term=6
Its factors `=+-1,+-2,+-3, +-6`
Let `p(x)=x^(3)+6x^(2)+11x+6`
Put x=-1
`p(-1)=(-1)^(3)+6(-1)^(2)+11(-1)+6=-1+6-11+6=0`
`therefore x+1`, is a factor of p(x).
Now, `p(x)=x^(3)+6x^(2)+11x+6`
`x^(2)(x+1)+5x^(2)+11x+6`
`=x^(2)(x+1)+5x(x+1)+6x+6`
`=x^(2)(x+1)+5x(x+1)+6(x+1)`
`(x+1)(x^(2)+5x+6)`
`=(x+1)[x^(2)+2x+3x+6]`
`=(x+1)[x(x+2)+3(x+2)]`
=(x+1)(x+2)(x+3)
712.

Observe the given rectangular figure, then its area in polynomial function is …………A) A(x) = x2 + 7x + 30B) A(x) = – x2 + 7x + 30 C) A(x) = x2 – 7x + 30 D) A (x) = -x2 – 7x + 30

Answer»

Correct option is B) A(x) = – x2 + 7x + 30

713.

For the expression f(x) = x3 + ax2 + bx + c if f(1) = f(2) = 0 and f(4) = f(0). Find the values of a, b, c.A) a = -8, b = -20, c = 12B) a = 9, b = -20, c = -12C) a = -9, b = 20, c = -12D) a = -8, b =. 20, c = -12

Answer»

Correct option is (C) a = -9, b = 20, c = -12

\(\because\) f(1) = 0

\(\Rightarrow\) \(1^3+a.1^2+b.1+c=0\)

\(\Rightarrow\) a+b+c = -1  ________(1)

\(\because\) f(2) = 0

\(\Rightarrow\) \(2^3+a.2^2+b.2+c=0\)

\(\Rightarrow\) 4a+2b+c = -8  ________(2)

\(\because\) f(4) = f(0)

\(\Rightarrow\) \(4^3+a.4^2+b.4+c=c\)

\(\Rightarrow\) 64+16a+4b = 0

\(\Rightarrow\) 16a+4b = -64

\(\Rightarrow\) 4a+b = -16

\(\Rightarrow\) b = -16 - 4a   ________(3)

By putting b = -16 - 4a from (3) into (1) and (2), we get

a - 16 - 4a + c = -1

\(\Rightarrow\) 3a - c = -15   ________(4)

and 4a - 32 - 8a + c = -8

\(\Rightarrow\) 4a - c = -24   ________(5)

Subtract (4) from (5), we get

(4a - c) - (3a - c) = -24 - (-15)

\(\Rightarrow\) a = -24+15 = -9

Put a = -9 in equation (4), we get

\(\times\) -9 - c = -15

\(\Rightarrow\) c = -27+15 = -12

Put a = -9 in equation (3), we get

b = -16 - 4 \(\times\) -9 = -16+36 = 20

\(\therefore\) a = -9, b = 20, c = -12

Correct option is C) a = -9, b = 20, c = -12

714.

Find the values of a and b so that `2x^(3)+ax^(2)+bx-14` has (x-1) and (x+2) are its factors.

Answer» Let `p(x)=2x^(3)+ax^(2)+bx-14`
If (x-1) is a factor of (1), then f(1)=0
`therefore` On putting x=1 in (1), we get
`f(1)=2(1)^(3)+a(1)^(2)+b(1)-14`
`implies 0=2+a+b-14 implies a+b=12`
If (x+2) is a factor of (1), then f(-2)=0
`therefore` On putting x=-2 in (1), we get
`f(-2)=2(-2)^(3)+a(-2)^(2)+b(-2)-14`
`implies 0 =-16+4a-2b-14`
`implies Aa-2b=30 implies 2a-b=15`
Adding (2) and (3), we get
`3a=27 " " implies a=9`
Put this value of a in (2), we get
`9+b=12 " " implies b=3`
`therefore a=9, b=3`.
715.

The values of a, b and c respectively for the expression f(x) = x3 + ax2 + bx + c, if f(1) = f(2) = 0 and f(4) = f(0) are :(a) 9, 20, 12 (b) –9, –20, 12 (c) –9, 20, –12 (d) –9, –20, –12

Answer»

(c) –9, 20, –12 

Given, f(x) = x3 + lx2 + mx + n. 

f(1) = f(2) = 0 ⇒ (x – 1) and (x – 2) are factors of f(x). 

Since, f(x) is polynomial of degree 3, it shall have three linear factors. So, let the third factor be (x – k). 

Then, f(x) = (x – 1) (x – 2) (x – k) 

⇒ f(x) = x3 + lx2 + mx + n = (x – 1) (x – 2) (x – k) 

Given, f(4) = f(0) 

⇒ (4 – 1) (4 – 2) (4 – k) = (–1) (–2) (–k) 

⇒ 24 – 6k = – 2k ⇒ 4k = 24 ⇒ k = 6

∴ f(x) = (x – 1) (x – 2) (x – 6) = (x2 – 3x + 2) (x – 6) 

= x3 – 9x2 + 20x – 12

∴ x3 + lx2 + mx + n = x3 – 9x2 + 20x – 12 

⇒ l = – 9, m = 20, n = – 12.

716.

The value of \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)} \) is :(a) 1 (b) 3 (c) 1/3 (d) Zero

Answer»

(b) 3

Since a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc. 

So, as (a – b) + (b – c) + (c – a) = 0 

⇒ (a – b)3 + (b – c)3 + (c – a)3 = 3(a – b) (b – c) (c – a)

∴ Given expression = \(\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}\) = 3.

717.

The remainder, when x200 is divided by x2 – 3x + 2 is(a) (2200 – 1) x + (–2200 + 2) (b) (2200 + 1) x + (–2200 – 2) (c) (2200 – 1) x + (–2200 – 2) (d) 2100

Answer»

(a) (2200 – 1) x + (–2200 + 2) 

Let x200 = (x2 – 3x + 2). Q(x) + lx + m                 ...(i) 

where, Q(x) = quotient and (lx + m) is the remainder 

Now (x2 – 3x + 2) = 0 ⇒ (x – 1) (x – 2) = 0 ⇒ x = 1, 2. 

Substituting x = 1 in (i), we have, 

1200 = 0. Q.(x) + l + m                       ...(ii) 

Similarly, for x = 2, 

2200 = 0. Q(x) + 2l + m                     ...(iii)

∴ l + m = 1, 2l + m = 2200 

Solving we get, l = 2200 – 1 and m = 2 – 2200 

Hence remainder = lx + m = (2200 – 1) x + (–2200 + 2).

718.

If (x + k) is the HCF of ax2 + ax + b and x2 + cx + d, then what is the value of k ?(a) \(\frac{b+d}{a+c}\) (b) \(\frac{a+b}{c+d}\)(c) \(\frac{a-b}{c-d}\)(d) None of these

Answer»

(d) None of these

Hint. 

ak2 – ak + b = 0

k2 – ck + d = 0 

Solving by the rule of cross multiplication,

\(\frac{k^2}{-ad+bc}\) = \(\frac{k}{b-ad}\) = \(\frac{1}{-ac+a}\)

⇒ k = \(\frac{b-ad}{a(1-c)},\frac{bc-ad}{b-ad}.\)

719.

For a ≠ b, if x + k is the HCF of x2 + ax + b and x2 + bx + a, then the value of a + b is equal to(a) – 2 (b) – 1 (c) 0 (d) 2

Answer»

(b) -1

Since x + k is the HCF of the given expressions, therefore, x = – k will make each expression zero. 

k2 – ak + b = 0                         ...(i) 

k2 – bk + a = 0                       ...(ii) 

Solving (i) and (ii) by the rule of cross multiplication,

\(\frac{k^2}{-a^2+b^2}=\frac{k}{b-a}=\frac{1}{-b+a}\)

From last two relations, k = \(\frac{b-a}{-(b-a)}=-1\)

∴ \(\frac{k^2}{-a^2+b^2}=\frac{1}{-b+a}⇒\frac{(-1)^2}{-(a^2+b^)}=\frac{1}{-b+a}\)

⇒ \(\frac{1}{(b-a)(b+a)}=\frac{1}{-b+a}\) ⇒ a+b = -1.

720.

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:(i) f(x) = x2 - 2x - 8(ii) g(s) = 4s2 - 4s + 1(iii) h(t) = t2 - 15(iv) 6x2 - 3 - 7x

Answer»

(i) f(x) = x2 - 2x - 8

factorize the given polynomial by splitting the middle term:

⇒ x2 - 4x + 2x – 8

⇒ x (x - 4) + 2 (x - 4)

For zeros of f(x), f(x) = 0

⇒(x + 2) (x - 4) = 0x+2 = 0x = - 2x - 4 = 0x = 4

⇒x = - 2, 4

Therefore zeros of the polynomial are - 2 & 4

In a polynomial the relations hold are as follows:

sum of zeroes is equal to - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) product of zeroes is equal to \(\frac{Constant\,term}{coefficient\,of\,x^2}\)

For the given polynomial,

Sum of zeros = - 2 + 4 = 2

And - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) is - (- 2) = 2

Hence the value of - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) and sum of zeroes are same.

Product of zeros = - 2 × 4 = - 8

\(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) is - 8.

Hence the value of \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) and product of zeroes are same.

(ii) g(s) = 4s2 - 4s + 1 

factorize the given polynomial by splitting the middle term:

⇒ 4s2 - 2s - 2s + 1

⇒ 2s (2s - 1) - 1 (2s - 1)

For zeros of g(s), g(s) = 0 (2s - 1) (2s - 1) = 0

2s - 1 = 0 s = \(\frac{1}{2}\)

Therefore zeros of the polynomial are \(\frac{1}{2}\)\(\frac{1}{2}\)

In a polynomial the relations hold are as follows:

sum of zeroes is equal to - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) product of zeroes is equal to \(\frac{Constant\,term}{coefficient\,of\,x^2}\)

For the given polynomial,

Sum of zeros = \(\frac{1}{2}\)\(\frac{1}{2}\) = 1  \(\frac{-Coefficient\,of\,s}{Coeficient\,of\,s^2}\) = \(\frac{4}{4}\) = 1

Hence the value of - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) and sum of zeroes are same.

Product of zeros = - \(\frac{1}{2}\) × - \(\frac{1}{2}\)\(\frac{1}{4}\) \(\frac{Constant\,term}{coefficient\,of\,s^2}\) = \(\frac{1}{4}\)

Hence the value of \(\frac{Constant\,term}{coefficient\,of\,x^2}\) and product of zeroes are same. 

(iii) h(t) = t2 - 15

use the formula a2 - b2 = (a+ b)(a - b) to solve the above equation,

Here a is t and b is √15.

Solve the given expression as:

t2 - (√15)2 = (t + √15)(t - √15)

For zeros of h(t), h(t) = 0

t + √15 = 0

t = - √15

t - √15 = 0

t = √15

Therefore zeros of the given polynomial are t = √15 & -√15

In a polynomial the relations hold are as follows:

sum of zeroes is equal to - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) product of zeroes is equal to \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\)

For the given polynomial,

Sum of zeros = √15 + (- √15) = 0

The value of - \(\frac{Coefficient\,of\,t}{Coeficient\,of\,t^2}\) is 0.

Hence, the value of - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\)and sum of zeroes are same.

Product of zeros = - √15 x √15

The value of \(\frac{Constant\,term}{coefficient\,of\,t^2}\) is - √15

Hence the value of \(\frac{Constant\,term}{coefficient\,of\,x^2}\) and product of zeroes are same.

(iv) f(x) =  6x2 - 3 - 7x

Write the equation in the form of ax2 +bx+c as:

6x2 - 7x -3

factorize the given polynomial by splitting the middle term:

⇒ 6x2 - 9x + 2x - 3

⇒ 3x(2x - 3) +1(2x - 3)

⇒ (3x + 1) (2x - 3)

For zeros of f(x),f(x) = 0

⇒ (3x + 1) (2x - 3) = 0

x = \(\frac{-1}{3}\)\(\frac{3}{2}\)

Therefore zeros of the polynomial are   \(\frac{-1}{3}\)\(\frac{3}{2}\)

In a polynomial the relations hold are as follows:

sum of zeroes is equal to -  \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\) product of zeroes is equal to \(\frac{Constant\,term}{coefficient\,of\,x^2}\)

Sum of zeros = \(\frac{-1}{3}\) + \(\frac{3}{2}\)\(\frac{-2+9}{2}\)\(\frac{7}{6}\)\(\frac{7}{6}\) = - \(\frac{Coefficient\,of\,x}{Coeficient\,of\,x^2}\)

Product of zeros = \(\frac{-1}{3}\)× \(\frac{3}{2}\)\(\frac{-3}{6}\)\(\frac{-1}{2}\)\(\frac{Constant\,term}{coefficient\,of\,x^2}\)

721.

If y = \(x+\frac{1}{x}\) then x4 + x3 – 4x2 + x + 1 = 0 can be reduced to which one of the following ? (x ≠ 0)(a) y2 + y – 2 = 0 (b) y2 + y – 4 = 0 (c) y2 + y – 6 = 0 (d) y2 + y + 6 = 0

Answer»

(c) y2 + y – 6 = 0

x4 + x3 – 4x2 + x + 1 = 0

⇒ x2 + x - 4 + \(\frac{1}{x}\) + \(\frac{1}{x^2}\) = 0

⇒ \(x^2+\frac{1}{x^2}\) + \(x+\frac{1}{x}\) - 4 = 0 

⇒ \(\big(x+\frac{1}{x}\big)^2\) - 2 + \(\big(x+\frac{1}{x}\big)\) - 4 = 0

y2 + y – 6 = 0                      \(\big(∵x+\frac{1}{x}=y\big)\)

722.

If x2 = y + z, y2 = z + x, z2 = x + y, then what is the value of: \(\frac{1}{x+1}\) + \(\frac{1}{y+1}\) + \(\frac{1}{z+1}\)?(a) 1 (b) 0 (c) –1 (d) 2

Answer»

(a) 1

x2 = y + z ⇒ x2 + x = x + y + z 

⇒ x (x + 1) = x + y + z ⇒ \(\frac{x}{x+y+z}\) = \(\frac{1}{x+1}\)

Similarly, \(\frac{1}{y+1}\) = \(\frac{y}{x+y+z}\) and \(\frac{1}{z+1}\) = \(\frac{z}{x+y+z}\)

∴ \(\frac{1}{x+1}\) + \(\frac{1}{y+1}\) + \(\frac{1}{z+1}\) = \(\frac{x}{x+y+z}\) + \(\frac{y}{x+y+z}\) +  \(\frac{z}{x+y+z}\) 

\(\frac{x+y+z}{x+y+z}\) = 1.

723.

If α and β are the zeros of the quadratic polynomial p(x) = 4x2 - 5x - 1, find the value of α2β + αβ2

Answer»

α and β are the zeros of the quadratic polynomial p(x) = 4x2 - 5x - 1

Sum of the roots = α + β = \(\frac{constant\,term}{coefficient\,of\,x^2}\) = - \(\frac{(-5)}{4}\)\(\frac{5}{4}\)

Product of the roots = α x β = \(\frac{constant\,term}{coefficient\,of\,x^2}\)\(\frac{(-1)}{4}\)

Now,

α2β + αβ2 =αβ(α + β)

On substituting values from above, we get

\(\frac{-1}{4}\) × \(\frac{5}{4}\) = - \(\frac{5}{16}\)

724.

\(\frac{(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3}\) on simplification is equal to :(a) 1 (b) (a – b) (b – c) (c – a) (c) (a + b) (b + c) (c + a) (d) 0

Answer»

(c) (a + b) (b + c) (c + a) 

Use the identity, if a + b + c = 0, then a3 + b3 + c3 = 3abc.

725.

Find all the zeros of the quadratic polynomial 5x2 + 8x - 4 = 0.

Answer»

Let f(x) = 5x2 + 8x - 4 and α and β be its zeroes

Here a = 5, b = 8 and c = -4

5x2 + 8x - 4 = 0

5x2 + 10x - 2x - 4 = 0

5x(x + 2) - 2(x + 2) = 0

(x + 2)(5x - 2) = 0

x + 2 = 0 or 5x - 2 = 0

x = -2 or x= 2/5

So, the zeroes are α = -2 and β = 2/5

726.

Find a quadratic polynomial , the sum and product of whose zeroes are -3 and 2 respectively.

Answer»

Sum of zeroes = α + β = -3

Product of zeroes = αβ = 2

Then, the quadratic polynomial = x2 – (sum of zeroes)x + product of zeroes

= x2 - (-3)x + 2

= x2 + 3x + 2

727.

If α and β are the zeros of the polynomial f(x) = x2 + x – 2, find the value of (1/α – 1/β)

Answer»

Given: α and β are zeroes of f(x) = x2 + x – 2

To find: (1/α – 1/β)

α + β = Sum of zeros = -(coefficient of x)/(coefficient of x2) = -1

α β = Product of zeros = (constant term)/(coefficient of x2) = -2

Now,

(1/α – 1/β) = (β – α)2) / αβ

= (β + α)2 – 4αβ) / (αβ)2

= 9/ 4

728.

If the zeros of the polynomial f(x) = x3 – 3x2 + x + 1 are (a – b), a and (a + b), find a and b.

Answer»

Given: Zeros of the polynomial x3 – 3x2 + x + 1 are (a – b), a and (a + b).

Now by using the relationship between the zeros of the quadratic polynomial we have:

Sum of zeros = -(coefficient of x)/(coefficient of x2) = -1

a – b + a + a + b = -1

3a = 3

a = 1

Product of zeros = (constant term)/(coefficient of x2) = -1

(a – b) (a) (a + b) = -1

(1 – b) (1) (1 + b) = – 1

1 – b2 = – 1

b = ±√2

729.

Find the zeroes of the quadratic polynomials 3x2 + x – 4 = 0.

Answer»

Let f(x) = 3x2 + x ˗ 4

= 3x2 + 4x - 3x ˗ 4

= x (3x + 4) - 1(3x + 4)

= (3x + 4) (x ˗ 1)

To find the zeroes, set f(x) = 0

(3x + 4) (x ˗ 1) = 0

3x + 4 = 0 or x ˗ 1 = 0

x = -4/3 or x = 1

730.

Which of the following is a polynomial?(A) x2 – 5x + 4√x + 3(B) x3/2 – x + x1/2 + 1(C) √x + 1/√x(D) √2x2 - 3√3x + √6

Answer»

Answer: (D) √2x2 - 3√3x + √6

An expression of the form p(x) = a0 + a1x + a2x2 + ….. + anxn, where an ≠ 0, is called a polynomial in x of degree n. 
Here, a0, a1, a2, ……, an are real numbers and each power of x is a non-negative integer.
Hence, √2x2 - 3√3x + √6 is a polynomial. 

731.

If (x + k) is a common factor of x2 + px + q and x2 + lx + m, then the value of k is(a) \(\frac{P+q}{l+m}\)(b) \(\frac{P-l}{q-m}\)(c) \(\frac{q+m}{q+l}\)(d) \(\frac{q-m}{p-l}\)

Answer»

(d) \(\frac{q-m}{p-l}\)

Let f(x) = x2 + p\(x\) + q 

g(x) = x2 + l\(x\) + m. 

Since (x + k) is a common factor of 

f(x) and g(x), f(–k) = k2 – pk + q = 0 

g(–k) = k2 – lk + m = 0 

⇒ k2 – px + q = k2 – lk + m 

⇒ q – m = (p – l)k ⇒ k = \(\frac{q-m}{p-l}\)

732.

When x40 + 2 is divided by x4 + 1, what is the remainder ?(a) 1 (b) 2 (c) 3 (d) 4

Answer»

(c) 3

Put x4 = – 1 in f(x) = x40 + 2 

Remainder = (x4)10 + 2 = (–1)10 + 2 = 3.

733.

The remainder when 1 + x + x2 + x3 + ........ + x1007 is divided by (x – 1) is(a) 1006 (b) 1008 (c) 1007 (d) 0

Answer»

(b) 1008.

Required remainder = f(1) 

= 1 + 1 + 1 + 1 + 1 ......... + 1 (1008 times) 

= 1008 × 1 = 1008.

734.

If the remainder of the polynomial a0 + a1x + a2x2 + ....... + anxn when divided by (x – 1) is 1, then which one of the following is correct ?(a) a0 + a2 + ...... = a1 + a3 + ...... (b) a0 + a2 + ...... = 1 + a1 + a3 + ...... (c) 1 + a0 + a2+ ...... = – (a1 + a3 + ......) (d) 1 – a0 – a2 – ...... = a1 + a3 + ......

Answer»

(d) 1 – a0 – a2 – ...... = a1 + a3 + ......

Let f(x) = a0 + a1x + a2x2 + ......... + anxn 

Given, f(1) = 1 

⇒ a0 + a1 + a2 + ........ + an = 1 

⇒ 1 – a0 – a2 – ........ = a1 + a3 + ........ .

735.

Find the zeroes of the given polynomial,p(x) = x2 + 5x + 6

Answer»

Given p(x) = x2 + 5x + 6 is a quadratic polynomial. 

It has atmost two zeroes. 

To find zeroes, let p(x) = 0 

⇒ x2 + 5x + 6 = 0 

⇒ x2 + 3x + 2x + 6 = 0 

⇒ x(x + 3) + 2 (x + 3) = 0 

⇒ (x + 3) (x + 2) = 0 

⇒ x + 3 = 0 or x + 2 = 0 

⇒ x = -3 or x = -2 

Therefore the zeroes of the polynomial are -3 and -2.

736.

Find the zeroes of the given polynomial,p(x) = (x + 2) (x + 3)

Answer»

Given p(x) = (x + 2) (x + 3) 

It is a quadratic polynomial. 

It has atmost two zeroes. 

Let p(x) = 0 

⇒ (x + 2) (x + 3) = 0 

⇒ (x + 2) = 0 or (x + 3) = 0 

⇒ x = -2 or x = -3

Therefore the zeroes of the polynomial are -2 and – 3.

737.

Find the zeroes of the given polynomial,p(x) = x4 – 16

Answer»

Given p(x) = x4 – 16 is a biquadratic polynomial. It has almost two zeroes. 

Let p(x) = 0 

⇒ x4 – 16 = 0 

⇒ (x2)2 – 42 = 0 

⇒ (x2 – 4) (x2 + 4) = 0 

⇒ (x + 2) (x – 2) (x2 + 4) = 0 

⇒ (x + 2) = 0 or (x – 2) = 0 or (x2 + 4) = 0 

⇒ x = -2 (or) x = 2 (or) x2 = -4 

Therefore the zeroes of the polynomial are 2, – 2, we do not consider √-4 since it is not real.

738.

If a+b+c=2, ab+bc+ca=-1 and abc=-1 and abc=-2 , find the value of `a^(3)+b^(3)+c^(3)`.

Answer» We know that,
`a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`=(a+b+c)(a^(2)+b^(2)+c^(2)+2ab+2bc+2ca-3ab-3bc-3ca)`
`=(a+b+c)[(a+b+c)^(2)-3(ab+bc+ca)]`
`=2[(2)^(2)-3(-1)]=2(4+3)=14`
`therefore a^(3)+b^(3)+c^(3)-3(-2)=14`
`implies a^(3)+b^(3)+c^(3)=8`
739.

(i) If `a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac`. (ii) If `a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c`. (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of `a^(3)+b^(3)+c^(3)-3` abc.

Answer» Correct Answer - `(i) -10 " " (ii) +-16 " " (iii) 506`
740.

If a + b + c = 9 and ab + be + ca = 26, find a2 + b2 + c2

Answer»

Given that a + b + c = 9 

Squaring on both sides, (a + b + c)2 = 92 

⇒ a2 + b2 + c2 + 2 (ab + be + ca) = 81 

⇒ a2 + b2 + c2 = 81 – 2 (ab + be + ca) (by problem) 

= 81 – 2 x 26 

= 81 – 52 = 29

741.

If a, b, c are all non-zero and a+b+c=0, prove that `(a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=3`.

Answer» We have, a,b,c are all non-zero and a+b+c=0, therefore
`a^(3)+b^(3)+c^(3)=3abc`
Now, `(a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=(a^(3)+b^(3)+c^(3))/(abc)=(3abc)/(abc)=3`
742.

if a +b+c=9 and ab+bc+ca=26,find `a^(2)+b^(2)+c^(2).`

Answer» Given `a+b+c= 9 and ab+bc+ca=26 `
Now `a+b+c=9`
On squaring both sides , we get
`(a+b+c)^(2)=(9)^(2)`
`implies a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=81`
[using identity,`(a+b+c)^(2) =a^(2)+b^(2)+c^(2)+2ab+2bc+2ca`]
` implies a^(2)+b^(2)+c^(2) +2(ab+bc+ca)=81`
` implies a^(2) +b^(2)+c^(2)+2(26)=81`
` implies a^(2)+b^(2)+c^(2)=81-52=29`
743.

Facorise the following (i) `9x^(2)+4y^(2)+16z^(2)+12xy-16yz-24xz` (ii) `25x^(2)+16y^(2)+4z^(2)-40xy+16yz-20xz` (iii) ` 16x^(2)+4y^(2)+9z^(2)-16xy-12yz+24xz`

Answer» (i) `9x^(2)+4y^(2)+16z^(2)+12xy-16yz-24xz`
`=(3x)^(2)+(2y)^(2)+(-4z)^(2)+2(3x)(2y((-4z)+2(-4z)(3x)`
[using identity ,`(a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+ca`]
(ii) `25x^(2)+16y^(2)+4z^(2)-40xy+16yz-20xz`
`=(-5)^(2) +(4y)^(2) +(2z)^(2)(-5x)(4y)+2(4y)(2z)+(22z)(-5x)`
[using identiity ,`(a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca]`
`16x^(2)+4y^(2)+9z^(2)-16xy-12yz+24xz`
[using identity,`(a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca`]
`=(4x-2y+3z)^(2)=(4x-2y+3z)(4x-2y+3z)`
744.

If sum of square of zeros of quadratic equation f(x) = x2 – 8x + k is 40 then find the value of k.

Answer»

Given polynomial f(x) = x2 – 8x + k

Let α and β are zeros of polynomial f(x) then

Sum of zero (α + β) = - b/a

= -(-8)/1 = 8  ....(i)

and product of zeros

(α x β) = c/a = k/1 = k  ....(ii)

Now, from equation (i)

(α + β) = 8

Squaring both sides,

(α + β)2 = 82

⇒ a2 + β2 + 2αβ = 64 …(iii)

It is given that sum of square of zeros is 40.

i.e., α2 + β2 = 40

Putting values from equation (i) and (ii) in (iii)

40 + 2k = 64

⇒ 2k = 64 – 40

⇒ 2k = 24

⇒ k = 12

Thus k = 12

745.

If (2 + p) and 100 – 25p2 are two expression, then their L.C.M. will be(A) 100 – 25p2(B) 2 + p(C) 98 – 25p2(D) (100 – 25p2) (2 + p)

Answer»

Answer is (A) 100 – 25p2

First expression = (2 + p)

and other expression = 100 – 25p2

= (10 – 5p) (10 + 5p)

= 5(2 – p) × 5(2 + p)

= 25(2 – p) (2 + p)

Thus L.C.M. of two expression = 100 – p2

746.

L.C.M. of x2 – 1 and x2 – x – 2 will be(A) (x2 – 1)(x – 2)(B) (x2 – 1)(x + 2)(C) (x – 1)2 (x + 2)(D) (x + 1)2 (x – 2)

Answer»

Answer is (A) (x2 – 1)(x – 2)

x2 – 1 = (x – 1)(x + 1) …(i)

x2 – x – 2 = x2 – 2x + x – 2 

= x (x – 2) + 1 (x – 2) 

= (x + 1)(x – 2) …(ii)

from eqn (i) and (ii)

(x + 1)(x – 1 )(x – 2)

L.C.M. = (x2 – 1)(x – 2)

747.

H.C.F. of expression x2 – 1 and x + 1 will be(A) x – 1(B) x + 1(C) (x2 – 1)(x + 1)(D) (x – 1)(x + 1)

Answer»

Answer is (B) x + 1

748.

Find zeroes polynomials : x2 – 5x + 6

Answer»

x2 – 5x + 6 = 0 

⇒ x2 – 3x – 2x + 6 = 0 

⇒ x (x – 3) – 2 (x – 3) = 0 

⇒ (x – 2) (x – 3) = 0 

⇒ x – 2 = 0 or x – 3 = 0 

⇒ x = 2 or x = 3 

∴ x = 2 or 3 are the zeroes of x2 – 5x + 6.

749.

Find zeroes polynomials : x + 5

Answer»

x + 5 = 0

x = – 5 

∴ x = – 5

750.

Find zeroes polynomials : 2x-3

Answer»

2x – 3 = 0 

2x = 3 

x = 3/2

∴ x = 3/2 is the zero of 2x – 3