Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

If α, β are the roots of the quadratic equation  ax2 + bx + c = 0, then αβ2 + α2β + αβ equals :(a) \(\frac{bc}{-a^2}\) (b) 0 (c) abc (d) \(\frac{c(a-b)}{a^2}\)

Answer»

(d) \(\frac{c(a-b)}{a^2}\)

Given, α, β are the roots of the equation ax2 + bx + c = 0. Then, 

α + β = – \(\frac{b}{a}\) , αβ = \(\frac{c}{a}\) 

Then, αβ2 + α2β + αβ = αβ (α + β) + αβ = \(\big(\frac{c}{a}\big)\) \(-\frac{b}{a}\) + \(\frac{c}{a}\)

= - \(\frac{bc}{a^2}+\frac{c}{a}=\frac{-bc+ac}{a^2}=\)\(\frac{c(a-b)}{a^2}\)

102.

A quadratic equation, whose roots are 2 + √3 and 2 – √3 = ………………. A) x2 – x – 4 = 0 B) x2 – 4x + 1 = 0 C) x2 + 4x + 3 = 0 D) x2 + x – 3 = 0

Answer»

Correct option is (B) x2 – 4x + 1 = 0

Roots of quadratic equation are \(2+\sqrt{3}\) and \(2-\sqrt{3}.\) 

\(\therefore\) Required quadratic equation is

\((x-(2+\sqrt{3}))(x-(2-\sqrt{3}))=0\)

\(\Rightarrow((x-2)-\sqrt3)((x-2)+\sqrt3)=0\)

\(\Rightarrow(x-2)^2-(\sqrt3)^2=0\)     \((\because(a-b)(a+b)=a^2-b^2)\)

\(\Rightarrow x^2-4x+4-3=0\)       \((\because(a-b)^2=a^2-2ab+b^2)\)

\(\Rightarrow x^2-4x+1=0\)

Correct option is B) x2 – 4x + 1 = 0

103.

Find the zeros of the quadratic polynomial x2 – 5x – 14. A) (+7,-2) B) (-7,-2) C) (-7, +2) D) (7, 2)

Answer»

Correct option is (A) (+7,-2)

The given quadratic polynomial is

\(P(x)=x^2-5x-14\)

For zeros of polynomial, we have

P(x) = 0

\(\Rightarrow x^2-5x-14=0\)

\(\Rightarrow x^2-7x+2x-14=0\)

\(\Rightarrow\) x (x - 7) + 2 (x - 7) = 0

\(\Rightarrow\) (x - 7)  (x+2) = 0

\(\Rightarrow\) x - 7 = 0 or x+2 = 0

\(\Rightarrow\) x = 7 or x = -2

Hence, the zeros of the quadratic polynomial are 7 & -2.

Correct option is A) (+7,-2)

104.

If 5 is a root of x2 – (K – 1)x + 10 = 0, then the value of K is A) -8 B) 7 C) 8 D) 12

Answer»

Correct option is (C) 8

Given that 5 is the root of \(x^2-(K-1)x+10=0\)

\(\Rightarrow5^2-(K-1)5+10=0\)

\(\Rightarrow\) 5 (K - 1) = 25+10 = 35

\(\Rightarrow\) K - 1 \(=\frac{35}5\) = 7

\(\Rightarrow\) K = 7+1 = 8

Correct option is C) 8

105.

By using the method of completing the square, show that the equation 2x2 + x + 4 = 0 has no real roots

Answer»

2x2 + x+ 4 = 0

⇒ 4x2 +2x + 8 = 0

(Multiplying both sides by 2)

⇒ 4x2 +2x = - 8

⇒ (2x)2 + 2 \(\times\) 2x \(\times\) 1/2 + (1/2)2 = - 8 + (1/2)2

[Adding (1/2)2 on both sides]

⇒ (2x + 1/2)2 = - 8 + 1/4 = - 31/4 < 0

But, (2x + 1/2)2 cannot be negative for any real value of x

So, there is no real value of x satisfying the given equation. 

Hence, the given equation has no real roots.

106.

If α, β be the roots of the quadratic equation x2 – 2x + 1 = 0, then the quadratic equation whose roots are α + β and αβ is ……………… A) x2 – 2x – 1 = 0 B) x2 + 2x + 1 = 0 C) x2 + 2x -1 = 0 D) x2 – 3x + 2 = 0

Answer»

Correct option is (D) \(x^2-3x+2=0\)

Given that \(\alpha\;and\;\beta\) are the roots of the quadratic equation \(x^2-2x+1=0.\)

\(\Rightarrow(x-1)^2=0\)

\(\Rightarrow\) x = 1, 1

\(\therefore\alpha=1,\beta=1\)

\(\therefore\alpha+\beta=1+1=2\)

\(\alpha\beta=1.1=1\)

\(\therefore\) Required quadratic equation is

\(x^2-\) (Sum of roots)x + Product of roots = 0

\(\Rightarrow x^2-(\alpha+\beta+\alpha\beta)x+(\alpha+\beta)\,\alpha\beta=0\)

\(\Rightarrow x^2-(2+1)x+2.1=0\)

\(\Rightarrow x^2-3x+2=0\)

Correct option is D) x2 – 3x + 2 = 0

107.

If one root of the quadratic equation x2 – 4x + 1 = 0 is 2 + √3, then the other root is …………A) 7 + √3 B) 7 – 4√3 C) 1 + √3 D) 2 – √3

Answer»

Correct option is (D) 2 – √3

Given quadratic equation is \(x^2-4x+1=0\)

Let the other root be x.

\(\therefore\) Sum of roots \(=\frac{-(-4)}1=4\)

\(\Rightarrow\) \(x+2+\sqrt{3}=4\)

\(\Rightarrow\) \(x=4-2-\sqrt3\)

\(\Rightarrow\) x = \(2-\sqrt{3}\)

Hence, the other root is \(2-\sqrt{3}.\)

Correct option is D) 2 – √3

108.

If x2 – px + q = 0 (p,q ∈ Rand p ≠ 0,q ≠ 0) has distinct real roots, then……………… A) p2 &lt; 4q B) p2 &gt; 4q C) p2 = 4qD) p2 + 4q = 0

Answer»

Correct option is B) p2 > 4q

109.

If α, β are the roots of x2 – 10x + 9 = 0, then | α – β| = A) 9 B) 8 C) -10D) 10

Answer»

Correct option is (B) 8

Given that \(\alpha,\beta\) are roots of \(x^2-10x+9=0\)

\(\therefore\) Sum of roots \(=\frac{-(-10)}1=10\)

\(\Rightarrow\) \(\alpha+\beta=10\)      ______________(1)

And product of roots \(=\frac91=9\)

\(\Rightarrow\) \(\alpha\beta=9\)            ______________(2)

Now, \((\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta\)

\(=10^2-4\times9\)

= 100 - 36

= 64 \(=8^2\)

\(\Rightarrow\) \(|\alpha-\beta|=8\)

Correct option is B) 8

110.

If α, β are roots of the equation 4x2 + 3x + 7 = 0, then 1/α + 1/β is equal to A. 7/3 B. −7/3 C. 3/7 D. −3/7

Answer»

given 4x+ 3x + 7 = 0 

We know sum of the roots = \(\frac{-3}{4}\) 

Product of the roots = \(\frac{7}{4}\) 

As given that α and β are roots then,

α + β =\(\frac{-3}{4}\) 

αβ =  \(\frac{7}{4}\) 

given \(\frac{1}{α }+ \frac{1}{β}\) 

\(\frac{α+β}{αβ}\) 

= \(-\frac{3}{\frac{4}{\frac{7}{4}}}\) 

= \(\frac{-3}{7}\) 

111.

If the difference in the roots of the equation x2 – px + q = 0 is unity, then which one of the following is correct ?(a) p2 + 4q = 1 (b) p2 – 4q = 1 (c) p2 + 4q = – 1 (d) p2 – 4q = – 1

Answer»

(b) p2 - 4q = 1. 

Given, x2 – px + q = 0 

Let α, β be the roots of the given equation. Then, 

α + β = – \(\frac{(-p)}{1}\) = p             ...(i),                αβ = \(\frac{q}{1}\) = q                        ...(ii) 

Also, α - β = 1 (given)                                     ...(iii) 

∴ From (i) and (iii), 2α = p + 1 ⇒ α = \(\frac{p+1}{2}\)

∴ From (i) and (iii), 2β = p – 1 ⇒ b = \(\frac{p-1}{2}\) 

Substituting these values of a and b in (ii), we have \(\big(\frac{p+1}{2}\big)\)\(\big(\frac{p-1}{2}\big)\) = q

⇒ \(\frac{p^2-1}{4}\) = q ⇒ p2 - 1 = 4q ⇒ p2 - 4q = 1. 

112.

If a and b are distinct real numbers, show that the quadratic equation 2(a2 + b2) x2 + 2 (a + b) x + 1 = 0 has no real roots.

Answer»

2(a2 + b2) x2 + 2 (a + b) x + 1 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 2 (a2 + b2), b = 2(a + b), c = 1

Discriminant:

D = b2 – 4ac

=[2(a + b)]2 – 4. 2 (a2 + b2).1

= 4a2 + 4b2 + 8ab – 8a2 – 8b2

= – 4a2 – 4b2 + 8ab

= – 4(a2 + b2 – 2ab)

= – 4(a – b)2 < 0

Hence the equation has no real roots.

113.

If the difference of the roots of x2 - px + q = 0 is unity, thenA.  p2 + 4q = 1B. p2 - 4q = 1C. p2 + 4q2 = (1 + 2q)2D. 4p2 + q2 = (1 + 2p)2

Answer»

Difference of the roots = \(\frac{\sqrt{D}}{|a|}\)

1 = \(\frac{\sqrt{b^2-4ac}}{|a|}\) 

1 =\(\frac{\sqrt{(-p)^2}-4(1)(q)}{|1|}\)

1 = p2 – 4q = 1 

p2 – 4q + 4q2 – 4q2 = 1 

p+ 4q2 = 1 + 2(2)(q) + (2q)2 

p2 + 4q2 = (1 + 2q)2

114.

For what values of p are the roots of the equation 4x2 + px + 3 = 0 real-and equal?

Answer»

4x2 + px + 3 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 4, b = p, c = 3

Find discriminant:

D = b2 – 4ac

= p2 – 4 x 4 x 3

= p- 48

Since roots are real and equal (given)

Put D = 0

p2 – 48 = 0

p2 = 48 = (±4√3)2

p = ± 4√3

Hence p= 4√3 or p = -4√3

115.

Show that the roots of the equation x2 + px – q2 = 0 are real for all real values of p and q.

Answer»

x2 + px – q2 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 1, b = p, c = -q2

Using discriminant formula:

D = b2 – 4ac

= (p)2 – 4 x 1 x (-q2)

= p2 + 4 q2 > 0

Hence roots are real for all real values of p and q.

116.

Find the value of a for which the equation (α – 12) x2 + 2(α – 12) x + 2 = 0 has equal roots.

Answer»

(α – 12) x2 + 2(α – 12) x + 2 = 0

Roots of given equation are equal ( given)

So, D = 0

4(α – 12) (α – 14) = 0

α – 14 = 0 {(α – 12) ≠ 0}

α = 14

Hence the value of α is 14

117.

If 3 is a root of the quadratic equation x2 – x + k – 0, find the value of p so that the roots of the equation x2 + k (2x + k + 2) + p = 0 are equal.

Answer»

Given: 3 is a root of equation x2 – x + k = 0

Substitute the value of x = 3

(3)2 – (3) + k = 0

9 – 3 + k = 0

k = -6

Now, x2 + k (2x + k + 2) + p = 0

x2 + (-6)(2x – 6 + 2) + p = 0

x2 – 12x + 36 – 12 + p = 0

x2 – 12x + (24 + p) = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 1, b = -12, c = 24 + p

Find Discriminant:

D = b2 – 4ac

= (-12)2 – 4 x 1 x (24 + p)

= 144 – 96 – 4p = 48 – 4p

Since roots are real and equal, put D = 0

48 – 4p = 0

4p = 48

p = 12

The value of p is 12.

118.

Find the values of p for which the quadratic equation 2x2 + px + 8 = 0 has real roots.

Answer»

2x2 + px + 8 = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 2, b = p, c = 8

Find D:

D = b2 – 4ac

= p2 – 4 x 2 x 8

= p2 – 64

Since roots are real, so D ≥ 0

p2 – 64 ≥ 0

p2 ≥ 64

≥ (±8)2

Either p ≥ 8 or p ≤ -8

119.

If -5 is a root of the quadratic equation 2x2 + px – 15 = 0 and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.

Answer»

Given: -5 is a root of the quadratic equation 2x2 + px – 15 = 0

Substitute the value of x = -5

2(-5)2 + p(-5) – 15 = 0

50 – 5p – 15 = 0

35 – 5p = 0

p = 7

Again,

In quadratic equation p(x2 + x) + k = 0

7 (x2 + x) + k = 0 (put value of p = 7)

7x2 + 7x + k = 0

Compare given equation with the general form of quadratic equation, which is ax2 + bx + c = 0

a = 7, b = 7, c = k

Find Discriminant:

D = b2 – 4ac

= (7)2 – 4 x 7 x k

= 49 – 28k

Since roots are real and equal, put D = 0

49 – 28k = 0

28k = 49

k = 7 / 4

The value of k is 7/4.

120.

A natural number, when increased by 12, equals 160 times its reciprocal. Find the number.

Answer»

Let the natural number = x

When the number increased by 12 = x + 12

Reciprocal of the number = 1/x

According to the question, we have,

x + 12 = 160 times of reciprocal of x

x + 12 = 160/ x

x( x + 12 ) = 160

x2 + 12x – 160 = 0

x2 + 20x – 8x – 160 = 0

x( x + 20) – 8( x + 20)= 0

(x + 20) (x – 8) = 0

x + 20 = 0 or x – 8 = 0

x = – 20 or x = 8

Since, natural numbers cannot be negative.

The required number = x = 8

121.

Divide 20 into two parts such that three times the square of one part exceeds the other part by 10.

Answer»

Let the two parts be x and y.

From the given information,

x + y = 20 ⟹y = 20 − x

3x2 = (20 − x) + 10

3x2 = 30 − x

3x2 + x − 30 = 0

3x2 − 9x + 10x − 30 = 0

3x(x − 3) + 10(x - 3) = 0

(x - 3) (3x + 10) = 0

x = 3, -10/3

Since, x cannot be equal to, -10/3 so, x=3

Thus, one part is 3 and other part is 20 − 3 = 17.

122.

The roots of the equation ax2 + bx + c = 0 will be reciprocal each other if(a) a = b (b) b = c (c) c = a (d) none of these

Answer»

Correct answer is (c) c = a 

Let the roots of the equation (ax2 + bx + c = 0) be a and 1/a.

∴ Product of the roots = a x 1/a = 1

⇒ c/a = 1

⇒ c = a

123.

If one root of the quadratic equation 3x2 - 10x + p = 0 is \(\frac13\),  then the value of p and the other root respectively is :(a) 3, \(\frac13\)(b) 3, 3(c) \(-\frac13\), \(-\frac13\)(d) –3, –3

Answer»

(b) 3, 3

\(\frac13\) is a root of the equation 3x2 - 10x + p = 0

⇒ 3 \(\big(\frac13\big)^2\) - 10 x \(\frac13\) + p = 0

\(\frac13\) - \(\frac{10}{3}\) + p = 0 ⇒ \(-\frac93\) + p = 0 ⇒ p = 3

∴ The equation becomes 3x2 - 10x + 3 = 0

⇒ 3x2 - 9x - x + 3 = 0

⇒ 3x (x - 3) - 1 (x - 3) = 0 ⇒ (3x - 1)(x - 3) = 0

⇒ x = \(\frac13\), 3

∴ p = 3 and the other root = 3.

124.

If one root of the quadratic equation 3x2 - 10x + k = 0. is reciprocal of the other , find the value of k.

Answer»

Let α and β be the roots of the equation 3x2 - 10x + k = 0

∴ α = 1/β 

(Given)

⇒  αβ = 1

(Product of the roots = c/α)

⇒ k = 3

Hence, the value of k is 3.

125.

The roots of the equation ax2 + bx + c = 0 will be reciprocal if A) a = bc B) b = c C) a = b D) c = a

Answer»

Correct option is (D) c = a

Let \(\alpha\;and\;\frac1\alpha\) be roots of equation \(ax^2+bx+c=0.\)

\(\therefore\) Product of roots \(=\frac ca\)

\(\Rightarrow\) \(\alpha\times\frac1\alpha\) \(=\frac ca\)

\(\Rightarrow\) 1 \(=\frac ca\)

\(\Rightarrow\) a = c

Hence, roots of equation \(ax^2+bx+c=0\) will be reciprocal if c = a.

Correct option is D) c = a

126.

The sum of a number and its reciprocal is 5/2. Represent this, situation in the form of a quadratic equationA) x – 1/x = 5/2B) x + 1/x = 5/2C) x + √x = 5/2D) x2 1/x2 = 5/2

Answer»

Correct option is (B) x + 1/x = 5/2

Let x be a number.

Then its reciprocal is \(\frac1x.\)

Given that sum of number and its reciprocal is \(\frac{5}{2}.\)

\(\therefore\) \(x+\frac{1}{x}=\frac{5}{2}\) which represent the given situation.

Correct option is B) x + 1/x = 5/2

127.

Find the differential equation x2 + y2 = a2.

Answer»

x2 + y2 = a2.

Differentiating given equation w.r.t. x, we get

2x + 2y(dy/dx) = 0

⇒  x + y(dy/dx) = 0.

128.

A train travels 180 km at a uniform speed. If the speed had been 9 km/hr more, it would have taken 1 hour less for the same journey. Find the speed of the train.

Answer»

The speed of the train 36km/hr

129.

Had Ajita scored 10 more marks in her mathematics test out of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get in the test?

Answer»

Let her actual marks be x 

Therefore, 9 (x +10) = x2 

i.e., x2 – 9x – 90 = 0 

i.e., x2 – 15x + 6x – 90 = 0 

i.e., x(x – 15) + 6(x –15) = 0 

i.e., (x + 6) (x –15) = 0 

Therefore, x = – 6 or x = 15 

Since x is the marks obtained, x ≠ – 6. Therefore, x = 15. 

So, Ajita got 15 marks in her mathematics test.

130.

A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of 6 km/h more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?

Answer»

Let its original average speed be x km/h. Therefore,

63/x + 72/(x + 6) = 3

7/x + 8/(x + 6) = 3/9 = 1/3

(7(x + 6) + 8x)/(x (x + 6)) = 1/3

i.e., 21 (x + 6) + 24x = x (x + 6) 

i.e., 21x + 126 + 24x = x2 + 6x 

i.e., x2 – 39x – 126 = 0 

i.e., (x + 3) (x – 42) = 0 

i.e., x = – 3 or x = 42 

Since x is the average speed of the train, x cannot be negative. 

Therefore, x = 42. 

So, the original average speed of the train is 42 km/h.

131.

Is it possible to design a rectangular mango grove whose length is twice its breadth and the area is 800 m2? If so, find its length and breadth.

Answer»

Let the breadth be ‘a’ m 

Given, rectangular mango grove whose length is twice its breadth. 

Length = 2a 

Area = 800 m2 

⇒ 2a × a = 800 

⇒ a2 = 400 

⇒ a = 20 m 

Thus, length = 40m

132.

Is it possible to design a rectangular mango grove whose length is twice its breadth, and area is 800 m2 ? If so, find its length and breadth.

Answer»

Let breadth be X cm 

length = 2X cms 

area = 800 

2X (X) = 800

X(X) = 400 

X2 = 400

X = 20

Yes it is possible to design a rectangular mangrove having breadth = 20 cm and length = 40 cm.

133.

One–fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of the river. Find the total number of camels.

Answer»

Let the total number of camels be x.

Number of camels in forest = x/4 .

Number of camels gone to mountains = 2√x

Remaining camels on bank of the river = 15

Total camels =  x/4 + 2√x + 15

x = x/4 + 2√x + 15

4x = x + 8√x + 60

3x – 60 = 8√x

Squaring both the sides,

9x2 + 3600 – 360x = 64x

9x2 – 424x + 3600 = 0

On simplifying further,

9x2 – 100x – 324x + 3600 = 0

x(9x – 100) – 36(9x – 100) = 0

(x – 36)(9x – 100) = 0

x = 100/9 or X = 36

The number of camels is 36. (As whole values are only considered)

134.

Find the roots of the equation 9x2 – 3x – 2 = 0.

Answer»

Given,

9x– 3x – 2 = 0.

⇒ 9x– 3x – 2 = 0.

⇒ 9x2 – 6x + 3x – 2 = 0

⇒ 3x (3x – 2) + 1(3x – 2) = 0

⇒ (3x – 2)(3x + 1) = 0

Now, either 3x – 2 = 0 ⇒ x = \(\frac{2}{3}\)

Or, 3x + 1= 0 ⇒ x = \(\frac{-1}{3}\)

Thus, the roots of the given quadratic equation are x = \(\frac{2}{3}\) and x = \(\frac{-1}{3}\) respectively.

135.

Find the roots of the equation 5x2 – 3x – 2 = 0.

Answer»

Given equation is 5x– 3x – 2 = 0.

⇒ 5x– 3x – 2 = 0.

⇒ 5x2 – 5x + 2x – 2 = 0

⇒ 5x(x – 1) + 2(x – 1) = 0

⇒ (5x + 2)(x – 1) = 0

Now, either 5x + 2 = 0 ⇒x = \(\frac{-2}{5}\)

Or, x -1= 0 ⇒x = 1

Thus, the roots of the given quadratic equation are 1 and x = \(\frac{-2}{5}\) respectively.

136.

Find the roots of the equation 16x – \(\frac{10}{x}\) = 27

Answer»

Given,

16x – \(\frac{10}{x}\) = 27

On multiplying x on both the sides we have,

⇒ 16x2 – 10 = 27x

⇒ 16x2 – 27x – 10 = 0

⇒ 16x2 – 32x + 5x – 10 = 0

⇒ 16x(x – 2) +5(x – 2) = 0

⇒ (16x + 5) (x – 2) = 0

Now, either 16x + 5 = 0 ⇒ x = \(\frac{-5}{16}\)

Or, x – 2 = 0 ⇒ x = 2

Thus, the roots of the given quadratic equation are x =\(\frac{-5}{16}\) and x = 2 respectively.

137.

Find the roots of the equation 48x2 – 13x – 1 = 0.

Answer»

Given equation is 48x– 13x – 1 = 0.

⇒ 48x– 13x – 1 = 0.

⇒ 48x– 16x + 3x – 1 = 0.

⇒ 16x(3x – 1) + 1(3x – 1) = 0

⇒ (16x + 1)(3x – 1) = 0

Either 16x + 1 = 0 ⇒ x = \(\frac{-1}{16}\)

Or, 3x – 1=0 ⇒ x = \(\frac{1}{3}\)

Thus, the roots of the given quadratic equation are x = \(\frac{-1}{16}\) and x = \(\frac{1}{3}\) respectively.

138.

Find the roots of the equation 25x(x + 1) = – 4.

Answer»

Given equation is 25x(x + 1) = -4

25x(x + 1) = -4

⇒ 25x+ 25x + 4 = 0

⇒ 25x+ 20x + 5x + 4 = 0

⇒ 5x (5x + 4) + 1(5x + 4) = 0

⇒ (5x + 4)(5x + 1) = 0

Now, either 5x + 4 = 0 therefore x = \(\frac{– 4}{5}\)

Or, 5x + 1 = 0 therefore x = \(\frac{– 1}{5}\)

Thus, the roots of the given quadratic equation are x = \(\frac{– 4}{5}\) and x = \(\frac{– 1}{5}\) respectively.

139.

Find the roots of the equation 6x2 + 11x + 3 = 0.

Answer»

Given equation is 6x+ 11x + 3 = 0.

⇒ 6x+ 9x + 2x + 3 = 0

⇒ 3x (2x + 3) + 1(2x + 3) = 0

⇒ (2x +3) (3x + 1) = 0

Now, either 2x + 3 = 0 ⇒ x = \(\frac{-3}{2}\)

Or, 3x + 1= 0 ⇒ x = \(\frac{-1}{3}\)

Thus, the roots of the given quadratic equation are x = \(\frac{-3}{2}\) and x = \(\frac{-1}{3}\) respectively.

140.

Find the roots of the equation 3x2 = -11x – 10.

Answer»

Given equation is 3x= -11x – 10

⇒ 3x+ 11x + 10 = 0

⇒ 3x+ 6x + 5x + 10 = 0

⇒ 3x(x + 2) + 5(x + 2) = 0

⇒ (3x + 2)(x + 2) = 0

Now, either 3x + 2 = 0 ⇒ x = \(\frac{-2}{3}\)

Or, x + 2 = 0 ⇒ x = -2

Thus, the roots of the given quadratic equation are x = \(\frac{-2}{3}\) and -2 respectively.

141.

If the roots of the equation (a – b)x2 + (b – c) x + (c – a) = 0 are equal, then A) 2b = a + c B) 2c = a + b C) 2a = b + c D) 2a = b – c

Answer»

Correct option is (C) 2a = b + c

For equal roots, we have

Discriminant = 0

\(\Rightarrow(b-c)^2-4(a-b)(c-a)=0\)

\(\Rightarrow(b^2+c^2-2bc)\) \(-(4ac-4a^2-4bc+4ab)=0\)

\(\Rightarrow(b^2+c^2+4a^2+2bc-4ab-4ac)=0\)

\(\Rightarrow b^2+c^2+(-2a)^2+2bc\) \(+2\times b\times -2a+2\times c\times -2a=0\)

\(\Rightarrow(b+c-2a)^2=0\)     \((\because a^2+b^2+c^2+2ab+2bc+2ac=(a+b+c)^2)\)

\(\Rightarrow b+c-2a=0\)

\(\Rightarrow\) 2a = b + c

Correct option is C) 2a = b + c

142.

If a = b = c, then the roots of the equation (x – a) (x – b) + (x – b)(x – c) + (x – c) (x – a) = 0 are A) imaginary B) real and equal C) real and unequal D) real

Answer»

Correct option is (B) real and equal

Given equation is

(x – a) (x – b) + (x – b)(x – c) + (x – c) (x – a) = 0

\(\Rightarrow x^2-(a+b)x+ab+x^2-(b+c)x\) \(+bc+x^2-(a+c)x+ac=0\)

\(\Rightarrow3x^2-((a+b)+(b+c)\) \(+(c+a))x+ab+bc+ac=0\)

\(\Rightarrow3x^2-2(a+b+c)x+ab+bc+ac=0\)

\(\Rightarrow3x^2-2\times3ax+a^2+a^2+a^2=0\)        \((\because a=b=c)\)

\(\Rightarrow3x^2-6ax+3a^2=0\)

\(\Rightarrow x^2-2ax+a^2=0\)

\(\Rightarrow(x-a)^2=0\)

\(\Rightarrow\) x - a = 0 or x - a = 0

\(\Rightarrow\) x = a or x = a

Hence, roots of given equation are real and equal.

Correct option is B) real and equal

143.

If the sum of the roots of the quadratic equation 3x2 + (2k + 1) x – (k + 5) = 0 is equal to the product of the roots, then the value of ‘k’ is A) 0 B) 1 C) -4 D) 4

Answer»

Correct option is (D) 4

Given quadratic equation is

\(3x^2+ (2k + 1)\,x \,– (k + 5)= 0\)

\(\therefore\) Sum of roots \(=\frac{-(2k+1)}3\)

& Product of roots \(=\frac{-(k+5)}3\)

Given that sum of roots = Product of roots

\(\therefore\) \(\frac{-(2k+1)}3\) \(=\frac{-(k+5)}3\)

\(\Rightarrow-(2k+1)=-(k+5)\)

\(\Rightarrow2k+1=k+5\)

\(\Rightarrow2k-k=5-1\)

\(\Rightarrow k=4\)

Correct option is D) 4

144.

If the sum of the roots of the quadratic equation 3x2 + (2k + 1) x – (k + 5) = 0 is equal to the product of the roots, then the value of k is A) 3 B) 5 C) 4 D) 2

Answer»

Correct option is (C) 4

Let \(\alpha\;and\;\beta\) are roots of equation \(3x^2+(2k+1)\,x-(k+5)=0.\)

\(\therefore\) Sum of roots \(=\frac{-(2k+1)}3\)

\(\Rightarrow\) \(\alpha+\beta\) \(=\frac{-(2k+1)}3\)    _____________(1)

And product of roots \(=\frac{-(k+5)}3\)

\(\Rightarrow\) \(\alpha\beta\) \(=\frac{-(k+5)}3\)         _____________(2)

Given that sum of roots = Product of roots

\(\Rightarrow\) \(\frac{-(2k+1)}3\) \(=\frac{-(k+5)}3\)

\(\Rightarrow\) 2k+1 = k+5

\(\Rightarrow\) 2k - k = 5 - 1 = 4

\(\Rightarrow\) k = 4

Correct option is C) 4

145.

A takes 10 days less than the time taken by B to finish a piece of work. If both A and B together can finish the work in 12 days, find the time taken by B to finish the work.

Answer»

Let the number of days in which B finishes the work be ‘b’. 

∴ Number of days in which A finishes the work = b – 10 

In 1 day, 

B finishes 1/b of the work 

A finishes 1/(b – 10) of the work 

Now, both A and B together can finish the work in 12 days

\(\Rightarrow \frac{1}{b}+\frac{1}{b\,-10}=\frac{1}{12}\)

⇒ 12(b – 10 + b) = b2 – 10b 

⇒ 24b – 120 = b2 – 10b 

⇒ b2 - 34b + 120 = 0 

⇒ b2 -30b – 4b + 120 = 0 

⇒ b(b – 30) – 4(b – 30) = 0 

⇒ b = 4, 30 b can’t be 4 as A takes 10 days less than B

Thus number of days in which B alone finishes the work is 30 days.

146.

If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?

Answer»

Let the slower pipe fill the reservoir in ‘a’ hours

Faster pipe fills it in ‘a – 10’ hours.

Given, the two pipes will fill the reservoir together in 12 hours.

In 1 hour, part of reservoir filled = 1/12

\(\Rightarrow \frac{1}{a}+\frac{1}{a\,-\,10}=\frac{1}{12}\)

⇒ 12(a + a – 10) = a2 – 10a 

⇒ 24a – 120 = a2 – 10a 

⇒ a2 - 34a + 120 = 0 

⇒ a2 – 30a – 4a + 120 = 0 

⇒ a(a – 30) – 4(a – 30) = 0 

⇒ (a – 4)(a – 30) = 0 

Value of a can’t be 4 as (a – 10) will be negative 

Thus a = 30

147.

Two pipes running together can fill a tank in \(11\frac{1}{9}\) minutes. If one pipe takes 5 minutes more than the other to fill the tank separately, find the time in which each p ipe would fill the tank separately.

Answer»

Let the faster pipe fill the tank in ‘a’ min

Slower pipe fills it in ‘a + 5’ min.

Given, the pipes running together can fill a tank in \(11\frac{1}{9}\) = 100/9 minutes.

In 1 min, part of tank filled = 9/100

\(\Rightarrow \frac{1}{a}+\frac{1}{a\,+\,5}=\frac{9}{100}\)

⇒ 100(a + a + 5) = 9(a2 + 5a) 

⇒ 200a + 500 = 9a2 + 45a 

⇒ 9a2 – 155a - 500 = 0 

⇒ 9a2 – 180a + 25a - 500 = 0 

⇒ 9a(a – 20) + 25(a – 20) = 0 

⇒ (9a + 25)(a – 20) = 0 

⇒ a = 20 mins

Slower pipe will fill it in 25 min

148.

Two water taps together can fill a tank in \(9\frac{3}{8}\) hours.The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

Answer»

Let the smaller diameter tap fill the reservoir in ‘a’ hours

Larger diameter tap fills it in ‘a – 10’ hours.

Given, two water taps together can fill a tank in \(9\frac{3}{8}=\) 75/8 hours.

In 1 hour, part of tank filled = 8/75

\(\Rightarrow \frac{1}{a}+\frac{1}{a\,-\,10}=\frac{8}{75}\)

⇒ 75(a + a – 10) = 8a2 – 80a 

⇒ 150a – 750 = 8a2 – 80a 

⇒ 8a2 – 230a + 750 = 0 

⇒ 4a2 – 115a + 375 = 0 

⇒ 4a2 – 100a – 15a + 375 = 0 

⇒ 4a(a – 25) – 15(a – 25) = 0 

⇒ (4a – 15)(a – 25) = 0 

Value of a can’t be 15/4 as (a – 10) will be negative 

Thus a = 25 

Time taken by faster tap = 25 – 10 = 15 hours

149.

Find the quadratic equation, whose solution set is:(i) {3,5} (ii) {−2, 3} (iii) {5, −4,} (iv) {−3, −2/5 }

Answer»

(i) Since solution set is {3,5}

⟹ x = 3 Or x = 5

⟹ x – 3 = 0 Or x – 5 = 0

⟹ (x – 3) (x – 5) = 0

⟹ x2 – 5x – 3x + 15 = 0

⟹ x2 – 8x + 15 = 0 

Which is the required equation.

(ii) Since solution set is {−2, 3}

⟹ x = – 2 Or x = 3

⟹ x + 2 = 0 Or x – 3 = 0

⟹ (x + 2) (x – 3) = 0

⟹ x2 – 3x + 2x − 6 = 0

⟹ x2 – x − 6 = 0 

Which is the required equation.

(iii) Since solution set is {5,−4,}

⟹ x = 5 Or x = −4

⟹ x − 5 = 0 Or x + 4 = 0

⟹ (x − 5) (x + 4) = 0

⟹ x2 – 5x + 4x − 20 = 0

⟹ x2 – x − 20 = 0

Which is the required equation.

(iv) Since solution set is {−3, -2/5}

⟹ x = −3 Or x = −2/5

⟹ x + 3 = 0 Or 5x + 2 = 0

⟹ (x + 3) (5x + 2) = 0

⟹ 5x2 + 2x + 15x + 6 = 0

⟹ 5x2 + 17x + 6 = 0

Which is the required equation.

150.

The roots of the quadratic equation x/a = a/x are A) a, – a B) -a2 , a2C) -a, -a D) a, a

Answer»

Correct option is (A) a, –a

Given equation is \(\frac{x}{a}=\frac{a}{x}\)

\(\Rightarrow x^2=a^2\)

\(\Rightarrow x=\pm a\)

Hence, x = a & x = -a are roots of given quadratic equation.

Correct option is A) a, – a