Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

The domain of the function `f(x)=sqrt(cos^(- 1)((1-|x|)/2))` isA. `[-3, 3]`B. `(-oo, -3) uu( 3, oo)`C. `(-oo, -3] uu [3, oo)`D. `1`

Answer» Correct Answer - A
For f (x) to be real , we must have
`-1 ge(1-|x|)/(2) ge 1`
`rArr -2 ge1 - |x| ge 2`
`rArr -3 -|x| ge 2`
`rArr - 3le - |x| le 1`
`rArr -1 le|x| le 3 rArr |x| le 3 x in [-3,3]`
Hence, domain (f) = [-3,3]
102.

The domain of definiton of the function `f(x)=(1)/(sqrt(x^(12)-x^(9)+x^(4)-x+1))` , isA. `(-oo,-1)`B. `(1,oo)`C. `(-1,1)`D. R

Answer» Correct Answer - D
f(x) assumes real values , if
`x^(12)-x^(9)+x^(4)-x+1 gt0`
`implies (x^(12)+x^(4))-(x^(9)+x)+1) gt 0`
`implies x^(4)(x^(8)+1)-x(x^(8)+1)+1 gt 0`
`implies x(x^(8)+1) (x^(3)-1)+1 gt 0`
Clearly , it is true for all ` x ge 1 or , x le 0`.
For ` 0 lt x lt 1`, we have
`x^(4) gt x^(8)`
`implies x^(4)+1 gt x^(8)+1`
`implies x^(4)+1 gt x(x^(8)+1)`
`implies -x(x^(8)+1)+x^(4)+1 gt 0`
`implies x^(12)-x(x^(8)+1)+x^(4)1 gt 0`
Thus , `x^(12)-x^(9)+x^(4)-x+1 gt 0` for all ` x in R. `
Hence domain of f(x) is R.
103.

The domain of definiton of the function ` f(x) = cot^(-1) {(x)/(sqrt(x^(2)-[x^(2)]))}` isA. `R - {pm sqrtn : n in N }`B. `R - { pm sqrtn : n ge 0, ne Z)`C. `R`D. `R-{0}`

Answer» Correct Answer - B
We know that `cos^(-1) x` is defined for all `x in R` .
Therefore, `cot^(-1){(x)/(sqrt(x^(2) -[x]))}` is defined, if
`x^(2) -[x^(2)] gt0`
`rArr x^(2) gt [x^(2)]`
`rArr x^(2) in R and x^(2) ne 0,1,2,3,....`
`rArr x ne R and x ne p, sqrt(n),n=0,1,2,.....`
`rArr x in R- {pm sqrt(n) : ngt 0, n in z}`
Hence, domina `f = R -{pm sqrt(n) :n gt 0, n in Z}`
104.

The function `f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1)` is defined on the set S, where S is equal toA. `{-3,0}`B. `[-3, 0]`C. `[0, 3]`D. `phi`

Answer» Correct Answer - A
We know that `cot^(-10 x` is defined for all `x in R` and `cos^(-1) x ` is defined for all `in [-1,1]` , Therefore,f(x) is defined if
`x(x + 3) ge 0` and `0 le x^(2)+ 3x + 1 le1`
`rArr x^(2) + 3x ge 0 and -1le x^(2) + 3x le 0 rArr x = - 3,0`
105.

Let g(x) be a function defined on [-1,1]. If the area of the equilateral triangle with two of its vertices at (0,0) and `(x,g(x))` is `(sqrt(3))/(4)` , then the function g(x) , isA. `pm sqrt(1-x^(2))`B. `-sqrt(1-x^(2)) or sqrt(1-x^(2))`C. `sqrt(1-x^(2))` onlyD. `sqrt(1+x^(2))`

Answer» Correct Answer - B
106.

The domain of definition of the function `f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x)` , isA. `1 le x le 5`B. `1 lt x lt 4`C. `1 le x le 4`D. `1 le x le 4`

Answer» Correct Answer - C
107.

The domain of definition of `f(x)=sin^(-1)(|x-1|-2)` isA. `[-2,0] cup [2,4]`B. `(-2,0),cup(2,4)`C. `[-2,0] cup [1,3]`D. `[-2,0] cup [1,3]`

Answer» Correct Answer - A
108.

The period of the function `f(x)=|sinx|-|cosx|` , isA. `pi//2`B. `pi`C. `2pi`D. none of these

Answer» Correct Answer - B
We have,
`f(x)=|sinx)-|cos x|`
`:. f(pi+x)=|sin(pi+x)|-|cos(pi+x)|`
`implies f(pi+x)=| -sinx|-|-cos x|`
`implies f(pi+x)=|sin x|-|cosx|=f(x)` for all ` x in R `
` implies f(pi+x)=f(x)` for all ` x in R `
So, f(x) is periodic with period `pi`.
109.

Let f be a real valued periodic function defined for all real umbers x such that for some fixed ` a gt 0` , `f(x+a)=(1)/(2)+sqrt(f(x)-{f(x)}^(2))` for all x . Then , the period of f(x) isA. aB. 2aC. 3aD. 4a

Answer» Correct Answer - B
We have ,
`f(x+a)=(1)/(2)+sqrt(f(x)-{f(x)}^(2))`
`:. f(x+a+a)=(1)/(2)+sqrt(f(x+a)-{f(x+a)}^(2))`
`implies f(x+2a)=(1)/(2)+sqrt(f(x+a){1-f(x+a)})`
`impliesf(x+2a)=(1)/(2)+ sqrt({(1)/(2)+sqrt(f(x)-{f(x)}^(2))}{(1)/(2)-sqrt(f(x)-{f(x)}^(2))})`
`implies f(x+2a)+(1)/(2)+sqrt((1)/(4)-{f(x)-{f(x)}^(2)})`
`implies f(x+2a)=(1)/(2)+sqrt((1)/(4)-f(x)+{f(x)}^(2))`
`implies f(x+2a)=(1)/(2)+sqrt({f(x)-(1)/(2)}^(2))`
`implies f(x+2a)=(1)/(2)+|f(x)-(1)/(2)|" "[ :. sqrt(x^(2))=|x|]`
`implies f(x+2a)=(1)/(2)+f(x)-(1)/(2)" " [ :. f(x) ge (1)/(2)]`
`implies f(x+2a)=f(x)` for all x .
Hence, f(x) is a periodic function with period 2a.
110.

Let f(x) be a real valued periodic function with domain R such that `f(x+p)=1+[2-3f(x)+3(f(x))^(2)-(f(x))^(3)]^(1//3)` hold good for all ` x in R ` and some positive constant p, then the periodic of f(x) isA. pB. 3pC. 2pD. `p^(2)`

Answer» Correct Answer - C
We have ,
`f(x+p)=1+[2-3f(x)+3(f(x))^(2)-(f(x))^(3)]^(1//3)`
`implies f(x+p)=1+[1+{1-f(x)}^(3)]^(1//3)`
`implies f(x+p)-1=[1-{f(X)-1}^(3)]^(1//3)`
` implies g(x+p)=[1-{g(x)}^(3)]^(1/3)" "`…..(i)
where g(x) =f(x)-1.
`implies g(x+2p)=[1-{g(x+p)}^(3)]^(1//3)" "`[ On replacing x by x+p]
`implies g(x+2p)=[1-{1-g(x)}^(3)]^(1//3)" "`[Using (i)]
`implies g(x+2p)=g(x)` for all ` x in R `
`implies g(x+2p)-1=f(x)-1`
`implies f(x+2p)=f(x)`
Hence , f(x) is a period function with period 2p.
111.

If the function `f: RvecA`given by `f(x)=(x^2)/(x^2+1)`is surjection, then find `Adot`A. RB. [0,1]C. (0,1]D. [0,1)

Answer» Correct Answer - D
112.

The range of the function `f(x)=(x)/(1+x^(2))` isA. `[0,1//2]`B. `[-1//2,1//2]`C. `[-1//2,0]`D. `[-1//2,0) cup (0,1//2]`

Answer» Correct Answer - B
Clearly, f(x) is defined for all ` x in R. `
So, domain (f)=R
In order to find the range of f(x) , let
y=f(x)
`implies y=(x)/(x+x^(2)`
`implies x^(2)y-x+y=0`
`implies x=(1 pm sqrt(1-4y^(2)))/(2y)`
For x to be real, we must have
`1-4y^(2) ge 0 and y ne 0 implies -(1)/(2) le y le (1)/(2) and y ne 0`
Also , y=-0 for x=0
Hence, range of f(x)=[-1/2,1/2]
113.

Range of the function `f(x)=(1+x^2)/(x^2)` is equal toA. (0,1)B. [0,1]C. `(1,oo)`D. `[1,oo)`

Answer» Correct Answer - C
We observe that f(x) is defined for all ` x in R -{-0}` .
So, domain (f)=R-{0}
Let ` y=(1+x^(2))/(x^(2))`. Then,
`y=(1+x^(2))/(x^(2))implies pm sqrt((1)/(y-1))`
for x to be real, we must have
`y-1 gt 0 implies ygt 1implies y in (1,oo)`
Hence, range `(f)=(1,oo)`
114.

Range of the function `f(x)=(x^2-3x+2)/(x^2+x-6)` isA. `R-[1//5,1] `B. `R`C. `R-{1}`D. none of these

Answer» Correct Answer - C
We observe that f(x) is defined for ` x^(2)+x-6 ne 0`,
i.e., ` x ne -3,2`
`:. ` Domain (f)=R-{-3,2}
Let `y=(x^(2)-3x+2)/(x^(2)+x-6) =(x-1)/(x+3)implies s=(3y+1)/(y-1)`
Clearly , x is real for ` y-1 ne 0, i.e., y ne 1`.
Hence, range (f) =R-{1}`
115.

Range of the function `f(x)=log_esqrt(4-x^2)` isA. `(0,oo)`B. `(-oo,oo)`C. `(-oo, log_(e) 2]`D. `(log_(e)2,oo)`

Answer» Correct Answer - C
Clearly , `f(x)=log_(e)sqrt(4-x^(2))` is defined for all ` x in (-2,2)`
Let y =f(x). Then,
`y=logesqrt(4-x^(2)) implies e^(2y)=4-x^(2)implies x=sqrt(4-e^(2y))`
Clearly , x is real , if
`4-e^(2y) ge 0 implies 0 lt e^(y) le 2 " "[ :. e^(y) gt 0]`
`implies -oo lt 6 le log_(e)2implies y in (-oo, log_(e)2]`
116.

If `f(x)=cos[pi^2]x ,`where `[x]`stands for the greatest integer function, then`f(pi/2)=-1`(b) `f(pi)=1``f(-pi)=0`(d) `f(pi/4)=1`A. `f((pi)/(2))=-1`B. `f(pi)=1`C. `f(-pi)=-1`D. `f((pi)/(4))=2`

Answer» Correct Answer - A
We have ,
`f(x) =cos[pi^(2)]x+cos[-pi^(2)]x`
`implies f(x)=cos9x + cos (-10x)`
`implies f(x)=cos9x+ cos 10 x`
`:. f((pi)/(2)) =cos""(9x)/(2)+ cos 5 pi =0+(-1)^(5)=-1`
`f(pi) = cos 9 pi + cos 10 pi=(-1)^(9) +(-1)^(10)=-1+1=0`
`f(-pi)= cos (-9pi)+ cos (-10pi) = cos 9 pi + cos 10 pi=0`
` f((pi)/(4))= cos (9pi)/(4)+ cos (10 pi)/(4)=(1)/(sqrt(2))+0=(1)/(sqrt(2))`
Hence , option (a) is correct.
117.

If `f : R -> R` is defined by `f(x) = 1 /(2-cos3x)` for each `x in R` then the range of `f` isA. `[-1//3,0]`B. RC. [1/3,1]D. none of these

Answer» Correct Answer - C
118.

If `f: R to R and g: R to R `are defined by `f(x)=2x+3 and g(x)=x^(2)+7` , then the values of x such that `g(f(x))=8` areA. 1,2B. `-1,2`C. `-1,-2`D. `1,-2`

Answer» Correct Answer - C
119.

The domain of definition of the function `f(x)=(1)/(sqrt(|x|-x))` isA. RB. `(0,oo)`C. `(-oo,0)`D. none of these

Answer» Correct Answer - C
120.

The set of values of x for which the function `f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2))` exists isA. RB. R-{0}C. `phi`D. none of these

Answer» Correct Answer - C
121.

`f(x)=sqrt(sin^(- 1)(log_2x))`A. `x in (1,2)`B. `s in [1,2]`C. `x in [2,oo)`D. `x in (0,oo)`

Answer» Correct Answer - B
122.

The domain of the definition of the function `f(x)=sqrt(1-sqrt(1-sqrt(1-x^(2))))` , isA. `(-oo,1)`B. `(-1,oo)`C. `[0,1]`D. `[-1,1]

Answer» Correct Answer - D
Clearly, f(x) is defined , if
`1-sqrt(1-sqrt(1-x^(2))) ge 0, 1-sqrt(1-x^(2)) ge 0 and 1-x^(2), ge 0`
`implies 1 ge 1-sqrt(1-x^(2)), 1 ge 1-s^(2) and x^(2)-1 le 0`
`implies sqrt(1-x^(2)) ge 0, x^(2) ge 0 and x^(2) -1 le 0`
`implies x^(2)-1 le 0`
`implies -1 le x le 1`
`implies x in [-1,1]`
123.

Let `f: R to R ` be given by `f(x+(5)/(6))+f(x)=f(x+(1)/(2))+f(x+(1)/(3))` for all ` x in R ` . Then ,A. f(x) is periodicB. f(x) is evenC. `f(x+2)-f(x+1)=f(x+1)-f(x)`D. none of these

Answer» Correct Answer - C
we have, `f(x+(5)/(6))+f(x)=f(x+(1)/(2))+f(x+(1)/(3))` for all ` x in R `
Clearly , `(x+(5)/(6))+x=(x+(1)/(2))+(x+(1)/(3))`
Thus, f(x) satisfies the property
f(u)+f(v)=f(a)+f(b) if u+v=a+b
We observe that option (c ) satisfied this property .
124.

Let f be a real valued function satisfying `f(x+y)=f(x)f(y) ` for all `x, y in R ` such that f(1)=2 . If ` sum_(k=1)^(n)f(a+k)=16(2^(n)-1) `, then a=A. 3B. 4C. 2D. none of these

Answer» Correct Answer - A
From illustration 11 , we have
`f(x)=[f(1)]^(x)=2^(x) ` for all ` x in R `
`: . sum_(k=1)^(n)f(a+k)=16(2^(n)-1)`
`implies sum_(k=1)^(n)2^(a+k)=16(2^(n)-1)`
`implies 2^(a) sum_(k=1)^(n)2^(k)=16(2^(n)-1)`
`implies 2^(a)xx2 ((2^(n)-1)/(2-1))=16(2^(n)-1)implies 2^(a+1)=2^(4)implies a=3`
125.

Let f be a real valued function satisfying ` f(x+y)=f(x)f(y)` for all ` x, y in R ` such that `f(1)=2 `. Then , `sum_(k=1)^(n) f(k)=`A. `2^(n+1)-2`B. `2^(n+1)-1`C. `2^(n)-1)`D. `2^(n)-2`

Answer» Correct Answer - A
We have , `f(x)=[f(1)]^(x)=2^(x)` for all ` x, y in R . `
`:. sum_(k=1)^(n)f(k)=sum_(k=1)^(n)2^(k)=2((2^(n)-1)/(2-1))=2x^(n+1)-2`
126.

Let f be a real valued function satisfying `f(x+y)=f(x)+f(y)` for all ` x, y in R and f(1)=2`. Then `sum_(k=1)^(n)f(k)=`A. `(n(n+1))/(2)`B. `n(n+1))`C. `(n+1)`D. `n`

Answer» Correct Answer - B
We have, `f(x)=xf(1)=2x ` for all `x in R `.
`:. Sum_(k=1)^(n)f(k)=sum_(k=1)^(n) 2k=2 sum_(k=1)^(n)k=n(n+1)`
127.

For ` x in R , x ne0, 1, ` let `f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2…..` Then the value of `f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2))` is equal toA. `(4)/(3)`B. `(1)/(3)`C. `(5)/(3)`D. `(8)/(3)`

Answer» Correct Answer - C
We have , `f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x))`.
`:. f_(1)(x)=f_(0)(f_(0)(x))=f_(0)((1)/(1-x))=(1)/(1-(1)/(1-x))=(x-1)/(x)`
`and , f_(2)(x)=f_(0)(f_(1)(x))=f_(0)((x-1)/(x))=(1)/(1-(x-1)/(x))=x`
Thus, ` f_(3)(x)=f_(0)(f_(2)(x))=f_(0)(x)`
`f_(4)(x)=f_(0)(f_(3)(x))=f_(0)(f_(0)(x))=f_(1)(x)`
`f_(5)(x)=f_(0)(f_(4)(x))=f_(0)(f_(1)(x))=f_(2)(x)=x`
`f_(6)(x)=f_(0)(f_(5)(x))=f_(0)(f_(2)(x))=f_(0)(x)` and so on.
In general `f_(3n)(x)=f_(0)(x)`
` f_(3n_+1)(x)=f_(1)(x) and f_(3n+2)(x)=f_(2)(x)=x ` for ` n=1,2,`
`:. f_(100)(x)=f_(1)(x)=(x-1)/(x)`.
Hence, `f_(100)(x)+f_(1)((2)/(3))+f_(2)((3)/(2))=f_(1)(3)+f_(1)((2)/(3))+f_(2)((3)/(2))`
`=(30-1)/(3)+((2)/(3)-1))/((2)/(3))+(3)/(2)=(2)/(3)-(1)/(2)+(3)/(2)=(5)/(3)`
128.

If `f(x)=(x)/(x-1)`,then`underset( 19 "times")( (fofofo…of))` (x) is equal toA. `(x)/(x-1)`B. `((x)/(x-1))^(19)`C. `(19x)/(x-1)`D. `x`

Answer» Correct Answer - A
We have, `f(x)=(x)/(x-1)`
`:. Fof(x)=f(f(x))=f((x)/(x-1))=((x)/(x-1))/((x)/(x-1)-1)=x`
`implies fofof(x)=f(x)=(x)/(x-1)`
` :. underset(19" times ")((fofofo ...of))(x)=f(x)=(x)/(x-1)`
129.

If `f(x)+2f((1)/(x))=3x,x ne 0`, and `S={x in R : f (-x)},` then S:A. is an empty setB. contains exactly one elementC. Contains exactly two elements .D. contains more than two elements

Answer» Correct Answer - C
We have,
`f(x)+2f((1)/(x))=3x" " `….(i)
Replacing x by `(1)/(x)`, we get
`f((1)/(x))+2f(x)=(3)/(x)" " `….(ii)
Solving (i) and (ii) , we obtain
`f(x)=3((2)/(x)-x)`
`:. f(x)=f(-x)`
`implies 3((2)/(x)-x)=3(-(2)/(x)+x)`
`implies (4)/(x)-2x=0implies 2x^(2)-4=0implies x=pm sqrt(2)`
Hence , `S={x in R: f(x)=f(-x)}={-sqrt(2), sqrt(2)}`
130.

If `3f(x)-f((1)/(x))= log_(e) x^(4)` for `x gt 0` ,then `f(e^(x))=`A. xB. `log_(e)x `C. `e^(x)`D. none of these

Answer» Correct Answer - A
We have ,
`3f(x)-f((1)/(x))=log_(e) x^(4)`
`implies 3f(x)-f((1)/(x))=4 log_(e)x " " ` ….(i)
`implies 3f((1)/(x))-f(x)=4 log_(e)((1)/(x))" "`[Replacing x by 1/x]
`implies 3f((1)/(x))-f(x)=-4 log_(e)x" "`…..(ii)
Solving (i) and (ii) , we get
`8f(x)=8log_(e)x implies f(x)=log_(e)ximplies f(e^(x))=x`
131.

If [x] denotes the greatest integer less than or equal to ` x and n in N , ` then ` f(X)= nx+n-[nx+n]+tan""(pix)/(2)` , isA. a periodic function with period 1B. a periodic function with period 4 .C. not periodicD. a periodic function with period 2.

Answer» Correct Answer - D
For ` n in N`, we find that
`nx+n-[nx+n]=nx-[nx]` is a periodic with period `(1)/(n)`, because x-[x] is periodic with period 1.
Also , ` tan""(pix)/(2)` is periodic with period `(pi)/(pi//2)=2`
Hence , f(x) is periodic with period 2, i.e., the LCM of `(1)/(n)` and 2 .
132.

Let `f(x)=(sin 2n x)/(1+cos^(2)nx), n in N ` has `(pi)/(6)` as its fundamental period , then n=A. 2B. 4C. 6D. none of these

Answer» Correct Answer - C
We have,
`f(x)=( sin 2n x)/(1+ cos^(2)nx)implies f(x)=(2 sin 2nx)/(3+cos 2nx)`
Clearly , period of `f(x)` is ` (2pi)/(2n)=(pi)/(n)`
`:. (pi)/(n)=(pi)/(6)implies n=6`
133.

Which of the following functions is an odd functions ?A. `f(x)`= constB. f(x)=sinx+ cosxC. `f(x)=sin{log_(10)(x+sqrt(x^(2)+1))}`D. `f(x)=1+x+2x^(2)`

Answer» Correct Answer - C
Clearly , g(x)= sin x and `h(x)=log(x+sqrt(x^(2)+1))` both the odd functions. Therefore , f(x)=goh(x) is also an odd functions.
134.

Which of the following functions is an odd functions ?A. `f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))`B. `f(x)=x((a^(x)+1)/(a^(x)-1))`C. `f(x)=log_(10)((1-x^(2))/(1+x^(2)))`D. f(x)=k (constant )

Answer» Correct Answer - A
If ` f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))`, then
`f(-x)=sqrt(1-x+x^(2))-sqrt(1+x+x^(2))`
`implies f(-x)=-f(x)`
So, f (x) is an odd functions
Thus, option (a) is correct .
If `f(x)=x((a^(x)+1)/(a^(x)-1))`, then
` f(-x)=x((a^(-x)+1)/(a^(-x)-1))=-x((1+^(x))/(1-a^(x)))=x((a^(x)+1)/(a^(x)-1))-f(x)`
So, f(x) is an even function.
Thus , option (b) is not correct.
If `f(x)=log_(10)((1-x^(2))/(1+x^(2)))`, then `f(-x)=log_(10)((1-x^(2))/(1+x^(2)))=f(x)`
So, f(x) is an even function. Thus, option (c ) is not correct
If f(x)=k for all `x ` then
`f(-x)=f(x) ` for all `ximplies f(x)` is an even functions.
135.

Statement-1: The function f(x) given by `f(x)=sin^(-1){log(x+sqrt(x^(2)+1))}` is an odd function. Statement:2 The composition of two odd functions is an odd function.A. Statement-1 is True, Statement-2 is True, statement-2 is a correct explanation for the statement-1 .B. Statement-1 is True, Statement-2 is True, statement-2 is not a correct explanation for the statement-1 .C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False , Statement-2 is True.

Answer» Correct Answer - A
Let `phi(x) and Psi(x)` be two odd functions. Then, `(phi 0 Psi)(-x)=phi(Psi(-x))=phi(-Psi(x))=-phi(Psi(x))=-phi0Psi(x)`
`implies phi 0 Psi` is an odd function.
So,statement-2 is true.
If `phi(x)=sin^(-1)x and Psi(x)=log(x+sqrt(x^(2)+1))`. Then, `phi` and `Psi` are odd functions such that `phi 0 Psi=f`.
Hence, f is an odd function.
so, statement-1 is true.
Also, statement-2 is a correct explanation for statement-1 .
136.

Let `f(x)= cos^(-1)((x^(2))/(x^(2)+1))`. Then , the range of the f , isA. `(0, pi//2]`B. `[-pi//2, pi//2]`C. `[-pi//2, 0]`D. none of these

Answer» Correct Answer - A
Since `0 le (x^(2))/(x^(2) + 1) lt 1` for all `x in R`. Therefore
`0 lt cos^(-1) ((x^(2))/(x^(2)+1)) lt (pi)/(2)`
` 0 lt f(x) le (pi)/(2) rArr` Range of `f(x) = (0,pi//2)]`
137.

Let X be the set of all positive such that `f(x+y) = f(xy)` for all `x ge 4, y ge 4`. If `f(8)= 9`, then f(9) is equal to.A. 8B. 9C. 81D. 64

Answer» Correct Answer - B
We have, `f(x+y)=f(xy)` for all x,y` ge 4`
`therefore f(9) = f(5+4) = f(5xx4) = f(20) = f(16+4) = f(16 xx 4)`
`= f(8xx8) = f(8+8) = f((16) = f(4xx4) = f(4+4) = f(8) = 9`
138.

The range of the function ` f(x) = (1)/(2-sin 3x)` isA. `(1//3, 1 )`B. `[1//3, 1 )`C. `[1//3, 1]`D. none of these

Answer» Correct Answer - C
Cleary, domain of `f(x)` is R and `f(x) lt 0` for all `x in R`
Let `y = f(x)`. Them
`y = (1)/(2-sin 3x)`
`rArr sin 3x = (2y-1)/(y) rArr x = (1)/(3) sin^(-1)((2y-1)/(y))`
For x to be real, we must have
`rArr -1 le (2y-1)/(y) le 1`
`rArr - y le 2y -1 le y" "[beacuse y = f(x) gt 0]`
` rArr -y le 2y - 1 and 2y - 1 le y`
`rArr y gt (1)/(3) and y le 1 rArr y in [1//3,1]`
Hence, range `(f) = [1//3,1]`
139.

The domain of the function `f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2)))`, isA. `[1,2)`B. `[2,3)`C. `[1,2]`D. `[2,3]`

Answer» Correct Answer - B
140.

Which of the following functions has period `pi` ?A. `|-tanx|+cos 2x `B. `2 sin""(pix)/(3)+ 3 cos ""(2pix)/(3)`C. `6 cos (2pix+(pi)/(4))+5 sin (pi x+(3pi)/(4))`D. `| tan 2x|+| sin 4x|`

Answer» Correct Answer - A
141.

If `f : R -> R` are defined by `f(x) = x - [x]` and `g(x) = [x]` for `x in R`, where [x] is the greatest integer not ex-ceeding x, then for every` x in R, f(g(x))=`A. xB. 0C. f(x)D. g(x)

Answer» Correct Answer - B
142.

Let `f(x)=min{x,x^2}`, for every `x in R`. ThenA. `f(x)={{:(x"," x ge1),(x^(2)","0 lex lt1),(x" ," x lt 0):}`B. `f(x)={{:(x^(2)","x ge1),(x"," x lt1):}`C. `f(x)={{:(x","x ge1),(x^(2)"," x lt1):}`D. `f(x)={{:(x^(2)","x ge1),(x"," 0 lex lt1),(x^(2)"," x lt0):}`

Answer» Correct Answer - A
143.

A polynomial function f(x) satisfies the condition `f(x)f(1/x)=f(x)+f(1/x)` for all `x inR`,`x!=0`. If f(3)=-26, then f(4)=A. `-35`B. `-63`C. 65D. none of these

Answer» Correct Answer - B
We know that a polynomial function f(x) of degree n satisfying.
`f(x)f((1)/(x))= f((1)/(x)) ` for all `x(ne0) in R`is of the form
`f(x) = 1 pm x^(n) ` for all `x (ne 0) in R`.
We are given that f(3) =- 26.
`therefore f(x) = 1 - x^(n)" ".....(i)`
`rArr f(3) = 1- 3^(n)`
`rArr -26= 1-3^(n)" "[becausef (3) = - 26]`
`rArr 3^(n) = 27 rArr 3^(n) = 3^(3) rArr n = 3`
Substituting n = 3 in (i), we get
`f(x) = 1-x^(3) rArr f(4) = 1-4^(3) = - 63`
144.

If `f: R to R, g , R to R` be two funcitons, and `h(x) = 2 "min" {f(x) - g(x),0}` then `h(x)=`A. `f(x) + g(x) -|g(x)-f(x)|`B. `f(x) + g(x) +|g(x) - f(x)|`C. `f(x)-g(x)+|g(x) +|g(x) - f(x)|`D. `f(x) -g(x) -|g(x) - f(x)|`

Answer» Correct Answer - D
Following cases arise.
CASE-1 When `f(x) ge g(x)`
In this case, we have
`f(x)-g(x) ge 0`
`therefore " ""min" {f(x) - g(x), 0 } = 0`
`rArr h(x) = 0`
`rArr h(x) = {f(x) - g(x)}-{f(x) -g(x)}`
`rArr h(x) = {f (x) - g(x)} - |f (x) - g(x)|`
`[{:(,because f(x) - g(x) ge 0),(,therefore|f(x) - g(x)|=f(x) - g(x)):}]`
CASE II When `f(x) lt g(x)`
In this case, we have
`f(x) - g(x) lt 0`
`therefore "min" {f(x) - g(x),0}=f(x) - g(x)`
`rArr h(x) = 2 min {f(x) - g(x),0}=2 {f(x) - g(x)}`
`rArr h (x) = {f(x) - g(x)} + {f(x) - g(x)}`
`rArr h(x) = {f(x) - g(x)}-| f(x) - g(x)|`[{:(, therefore f(x) -g(x) lt 0),(,therefore |f(x) - g(x)|),(,=-{f(x) -g(x)}):}]`
Hence, option (d) is correct .
145.

If `f(x) = cos [pi]x + cos [pi x]`, where `[y]` is the greatest integer function of y then `f(pi/2)` is equal toA. `cos3`B. 0C. `cos 4`D. none of these

Answer» Correct Answer - C
We have,
`f (x) = cos [pi] x + cos[pix]`
`f((pi)/(2)) = cos([pi].(pi)/(2)] + cos[(pi^(2))/(2)]= cos.(3pi)/(2)+ cos 4 = cos4`
146.

Let ` f : R to R` be a function given by `f(x+y) = f(x) + f(y) ` for all x,y `in`R such that `f(1)= a` Then, `f (x)=`A. `a^(x)`B. `ax`C. `a^(x)`D. none of these

Answer» Correct Answer - A
We know that the general expression for the function satsifying `f(x+y) = f(x) f(y) ` for all x,y `in R," "[because f(1) =a]`
147.

If `f(x) = (x-1)/(x+1),` then `f(alpha, x)=`A. `(f(x)+alpha)/(1+alpha f(x))`B. `((alpha-1)f(x) + alpha +1)/((alpha+1)f(x)+(alpha-1))`C. `((alpha+1)f(x) +alpha-1)/((alpha-1) f(x) + (alpha+1))`D. none of these

Answer» Correct Answer - c
We have
`f(x) =(x-1)/(x+1)rArr (f(x) +1)/(f(x) -1) = (2x)/(-2) rArr x = (1+f(x))/(1-f(x))`
`therefore f (alphax) = (alphax -1)/(ax + 1) =(alpha {(1+f(x))/(1-f(x))}-1)/(alpha{(1+f(x))/(1-f(x))} + 1)`
`rArr f(alpha,x) =((alpha +1)f (x) + alpha -1)/((alpha -1)f(x) + alpha f(x) + alpha +1)`
148.

Let ` f : R to R` be a function given by `f(x+y) = f(x) + f(y) ` for all x,y `in`R such that `f(1)= a` Then, `f (x)=`A. `a^(x)`B. `ax`C. `a^(x)`D. `a+x`

Answer» Correct Answer - B
We know that the general formula for the function
`f: R to R ` given by `f (x)f(y)` for all x,y `in`R
`f(x) = xf(1) rArr f (x) =ax" "[because f(1) =a]`
149.

If `f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x]` denoting the greatest integer function,thenA. `f(0) = 0`B. `f((pi)/(3)) = sqrt((3)-1)/(2)`C. `f((pi)/(2)) = -1`D. `f(pi) = 0`

Answer» Correct Answer - B
We have , `pi ^(2) ~= 9.8696
`therefore [(pi^(2))/(2)] = 4 and [(-pi^(2))/(2)] = -5`
`therefore f(x) = cos 4x sin (-5x) = cos 4 x -sin 5x `
Thus, we have,
`f(0) =1`
`f((pi)/(3)) = cos.(4pi)/(3)-sin .(-5x)/(3) = - (1)/(2) +(sqrt(3))/(2)= (sqrt(3)-1)/(2)`
`f((pi)/(2)) = cos 2 pi - sin.(5pi)/(2) = 1-1=0`
and ,`f(pi)= cos 4 pi - sin5 pi = 1`
150.

If `f (x) = 27x^(3) -(1)/(x^(3))` and `alpha, beta` are roots of `3x - (1)/(x) = 2` thenA. `f (alpha) = f(beta)`B. `f(alpha) =10`C. `f (beta) = -10`D. none of these

Answer» Correct Answer - A
`f(x) =27 x^(3) -(1)/(x^(3)) = (3x-(1)/(x))^(3) + 9(3x-(1)/(x))`
Since `alpha ` and `beta` are the roots of `3x -(1)/(x) =2`
`therefore 3 alpha - (1)/(alpha) = 2` and `3beta -(1)/(beta) =2`
Now,
`f(alpha) = (3alpha -(1)/(3))^(3) + 9 (3alpha -(1)/(alpha))=2^(3) + 9xx 2 = 26`
Similarly, we have `f (beta) = 26`