Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

Factorise `x^(2)+6sqrt(6)x+48`.

Answer» Here, `a=1, b=6sqrt(6), c=48`
`therefore a xx c=48`
`48=2xx2xx2xx2xx3`
`=sqrt(2)xxsqrt(2)xx2xx2xx2xxsqrt(3)xxsqrt(3)`
`=2sqrt(6)xx4sqrt(6)`
Now, we take two factors of 48 whose sum is `6sqrt(6)`
Such factors are `2sqrt(6)` and `4sqrt(6)`
`therefore x^(2)+6sqrt(6)x+48=x^(2)+2sqrt(6)x+4sqrt(6)x+48`
`=x(x+2sqrt(6))+4sqrt(6)(x+2sqrt(6))`
`=(x+2sqrt(6))(x+4sqrt(6))`
652.

Write (p + 2q + r)2 in expanded form.

Answer»

(p + 2q + r)2 = (p)2 + (2q)2 + (r)2 + 2 (P) (2q) + 2 (2q) (r) + 2(r) (p) 

= p2 + 4q2 + r2 + 4pq + 4qr + 2rp

653.

Classify the following as linear, quadratic and cubic polynomials : (i) x2 + x (ii) x – x3 (iii) y + y2 + 4 (iv) 1 + x (v) 3t (vi) r2(vii) 7x3

Answer»
Linear PolynomialQuadratic PolynomialCubic Polynomial
iv) 1 + xi) x2 + xiii) y + y2 + 4
ii) x – x3
(v) 3t(vi) r2(vii) 7x3
654.

Write the coefficient of x3 in each of the following.i) x3 + x + 1 ii) 2 – x3 + x2iii)√2x3 + 5iv) 2x3 + 5v) π/2 x3 + xvi) - 2/3 x3vii) 2x2 + 5viii) 4

Answer»

Write the coefficient of x3 in each of the following.

i) x3 + x + 1 : co-efficient of x3 is 1.

ii) 2 – x3 + x2  : co-efficient of x3 is – 1.

iii)√2x3 + 5 : co-efficient of x3 is √2

iv) 2x3 + 5 : co-efficient of x3 is 2

v) π/2 x3 + x : co-efficient of x3 is π/2

vi) - 2/3 x: co-efficient of x3 is -2/3

vii) 2x2 + 5 : co-efficient of x3 is '0'.

viii) 4 : co-efficient of x3 is '0'.

655.

Write whether the following statements are True or False. Justify your answer. i) A binomial can have at the most two terms ii) Every polynomial is a binomial iii) A binomial may have degree 3 iv) Degree of zero polynomial is zero v) The degree of x2 + 2xy + y2 is 2 vi) πr2 is monomial

Answer»

i) A binomial can have at the most two terms - True 

ii) Every polynomial is a binomial – False

[∵ A polynomial can have more than two terms] 

iii) A binomial may have degree 3 – True 

iv) Degree of zero polynomial is zero – False 

v) The degree of x2 + 2xy + y2 is 2 – True 

vi) πr2 is monomial – True

656.

Find the value of each of the following : `(i) p(x)=3x+7 " at" x=1 " " (ii) q(y)=y^(3)-3y^(2)+sqrt(3) " at" y=1` (iii)`p(a)=a^(4)+6a^(2)-6a+3` at a=m

Answer» (i) p(x)=3x+7
`implies p(1)=3xx1+7=10`
(ii) `q(y)=y^(3)=3y^(2)+sqrt(3)`
`implies q(1)=1^(3)-3xx1^(2)+sqrt(3)=1-3+sqrt(3)=-2+sqrt(3)`
(iii) `p(a)=a^(4)+6a^(2)-6a+3`
`implies p(m)=m^(4)+6m^(2)-6m+3`
657.

Find the coefficient of `x^(2)` in the polynomial : `2x^(3)-3x^(2)+5x(1-(x)/(2))+2x^(2)(x+7)-13`

Answer» Given polynomial is `2x^(3)-3x^(2)+5x(1-(x)/(2))+2x^(2)(x+7)-13`
`=2x^(3)-3x^(2)+5x-(5)/(2)x^(2)+2x^(3)+14x^(2)-13`
`x^(3)(2+2)+x^(2)(-3-(5)/(2)+14)+x(5)-13=4x^(3)+(17)/(2)x^(2)+5x-13`
`therefore` Coefficient of `x^(2) " is" (17)/(2)`.
658.

Evaluate : `(i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)`

Answer» (i) `(a+6b)^(2)=a^(2)+2xxaxx6b+(6b)^(2)=a^(2)+12ab+36b^(2)`
`(ii) (3x-4y)^(2)=(3x)^(2)-2xx3x xx4y+(4y)^(2)=9x^(2)-24xy+16y^(2)`
`(iii) " We know that " (x+y+z)^(2)=x^(2)+y^(2)+z^(2)+2xy+2yz+2zx`
Now, `(2a-b+c)^(2)=(2a)^(2)+(-b)^(2)+(c )^(2)+2{(2a)(-b)xxc+cxx(2a)}`
`=4a^(2)+b^(2)+c^(2)-4ab-2bc+4ac`
659.

Factorise using appropriate identities : x2 + 3x + 2

Answer»

x2 + 3x + 2 = x2 + (2 + 1) x + (2 x 1) 

(x + 2) (x + 1)

660.

Determine the degree of each of the following polynomials:(i) 2x – 1(ii) –10(iii) x3 – 9x + 3x5(iv) y3 (1 – y4)

Answer»

Degree of a polynomial in one variable = highest power of the variable in algebraic expression

(i) 2x – 1

Power of x = 1

Highest power of the variable x in the given expression = 1

Hence, degree of the polynomial 2x – 1 = 1

(ii) –10

There is no variable in the given term.

Let us assume that the variable in the given expression is x.

– 10 = –10x0

Power of x = 0

Highest power of the variable x in the given expression = 0

Hence, degree of the polynomial – 10 = 0

(iii) x3 – 9x + 3x5

Powers of x = 3, 1 and 5 respectively.

Highest power of the variable x in the given expression = 5

Hence, degree of the polynomial x3 – 9x + 3x5= 5

(iv) y3 (1 – y4)

The equation can be written as,

y3 (1 – y4) = y3 – y7

Powers of y = 3 and 7 respectively.

Highest power of the variable y in the given expression = 7

Hence, degree of the polynomial y3 (1 – y4) = 7

661.

Write the coefficient of x2 in each of the following(i) (π/6)x + x2 – 1(ii) 3x – 5(iii) (x –1) (3x – 4)(iv) (2x – 5) (2x2 – 3x + 1)

Answer»

(i) (π/6) x + x2−1

(π/6) x + x2−1 = (π/6) x + (1) x2−1

The coefficient of x2 in the polynomial (π/6) x + x2−1 = 1.

(ii) 3x – 5

3x – 5 = 0x2 + 3x – 5

The coefficient of x2 in the polynomial 3x – 5 = 0, zero.

(iii) (x – 1) (3x – 4)

(x – 1)(3x – 4) = 3x2 – 4x – 3x + 4

= 3x2 – 7x + 4

The coefficient of x2 in the polynomial 3x2 – 7x + 4 = 3.

(iv) (2x – 5) (2x2 – 3x + 1)

(2x – 5) (2x2 – 3x + 1)

= 4x3 – 6x2 + 2x – 10x2 + 15x– 5

= 4x3 – 16x2 + 17x – 5

The coefficient of x2 in the polynomial (2x – 5) (2x2 – 3x + 1) = – 16

662.

Factorise : `27x^(3)+8y^(3)+8z^(3)-36xyz`

Answer» We can write it
`(3x)^(3)+(2y)^(3)+(2z)^(3)-3xx3x xx2yxx2z`
`=a^(3)+b^(3)+c^(3)-3abc " " ("where" a=3x,b=2y,c=2z)`
`=(3x+2y+2z)(9x^(2)+4y^(2)+4z^(2)-5xy-4yz-6zx)`
663.

Give possible expressions for the length and breadth of the rectangle whose area is given by 25a2 – 35a + 12

Answer»

Given 25a2 – 35a + 12

= 25a2 – 20a – 15a + 12

= 5a (5a – 4) – 3 (5a – 4) 

= (5a – 4) (5a – 3) 

∴ (5a – 4) (5a – 3) are the length and breadth.

664.

Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3

Answer»

Given that area = 4a2 + 4a – 3 

= 4a2 + 6a – 2a – 3 

= 2a (2a + 3) – 1 (2a + 3) 

= (2a – 1) (2a + 3) 

∴ Length = (2a + 3); breadth = (2a – 1).

665.

Find product using appropriate identities :  (t + 2) (t + 4)

Answer»

(t + 2) (t + 4) 

= t2 + t(2 + 4) + 2 x 4 

= t2 + 6t + 8

666.

Find product using appropriate identities : (y – 1) (y – 1)

Answer»

(y – 1) (y – 1) 

= (y – 1)2 

= y2 – 2y + 1

667.

Factorise : `(a) x^(6)+y^(6) " " (b) x^(6)-y^(6)`

Answer» (a) We have
`x^(6)+y^(6)=(x^(2))^(3)+(y^(2))^(3)`
`=(x^(2)+y^(2))(x^(4)-x^(2)y^(2)+y^(4))`
`[because a^(3)+b^(3)=(A+b)(a^(2)-ab+b^(2))]`
Most of students write factors till here, which is not proper. We shall factorise further,
as
`x^(6)+y^(6)=(x^(2)+y^(2))[underset("making perfect square")(ubrace((x^(2))^(2)+2x^(2).y^(2)+(y^(2))^(2)))-2x^(2)y^(2)-x^(2)y^(2)]`
`implies x^(6)+y^(6)=(x^(2)+y^(2))[(x^(2)+y^(2))^(2)-3x^(2)y^(2)]=(x^(2)+y^(2))[(x^(2)+y^(2))^(2)-(sqrt(3)xy)^(2)]`
`=(x^(2)+y^(2))[(x^(2)+y^(2)+sqrt(3)xy)(x^(2)+y^(2)-sqrt(3)xy)]`
`implies underset("polynomial")(ubrace(x^(6)+y^(6)))=underset("polynomial")(ubrace((x^(2)+y^(2))))underset("polynomial")(ubrace((x^(2)+sqrt(3)xy+y^(2))))underset("polynomial")(ubrace((x^(2)-sqrt(3)xy+y^(2))))`
`(b) x^(6)-y^(6)=(x^(2))^(3)-(y^(2))3)=(x^(2)-y^(2))(x^(4)+x^(2)y^(2)+y^(4))`
`=(x+y)(x-y)[underset("making perfect square")ubrace((x^(2))^(2)+2(x^(2))(y^(2))+(y^(2))^(2))-2x^(2)y^(2)+x^(2)y^(2)]`
`=(x+y)(x-y)[(x^(2)+y^(2))^(2)-(xy)^(2)]`
`=(x+y)(x-y)[(x^(2)+y^(2)+xy)(x^(2)+y^(2)-xy)]`
`=(x+y)(x-y)(x^(2)+xy+y^(2))(x^(2)-xy+y^(2))`
Alternative Method :
`x^(6)-y^(6)=(x^(3))^(2)-(y^(3))^(2)=(x^(3)+y^(3))(x^(3)-y^(3))`
`=(x+y)(x^(2)-xy)+y^(2))(x-y)(x^(2)+xy+y^(2))`
`=(x+y)(x-y)(x^(2)+xy+y^(2))(x^(2)-xy+y^(2))`
668.

Find the remainder when `x^3+3x^2+3x+1`is divided by(i) `x+1` (ii) `x-1/2` (iii) `x` (iv) `x+pi` (v) `5+2x`

Answer» From remainder theorem, we know that if `P(x)` is divided by `(x-a)`, then, ` P(a)` will be the remainder.
In this question,
`P(x) = x^3+3x^2+3x+1`

(i) Here, `a = -1`
`P(-1) = (-1)^3+3(-1)^2+3(-1)+1 = -1+3-3+1=0`
Remainder is `0`.

(ii) Here, `a = 1/2`
`P(1/2) = (1/2)^3+3(1/2)^2+3(1/2)+1 =1/8+3/4+3/2+1=27/8`
Remainder is `27/8`.

(iii) Here, `a = 0`
`P(0) = (0)^3+3(0)^2+3(0)+1 =1`
Remainder is `1`.

(iv)Here, `a = -pi`
`P(-pi) = (-pi)^3+3(-pi)^2+3(-pi)+1 =-pi^3+3pi^2-3pi+1`
Remainder is `-pi^3+3pi^2-3pi+1`.

(v)Here, `a = -5/2`
`P(-5/2) = (-5/2)^3+3(-5/2)^2+3(-5/2)+1 =-125/8+75/4-15/2+1`
` =1/8(-125+150-60+8=-27/8`
Remainder is `-27/8`.

669.

Factorise : `(a) x^(4)+4x^(2)+16 " " (ii) x^(4)+4`

Answer» `(a) " We have" , x^(4)+4x^(2)+16=(x^(2))^(2)+2(x^(2))(4)+(4)^(2)-8x^(2)+4x^(2)`
[we are trying to make the formula `a^(2)+2ab+b^(2)=(a+b)^(2)]`
`=(x^(2)+4)^(2)-4x^(2)=(x^(2)+4)^(2)-(2x)^(2)`
`=(x^(2)+4+2x)(x^(2)+4-2x) " " [because a^(2)-b^(2)=(a+b)(a-b)]`
`=(x^(2)+2x+4)(x^(2)-2x+4)`
`(b) x^(4)+4=(x^(2))^(2)+(2)^(2)`
`=ubrace((x^(2))^(2)+2(x^(2))(2)+(2)^(2))-2(x^(2))(2)` (adding and subtracting the same quantity)
`(x^(2)+2)^(2)-4x^(2)`
`=(x^(2)+2)^(2)-(2x)^(2)=(x^(2)+2+2x)(x^(2)+2-2x)=(x^(2)+2x+2)(x^(2)-2x+2)`
670.

What are the possible expressions for the dimensions of the cuboids whose volumes are given below : (i) Volume: 3x2 – 12x (ii) Volume: 12ky2 + 8ky – 20k

Answer»

(i) length × breadth × height 

= Volume of Cuboid 

= 3x2 – 12x 

= 3x2 – 12x 

= 3x(x – 4) 

= 3 × x × (x – 4)

l × b × h 

∴ Length = 3 Breadth = x Height = (x – 4) 

(ii) length × breadth × height 

= Volume of Cuboid 

= 12ky2 + 8ky – 20k 

12ky2 + 8ky – 20k 

= 4k(3y2 + 2y – 5) 

= 4k (3y2 + 5y – 3y – 5) 

= 4k (y(3y + 5) – 1 

(3y + 5)) = 4k × (3y + 5) × (y – 1) 

l × b × h 

∴ Length = 4k 

Breadth = (3y + 5) 

Height = (y – 1)

671.

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : (i) Area: 25a2 – 35a +12 (ii) Area : 35y2 + 13y – 12

Answer»

(i) Area: 25a2 – 35a + 12 

= 25a2 – 20a – 15a + 12 

= 5a(5a – 4) – 3(5a – 4) 

= (5a -4) (5a – 3) 

length × breadth 

= Area of rectangle (5a – 4) 

(5a – 3) = 25a2 – 35a + 12 

∴ Length = (5a – 4) 

Breadth = (5a – 3) 

(ii) Area : 35y2 + 13y – 12 

Area of Rectangle – Length × Breadth 35y2 + 13y – 12 

35y2 + 28y – 15y 

7y(5y + 4) – 3(5y + 4) 

(7y – 3) (5y + 4) 

∴ Length = (7y – 3) 

Breadth = (5y + 4)

672.

Find the zero of the polynomial in each of the following eases:(i) `p(x)=x+5` (ii) `p(x)=x-5` (iii) `p(x)=2x+5` (iv) `p(x)=3x-2`(v) `p(x)=3x` (vi) `p(x)=a x , a!=0`(vii) `p(x)=c x+d , c!=0, c , d` are real numbers.

Answer» (i)` p(x) = x +5 = 0`
`x=-5`
(ii) `p(x) = x-5=0`
`x=5`
(iii) `p(x)= 2x+5 = 0`
`x=-5/2`
(iv) `p(x)= 3x-2=0`
`x=2/3`
(v) `p(x)=3x=0`
`x=0`
(vi) `p(x)= ax=0`
`x=0`
(vii) `p(x) = cx+d=0`
`x=-d/c`
answers
673.

Factorise: (i) `49 a^2+70 a b+25 b^2` (ii) `(25)/4x^2-(y^2)/9`

Answer» `(i) 49a^2+70ab+25b^2`
`=(7a)^2+2**7a**5b+(5b)^2`
As, we know,` (x+y)^2 = x^2+y^2+2xy`
So, our expression becomes,
`=(7a+5b)^2 = (7a+5b)(7a+5b)`

`(ii)(25/4)x^2 - y^2/9`
`=(5x/2)^2 - (y/3)^2`
As, we know, `a^2 - b^2 = (a+b)(a-b)`
So, our expression becomes,
`=(5/2x+y/3)(5/2x-y/3)`
674.

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:Area: `25 a^2-35 a+12` Area: `35 y^2+13 y-12`(i) (ii)

Answer» (i) `25a^2 - 35a +12`
`= 25a^2 - 15a -20a +12`
`= 5a(5a-3) - 4(5a-3)`
`= (5a-4)(5a-3)`
so, `l = 5a-3`
`b= 5a-4`
(ii) `35y^2 +13y - 12`
`35y^2 - 15y +28y -12`
`= 5y(7y-3)+4(7y-3)`
`= (5y+4)(7y-3)`
`l = 5y+4`
`b= 7y-3`
answer
675.

Verify : (i) `x^3+y^3=(x+y)(x^2-x y+y^2)` (ii) `x^3-y^3=(x-y)(x^2+x y+y^2)`

Answer» (i) RHS= `(x+y)(x^2-xy+y^2)`
`= x(x^2-xy+y^2) + y(x^2-xy+y^2)`
`= x^3 cancel(- x^2y) + cancel(xy^2) + cancel(yx^2) cancel(- xy^2)+y^3`
`=x^3 + y^3` = LHS
hence proved
(ii) RHS = `(x-y)(x^2+xy+y^2)`
`= x(x^2+xy+y^2) - y(x^2+xy+y^2)`
`=x^3 +cancel(x^2y)+cancel(xy^2) cancel( - yx^2) cancel(-xy^2 )- y^3`
`=x^3- y^3` =LHS
hence proved
676.

Find the remainder when `x^3-a x^2+6x-a` is divided by `x-a`.

Answer» From remainder theorem, we know that if `p(x)` is divided by `(x-a)`, then remainder will be `p(a).`
Here, `p(x) = x^3-ax^2+6x-a`
`p(a) = a^3 - a*a^2+6a -a = a^3 -a^3 +6a - a = 5a`
So, remainder will be `5a`.
677.

Show that if 2 (a2 + b2 ) = (a + b)2 then a = b

Answer»

Given that 2 (a2 + b2 ) = (a + b)2 

To prove a = b 

As 2 (a2 + b2 ) = (a + b)2 

We have 

2a2 + 2b2 = a2 + 2ab + b2

2a2 – a2 + 2b2 – b2 = 2ab 

a2 + b2 = 2ab This is possible only when a = b 

∴ a = b

678.

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?(i) Volume: `3x^2-12 x` (ii) Volume: `12 k y^2+8k x-20 k`

Answer» 1) Volume=`3x^2-12x`
=3x(x-4)
Possible outcomes=3,x,(x-4)
=1,3x,(x-4)
=1,x,3(x-4)
=1,3,x(x-4)
2) Volume=`12ky^2+8ky-20k`
=k(12y^2+8y-20)
=4k(y-1)(3y+5)
one possible outcome=4k,(y-1)(3y+5)
679.

What are the possible polynomial expressions for the dimensions of the cuboids whose volumes are given below ?3x3 – 12x

Answer»

Volume = 3x3 – 12x 

= 3x (x2 – 4) 

= 3x (x + 2) (x – 2) are the dimensions.

680.

What are the possible polynomial expressions for the dimensions of the cuboids whose volumes are given below ?12y2 + 8y – 20

Answer»

Given that volume = 12y2 + 8y – 20 

= 4 (3y2 + 2y – 5)

= 4 [3y2 + 5y – 3y – 5] 

= 4 [y (3y + 5) – 1 (3y + 5)] 

= 4 (3y + 5) (y – 1) 

Hence 4, (3y + 5) and (y – 1) are the dimensions.

681.

Write the zeros of the polynomial x2 – x – 6.

Answer»

Given, Polynomial

= X2 – x – 6 = 0

x2 – 3x + 2x – 6 = 0

x(x – 3) + 2(x – 3) = 0

(x + 2)(x – 3) = 0

So, – 2 and 3 are the zeros of the given polynomial

682.

If the degree of a polynomial AB is 15 and the degree of polynomial A is 5, then find the degree of polynomial B.

Answer» Correct Answer - 10
683.

Factorise `a^(6)-b^(6)`.

Answer» Correct Answer - `(a-b)(a+b)(a^(2)+ab+b^(2))(a^(2)-ab+b^(2))`
684.

If fourth degree polynomial is divided by a quadratic polynomial, write the degree of the remainder.

Answer»

Degree of reminder is less than the degree of divisor so the degree of reminder could be one or zero depending on the quadratic polynomial.

685.

If `p(x)=x^(3)+2x^(2)+x` find : (i) p(0) (ii)p(2)

Answer» Correct Answer - (i) 0, (ii) 18
686.

Factorise `(a+b)^(3)-a-b`.

Answer» Correct Answer - `(a+b)(a+b+1)(a+b-1)`
687.

If f(x) = x3 + x2 – ax + b is divisible by x2 – x write the values of a and b.

Answer»

a = 2, b = 0

Given,

A polynomial

f(x) = x3 + x2 – ax + b

Which is divisible by x2 – x

Now,

x 2 – x = (x – 1) = (x – 0)(x – 1)

(x – 0) and (x – 1) are factors of polynomial f(x)

⇒ f(0) = 0

⇒ 0 3 + 0 – a × 0 + b = 0

⇒ b = 0

And f(1)

1 3 + 1 – a × 1 + b = 0

⇒ 2 – a = 0

⇒ a = 2

∴ a = 2 and b = 0

688.

Write the coefficients of the polynomial p(z) = z5 – 2z2 + 4.

Answer»

Given,

Polynomial p(z) = z5 – 2z2 + 4

Now first break the given equation,

We get,

Coefficient of z5 = 1

Coefficient of z4 = 0

Coefficient of z3 = 0

Coefficient of z2 = – 2

Coefficient of z = 0

Constant term = 4

Therefore 1, 0, 0, – 2, 0, 4 are coefficients of the polynomial p(z)

689.

Check whether p(x) is a multiple of g(x) or not(i) p(x) = x3 – 5x2 + 4x – 3,  g(x) = x – 2.(ii) p(x) = 2x3 – 11x2 – 4x+ 5,  g(x) = 2x + l

Answer»

(i) p(x) = x3 – 5x2 + 4x – 3,  g(x) = x – 2.

According to the question,

g(x)=x – 2,

Then, zero of g(x),

g(x) = 0

x – 2 = 0

x = 2

Therefore, zero of g(x) = 2

So, substituting the value of x in p(x), we get,

p(2) =(2)3 – 5(2)2 + 4(2) – 3

= 8 – 20 + 8 – 3

= – 7 ≠ 0

Hence, p(x) is not the multiple of g(x) since the remainder ≠ 0.

(ii) p(x) = 2x3 – 11x2 – 4x+ 5,  g(x) = 2x + l

According to the question,

g(x)= 2x + 1

Then, zero of g(x),

g(x) = 0

2x + 1 = 0

2x = – 1

x = – ½

Therefore, zero of g(x) = – ½

So, substituting the value of x in p(x), we get,

p(–½) = 2 × ( – ½ )3 – 11 × ( – ½ )2 – 4 × ( – 1/2) + 5

= – ¼ – 11/4 + 7

= 16/4

= 4 ≠ 0

Hence, p(x) is not the multiple of g(x) since the remainder ≠ 0.

690.

If `p(y)=y^(3)+y^(2)+y+1` find : (i) y(1) (ii) y(-1)

Answer» Correct Answer - (i) 4, (ii) 0
691.

Simplify `(4a+2b)^(3)+(4a-2b)^(3)`.

Answer» Correct Answer - `128a^(3)+96ab^(2)`
692.

Show that (i) `x+3 ` is factor of `69+11x-x^(2)+x^(3)` (ii) `2x-3` is factor of `x+2x^(3)-9x^(2)+12`

Answer» (I) let `p(x) =x^(3)-x^(2)+11 x+69`
we have to show that , x+3 is a factor of p(x) .
`i.e., p(-3)=0`
Now `p(-3)=(-3)^(3)-(-3)^(2)+11(-3)+69`
`=-2-9-33+69=-69+69=0`
hence ,(x+3) is a factor of p(x) .
(ii) Let `p(x) =2x^(3)-9x^(2)+x+12`
we have to show that ,2x -3 is a factor of p(x).
i.e., `p((3)/(2))=0`
Now ,
`p((3)/(2))=2((3)/(2))^(3)-9((3)/(2))^(2)+(3)/(2)+12`
`=2xx(27)/(8) -9xx(9)/(4)+(3)/(2)+12`
` =(27)/(4)-(81)/(4) +(3)/(2)+12`
`=(27-81+6+48)/(4)=(81-81)/(4)=0`
Hence ,`(2x-3)` is a factor of p(x).
693.

If a – b, a and a + b are zeros of the polynomial f (x) = 2x3 – 6x2 + 5x – 7, write the value of a.

Answer»

Given:

A polynomial f(x) = 2x3 – 6x2 + 5x – 7

And zeroes are a – b, a and a + b,

Let’s take

a = α

b = β

c = y

As we know that,

α + β + y = – b/a

(a – b) + a + (a + b) = – ( – 6)/2

3a = 3

a = 1

So, the value of a = 1

694.

If x3 + x2 - ax + b is divisible by (x2 -x),write the value of a and b.

Answer»

Equating x2 – x to 0 to find the zeroes, 

we will get 

x(x – 1) = 0 

⇒ x = 0 or x – 1 = 0 

⇒ x = 0 or x = 1 

Since, 

x3 + x2 – ax + b is divisible by x2 – x. 

Hence, 

the zeroes of x2 – x will satisfy x3 + x2 – ax + b 

∴ (0)3 + 02 – a(0) + b = 0 

⇒ b = 0 

And 

(1)3 + 12 – a(1) + 0 = 0 [∵b = 0] 

⇒ a = 2

695.

Show that p - 1 is a factor of p10 -1 and also of p11 -1.

Answer»

Let g (p) = p10 -1

and h(p) = p11 -1.

On putting p=1 in Eq. (i), we get

g(1)=110-1 = 1-1=0 

Hence, p-1 is a factor of g(p).

Again, putting p = 1 in Eq. (ii), we get

h(1) = (1)11 - 1 = 1 - 1 = 0 

Hence, p -1 is a factor of h(p)

696.

Show that,(i) x + 3 is a factor of 69 + 11c – x2 + x3(ii) 2x – 3 is a factor of x + 2x3 -9x2 +12

Answer»

(i) According to the question,

Let p(x) = 69 + 11x − x2 + x3 and g(x) = x + 3

g(x) = x + 3

zero of g(x) ⇒ g(x) = 0

x + 3 = 0

x = – 3

Therefore, zero of g(x) = – 3

So, substituting the value of x in p(x), we get,

p( – 3) = 69 + 11( – 3) –( – 3)2 + ( – 3)3

= 69 – 69

= 0

Since, the remainder = zero,

We can say that,

g(x) = x + 3 is factor of p(x) = 69 + 11x − x2 + x3

(ii) According to the question,

Let p(x) = x + 2x3 – 9x2 + 12 and g(x) =2x−3

g(x) = 2x – 3

zero of g(x) ⇒ g(x) = 0

2x – 3 = 0

x = 3/2

Therefore, zero of g(x) = 3/2

So, substituting the value of x in p(x), we get,

P(3/2) = 3/2 + 2(3/2)– 9(3/2)2 + 12

= (81 – 81) / 4

= 0

Since, the remainder = zero,

We can say that,

g(x) = 2x – 3 is factor of p(x) = x + 2x3 – 9x2 + 12

697.

Evaluate `(2x-3y+5)^(3)`.

Answer» Correct Answer - `8x^(3)-27y^(2)-36x^(2)y+54xy^(2)+125+60x^(2)+135y^(2)-180xy+150x-225y`
698.

Evaluate `((2)/(3)x-(3)/(4)y+(4)/(5)z)^(2)`.

Answer» Correct Answer - `(4)/(9)x^(2)+(9)/(16)y^(2)+(16)/(25)z^(2)-xy-(6)/(5)yz+(16)/(15)zx`
699.

If (a - b) , a and (a + b) are zeros of the polynomial 2x3 - 6x2 + 5x - 7 write the value of a

Answer»

By using the relationship between the zeroes of the quadratic polynomial. 

We have

Sum of zeroes = \(\frac{-(coefficient\,of\,x^2)}{coefficient\,of\,x^3}\)

⇒ a – b + a + a + b = \(\frac{-(-6)}2\)

⇒ 3a = 3 

⇒ a = 1

700.

If `alpha,beta,gamma` are the roots of equation `x^3+ qx + r =0` then find thene find the value of `1/6 (sum alpha^3)^2`.

Answer» `x^3 + qx + r =0`
roots of the equation are`alpha , beta, gamma`
`alpha + beta + gamma= 0`
`gamma beta + beta alpha + gamma alpha = - q`
`alpha beta gamma = r`
we have to find : `[1/3 sum alpha^3][1/2 sum alpha^3]`
`= 1/6 [ sum alpha^3]^2`
`= 1/6[alpha^3 + beta^3 + gamma ^3]^2`
if `a+b+c = 0`
then `a^3+ b^3+c^3 = 3abc`
`= 1/6(3 alpha beta gamma)^2`
`= (9r^2)/6 = 3/2r^2`
answer