Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

a) Srinu said “Angle of elevation is equal to the angle of depression.”b) Srikanth said “Angle of depression is equal to the angle of elevation.”A) Only A is True B) Only B is True C) Both A and B are True D) Both A and B are False

Answer»

Correct option is: C) Both A and B are True

2.

Verify:2 sin 45° cos 45° = sin 90°

Answer»

L.H.S. = 2 sin 45° cos 45°

= 2 × (1/√2) × (1/√2)

= (2 × 1/2)

= 1

R.H.S. = sin 90° = 1

L.H.S. = R.H.S.

3.

Verify that the equation ‘sin2 θ + cos2 θ = 1’ is true when θ = 0° or θ = 90°.

Answer»

sin2 θ + cos2 θ = 1

i. lf θ = 0°, 

LH.S. = sin2 θ + cos2 θ 

= sin2 0° + cos2 0° 

= 0 + 1 … [∵ sin 0° = 0, cos 0° = 1] 

= R.H.S. 

∴ sin2 θ + cos2 θ = 1 

ii. If θ = 90°, 

L.H.S.= sin2 θ + cos2 θ = sin 90° + cos 90° 

= 1 + 0 … [ ∵ sin 90° = 1, cos 90° = 0] 

= 1 = R.H.S. 

∴ sin2 θ + cos2 θ = 1

4.

Verify:2 sin 30° cos 30° = sin 60°

Answer»

L.H.S. = 2 sin 30° cos 30°

= 2 × (1/2) × (√3/2)

= √3/2

R.H.S.

sin 60° = √3/2

L.H.S. = R.H.S.

5.

Verify:cos 60° cos 30° + sin 60° sin 30° = cos 30°

Answer»

L.H.S. = cos 60° cos 30° + sin 60° sin 30°

= (1/2) × (√3/2) + (√3/2)(1/2)

= (√3/4) + (√3/4)

= √3/2

R.H.S.

cos 30° = √3/2

L.H.S. = R.H.S.

6.

Evaluate:sin 60° cos 30° + cos 60° sin 30°

Answer»

We know that,

sin 60° = √3/2 = cos 30°

and sin 30° = 1/2 = cos 60°

Now,

sin 60° cos 30° + cos 60° sin 30° 

= (√3/2)( √3/2) + (1/2)(1/2)

= (3/4) + (1/4)

= 4/4

= 1

7.

Verify:sin 60° cos 30° − cos 60° sin 30° = sin 30°

Answer»

L.H.S. = sin 60° cos 30° — cos 60° sin 30°

= (√3/2) × (√3/2) – (1/2)(1/2)

= (3/4) – (1/4)

= 2/4

= 1/2

R.H.S.:

sin 30° = 1/2

LHS = RHS

8.

Evaluate:cos 60° cos 30° − sin 60° sin 30°

Answer»

We know that,

cos 60° = 1/2 = sin 30°

and cos 30° = √3/2 = sin 60°

Now,

cos 60° cos 30° — sin 60° sin 30° 

= (1/2) × (√3/2) – (√3/2) × (1/2)

= (√3/4) – (√3/4)

= 0

9.

Prove that cos 54° cos 36° − sin 54° sin 36° = 0.

Answer»

LHS = cos54° cos36° − sin54° sin36°

= cos54° cos36° − sin(90° - 36°) sin(90° - 54°)

= cos54° cos36° – cos36°cos54°

= 0

= RHS

10.

If A = 60° and B = 30°, verify that cos (A + B) = cos A cos B − sin A sin B.

Answer»

cos (A + B) = cos A cos B — sin A sin B

If A = 60° and B = 30°

Verify: cos (90°) = cos 60° cos 30° — sin 60° sin 30°

R.H.S. = cos 60° cos 30° – sin 60° sin 30°

= (1/2) × (√3/2) – (√3/2)(1/2)

= (√3/4) – (√3/4)

= 0

= cos 90°

= L.H.S.

11.

If A = 60° and B = 30°, verify that sin (A − B) = sin A cos B − cos A sin.

Answer»

sin (A – B) = sin A cos B – cos A sin B

If A = 60° and B = 30°, then

LHS :

= sin(60°- 30°)

= sin 30°

= 1/2

R.H.S. = sin 60° cos 30° – cos 60° sin 30°

= (√3/2) × (√3/2) – (1/2) (1/2)

= (3/4) – (1/4)

= 2/4

= 1/2

L.H.S. = R.H.S.

12.

If tanθ = 7/8, then the value of (1+sin θ)(1−sin θ)/(1+cos θ)(1−cos θ) ……..A) 64/49B) 49/64C) 8/7D) 7/8

Answer»

Correct option is: A) \(\frac{64}{49}\)

We have tan\(\theta\) = \(\frac{7}{8}\) 

Now, \(\frac{(1+sin \theta)(1-sin \theta)}{1+cos \theta)(1-cos \theta)}\) = \(\frac {1-sin^2\theta}{1-cos^2\theta} = \frac {cos^2\theta}{sin^2\theta} \) (\(\because\)  \(sin^2\theta + cos^2\theta = 1\))

\((\frac {cos\theta}{sin\theta})^2 = cot^2\theta\) 

\(\frac {1}{tan^2 \theta} = \frac {1}{(\frac 78)^2} = \frac {8^2}{7^2}\)

\(\frac {64}{49}\)

Correct option is: A) \(\frac{64}{49}\)

13.

sin 2A = 2 sin A is true when A = A. 0° B. 30° C. 45° D. 60°

Answer»

Sin 2 A = 2 sin A 

[∵ 2A = 2 sin A. Cos A] 

⇒ 2 sin A . cos A = 2 sin A 

⇒ cos A = 1 = cos 0° 

⇒ A = 0°

14.

If A = 60° and B = 30°, verify that cos (A − B) = cos A cos B + sin A sin B.

Answer»

cos (A – B) = cos A cos B + sin A sin B

If A = 60° and B = 30°, then

Verify: cos (30°) = cos 60° cos 30° + sin 60° sin 30°

R.H.S. = cos 60° cos 30° + sin 60° sin 30°

= (1/2) × (√3/2) + (√3/2)(1/2)

= (√3/4) + (√3/4)

= √3/2

= cos 30°

= L.H.S.

15.

sin (A + B) cos (A – B) + sin (A – B) cos (A + B) = A) sin 2AB) sin 2B C) cos 2A D) cos 2B

Answer»

Correct option is: A) sin 2A

sin (A + B) cos (A – B) + sin (A – B) cos (A + B)

= sin (A + B) + (A-B))

(\(\because\) sin (x + y) = sin x cos y + cos x sin y, here x = A + B and y = A-B)

= sin (2A)

Correct option is: A) sin 2A

16.

If A = 60° and B = 30° , verify that: (i) sin (A + B) = sin A cos B + cos A sin B (ii) cos (A + B) = cos A cos B - sin A sin B

Answer»

A = 60° and B = 30°

Now, A + B = 60° + 30° = 90° 

Also, A – B = 60° – 30° = 30°

(i) sin (A + B) = sin 90° = 1 

sin A cos B + cos A sin B = sin 60° cos 30° + cos 60° sin 30°

\((\frac{\sqrt{3}}2\times\frac{\sqrt{3}}2+\frac{1}2\times\frac{1}2)\) = \((\frac{3}4+\frac{1}4)\) = 1

∴ sin (A + B) = sin A cos B + cos A sin B 

(ii) cos (A + B) = cos 90° = 0 

cos A cos B - sin A sin B = cos 60° cos 30° - sin 60° sin 30°

\((\frac{{1}}2\times\frac{\sqrt{3}}2-\frac{{\sqrt3}}2\times\frac{1}2)\) = \((\frac{\sqrt3}4+\frac{\sqrt3}4)\) = 0

∴ cos (A + B) = cos A cos B - sin A sin B

17.

Prove that cos2A – cos2B + cos2C = 1 – 4 sinA · cosB · sinC

Answer»

L.H.S. = cos 2A – cos2B + cos2C 

= -2 sin(A + B) . sin(A – B) + 1 – 2sin2

= 1 – 2 sinC sin (A – B) – 2 sin2C [∵ sin(A+B)-sinc] 

= 1 – 2 sinC [sin(A – B) + sinC] 

= 1 – 2 sinC [sin(A + B) + sin(A – B)] 

= 1 – 2 sinC [2sinA . cosB] 

= 1 – 4 sinA cosB sinC = R.H.S.

18.

Prove that cos2A + cos2B + cos2C = -1 – 4 cosA cosB cosC

Answer»

L.H.S. = cos2A + cos2B + cos2C 

= 2cos(A + B) · cos(A – B) + 2cos2C – 1 

= -2cosC . cos(A – B) + 2cos2C – 1 

= -2cosC[cos (A – B) – cos C] – 1 

= -2cosC{cos (A – B) + cos(A + B)} – 1 

= -2 cosC (2cosA · cosB) – 1 

= – 1 – 4 cos A cosB cosC = R.H.S.

19.

Prove that sin 35° sin 55° − cos 35° cos 55° = 0

Answer»

LHS = sin35° sin55° − cos35° cos55°

= sin(90° – 55°) sin(90° – 35°) − cos35° cos55°

= cos55° cos35° – cos35° cos55°

= 0

= RHS

20.

Prove that sin2 48° + sin2 42° = 1

Answer»

sin2 48° + sin2 42° = 1

LHS = sin2 48° + sin2 42°

= sin2 48° + sin2 (90 – 48)°

= sin2 48° + cos2 48°

= 1

= RHS

21.

In the adjacent figure ‘θ’ is called as angle ofA) elevation B) distance C) depression D) length

Answer»

Correct option is: C) depression

In the given figure \(\theta\) is called angle of depression.

Correct option is: C) depression

22.

The height of the tower, in the given figure.A) 45 m B) 60 m C) 50 m D) 90 m

Answer»

Correct option is: B) 60 m

23.

From the adjacent figurea) Ravi said ‘y = √3’b) Ramu said ‘y = V3 ‘c) Kiran said ‘ y = 1/2,Do you agree with whom ? (Or) With whom do you agree ? ……………A) Ravi B) Kiran C) Ramu D) All of them

Answer»

Correct option is: B) Kiran

24.

Sin (A + B) = Sin A + Sin B is true forA) A = 30°; B = 60° B) A = 30°; B = 45° C) A = 45°; B = 60° D) None of these

Answer»

Correct option is: D) None of these

(A) A = \(30^\circ\) and B = \(60^\circ\)

= A + B = \(30^\circ\) + \(60^\circ\) = \(90^\circ\)

Now, sin A + sin B = sin \(30^\circ\) + sin \(60^\circ\)

\(\frac 12\) + \(\frac {\sqrt3}{2}\)

\(\frac {1+\sqrt3}{2} >1\)

But sin (A +B) = sin \(90^\circ\) = 1

Hence, sin A + sin B \(\neq\) sin (A+B)

(B) A = \(30^\circ\), B = \(45^\circ\)

\(\therefore\) A + B = \(30^\circ\) +  \(45^\circ\) = \(75^\circ\)

Now, sin A + sin B = sin \(30^\circ\) + sin \(45^\circ\)

\(\frac 12\) + \(\frac 1{\sqrt2}\) = \(\frac {1+\sqrt2}2 > 1\)

But sin (A+B) = sin \(75^\circ\) < 1 (\(\because\) -1 \(\leq\) sin \(\theta\) \(\leq\)1)

Hence, sin (A+B) \(\neq\) sin A + sin B

(C) A = \(45^\circ\), B = \(60^\circ\)

\(\therefore\) A + B = \(45^\circ\)+\(60^\circ\) = \(105^\circ\)

Nw, sin A + sin B = sin \(45^\circ\) + sin \(60^\circ\)

\(\frac 1{\sqrt2}\) \(\frac {\sqrt3}{2}\) = \(\frac {\sqrt2+\sqrt3}{2}\) >1

But sin (A+B) = sin \(105^\circ\) < 1 ( \(\because\) -1 \(\leq\) sin \(\theta\) \(\leq\) 1)

Hence, sin A + sin B \(\neq\) sin (A+B)

Correct option is: D) None of these

25.

Ramu said Cos A = 2 ; Ravi said Cos A = 1. Do you agree with whom ?A) Ramu B) Ravi C) Ramu and Ravi D) Nobody

Answer»

Correct option is: B) Ravi

\(\because\) -1 \(\leq\) cos \(\theta\) \(\leq\) 1

since, 2 > 1

\(\therefore\) cos A never be equal to 2.

Hence, Ramu is saying wrong.

But cos A = 1 (Possible)

Hence, Ravi is saying truth.

We have to agree with Ravi.

Correct option is: B) Ravi

26.

Prove that sin4A + sin4B + sin4C = -4sin2A . sin2B · sin2C

Answer»

L.H.S = sin4A + sin4B + sin4C [A+B+C = 180] 

= 2 sin(2A + 2B) · cos(2A – 2B) + 2 sinc.cos2C [2A + 2B + 2C = 360] 

= (-sin2C) · cos(2A – 2B) + (2 sin2C · cos2C) [2A + 2B = 360 – 20] 

= -2 sin2C [cos(2A – 2B) – cos2C] [sin(2A + 2B) = – sin2C] 

= – 2 sin2C [cos(2A – 2B) – cos(2A + 2B)] [cos(2A + 2B) = cos 2C] 

= -2 sin2C[-2 sin2A · sin(-2B)] 

= – 4 sin2A · sin2B · sin2C 

= R.H.S.

27.

If sinθ = \(\frac{3}4\), prove that \(\sqrt{\frac{cosec^2θ -cot^2θ}{sec^2θ-1}}\) = \(\frac{\sqrt{7}}{3}\)

Answer»

sin θ = \(\frac{3}4\)

⇒ cosθ = \(\frac{\sqrt{7}}4\)

\(\sqrt{\frac{cosec^2θ -cot^2θ}{sec^2θ-1}}\)

\(\sqrt{\frac{1+cot^2θ -cot^2θ}{1+tan^2θ-1}}\)

\(\sqrt{\frac{1}{tan^2\theta}}\)

= cotθ = \(\frac{cosθ}{sinθ}\)

\(\frac{\sqrt{7}}4\) = \(\frac{4}3\) = \(\frac{\sqrt{7}}3\)

28.

Roshani saw an eagle on the top of a tree at an angle of elevation of `61^(@)`, while she was standing at the door of her house. She went on the terrace of the house so that she could see it clearly. The terrace was at a height of `4m`. While observing the eagle from there the angle of elevation was `52^(@)`. At what height from the ground was the eagle? `tan 61^(@)=1.8, tan 52^(@)=1.28, tann 29^(@)=0.55, tan 38^(@)=0.78)`

Answer» Correct Answer - 13.85 metre
29.

Show that tan4 θ +tan2 θ = sec4 θ -sec2 θ.

Answer»

L.H.S: tan4θ + tan2 θ

Taking tan2 θ common, we get

tan2 θ (tan2 θ + 1)

= tan2 θ sec2 θ [∵ sec2 θ – tan2 θ = 1 ⇒ tan2 θ + 1 = sec2 θ]

= (sec2 θ – 1) sec2 θ [∵tan2 θ = sec2 θ – 1]

= sec4 θ – sec2 θ

: R.H.S

30.

If 2 sin2 θ -cos2 θ =2, then find the value of θ.

Answer»

Given: 2 sin2 θ – cos2 θ = 2

⇒ 2 sin2 θ – (1 – sin2 θ) = 2 [∵ sin2 θ + cos2 θ = 1 ⇒ cos2 θ = 1 – sin2 θ]

⇒ 2 sin2 θ – 1 + sin2 θ = 2

⇒ 3 sin2 θ = 3

⇒ sin2 θ = 1

⇒ sin θ = 1

⇒ θ = sin-1 (1)

⇒ θ = 90°

31.

The ratio of lengths of opposite sides of 30°, 60°, 90° isA) 1 : 2 : 3 B) 1 : 1 : √2 C) 1 : 3 : 2 D) 1 : √3 : 2

Answer»

Correct option is: D) 1 : √3 : 2

By sine formula for triangle,

\(\frac a {sin\, A} = \frac b{sin\,B} = \frac c{sin \, C} = \lambda\) (Let)

= a = \(\lambda\) sin A, where a is length of side opposite to <A.

b = \(\lambda\) sin B, where b is length of side opposite to < B.

c =  \(\lambda\) sin C, where c is length of side opposite to < C.

Let A = \(30^\circ\), B = \(60^\circ\) & C = \(90^\circ\)

Then a = \(\lambda\) sin \(30^\circ\) = \(\frac \lambda2\)

b = \(\lambda\) sin \(60^\circ\) = \(\frac {\sqrt3 \lambda}2\) 

c = \(\lambda\) sin \(90^\circ\) = \(\lambda\)

\(\therefore\) a : b : c = \(\frac \lambda2\) : \(\frac {\sqrt3 \lambda}2\) : \(\lambda\)

\(\lambda\) : \(\sqrt3 \lambda\) : 2\(\lambda\) (\(\because\) On multiplying by 2)

= 1 : \(\sqrt3\) : 2 (\(\because\) On multiplying by \(\lambda\))

Hence, the ratio of lengths of opposite side of \(30^\circ\)\(60^\circ\) , \(90^\circ\) is 1 : \(\sqrt3\): 2

Correct option is: D) 1 : √3 : 2

32.

Sin2 θ . Cot2 θ + Cos2 θ . Tan2 θ =A) 0 B) 2 C) 1 D) -1

Answer»

Correct option is: C) 1

\(Sin^2 \theta . Cot^2 \theta + Cos^2 \theta . Tan^2 \theta\)

\(sin^2\theta.\frac {cos^2\theta}{sin^2\theta} + cos^2\theta. \frac {sin^2\theta}{cos^2\theta}\) (\(\because\) tan \(\theta\) = \(\frac {sin\, \theta}{cos\, \theta}\) & cot \(\theta\) = \(\frac {cos\, \theta}{sin \, \theta}\))

\(cos^2\theta + sin^2\theta \)

= 1 (\(\because\) \(cos^2\theta + sin^2\theta \) = 1)

Correct option is: C) 1

33.

If x Sin (90° – θ) Cot (90° – θ) = Cos (90° – θ) then x = A) 0 B) 1 C) – 1 D) 2

Answer»

Correct option is: B) 1

Given that 

x sin (\(90^\circ\) - \(\theta\)) cot(\(90^\circ\) - \(\theta\)) = cos (\(90^\circ\) - \(\theta\))

= x cos \(\theta\) tan \(\theta\) = sin \(\theta\)

(\(\because\) cos (\(90^\circ\) - \(\theta\)) = sin \(\theta\), sin (\(90^\circ\) - \(\theta\)) = cos \(\theta\), cot (\(90^\circ\) - \(\theta\)) = tan \(\theta\))

= x cos \(\theta\) \(\frac {sin \, \theta}{cos \, \theta} = sin \, \theta\) (\(\because\) tan \(\theta\) = \(\frac {sin \, \theta}{cos \, \theta} \))

= x sin \(\theta\) = sin \(\theta\)

= x = \(\frac {sin \, \theta}{sin \, \theta} \) = 1

Correct option is: B) 1

34.

Sec θ (1 – Sin θ) (Sec θ + Tan θ) = A) 0 B) 1 C) 2 D) -1

Answer»

Correct option is: B) 1

Sec \(\theta\) (1 – Sin \(\theta\)) (Sec \(\theta\) + Tan \(\theta\)

= sec \(\theta\) (1- sin \(\theta\)) (\(\frac 1{cos\, \theta} + \frac {sin \, \theta}{cos \, \theta}\))

= sec \(\theta\) ( 1- sin \(\theta\)) . \(\frac {1+sin\, \theta}{cos \, \theta}\) 

\(\frac {1-sin^2\theta}{cos^2\theta} \) (\(\because\) sec \(\theta\) = \(\frac 1{cos\, \theta}\) )

\(\frac {cos^2\theta}{cos^2\theta} = 1 \)  (\(\because\) \(1- sin^2\theta = cos^2\theta\))

Correct option is: B) 1

35.

If sinθ + sin2θ = 1, then cos2θ + cos4θ = ………A) -1 B) 1 C) 0 D) None of these

Answer»

Correct option is: B) 1

We have sin\(\theta\) + \(sin^2\theta\) = 1...(1)

\(1-sin^2\theta = sin\,\theta\)

\(cos^2\theta = sin\,\theta\)  ...(2) (\(\because\) \(1- sin^2\theta = cos^2\theta\))

Now, \(cos^2\theta + cos^4\theta = cos^2\theta + (cos^2\theta)^2\)

= sin \(\theta\) + \((sin \, \theta)​^2​​​​​​\)(\(\because\) \(cos^2\theta = sin \theta \) from (2))

= sin \(\theta\) + \(sin^2\theta\)

= 1    (From (1))

Correct option is: B) 1

36.

Sec2 27° – Cot2 63° =A) 3 B) 0 C) 1 D) 2

Answer»

Correct option is: C) 1

\(sec^2 \,27^\circ – cot^2 \,63^\circ\)

\(1 + tan^2 \, 27^\circ - cot^2\, 63^\circ \) (\(\because\) \(sec^2 \theta = 1 + tan^2\theta\))

\(1 + tan^2 (90^\circ - 63^\circ) - cot^2\, 63^\circ\) ( \(\because\) \(27^\circ\) = \(90^\circ\) - \(63^\circ\))

\(1 + cot^2 \, 63^\circ - cot^2\, 63^\circ\) (\(\because\) tan (\(90^\circ\) -\(\theta\)) = cot \(\theta\))

= 1

Correct option is: C) 1

37.

Tan2θ – Sec2θ = ………A) 1 B) -1 C) 0 D) ∞

Answer»

Correct option is: B) -1

\(tan^2 \theta – sec^2 \theta = -(sec^2\theta - tan^2\theta) = -1\)

(\(\because\) \(sec^2\theta - tan^2\theta = 1\))

Correct option is: B) -1

38.

`tan(A+B)tan(A-B)`= ___________.

Answer» Correct Answer - `(tan^(2)A-tan^(2)B)/(1-tan^(2)Atan^(2)B)`.
39.

If `Delta ABC` is an isosceles traingle and right angled at B, then `(tanA+tanC)/(cotA+cotC)`=____________.

Answer» Correct Answer - 1
40.

In a ∆ ABC right angled at B, ∠A = ∠C. Find the values of (i) sin A cos C + cos A sin C(ii) sin A  sin B + cos A cos B

Answer»

In a ∆ABC right angled at B, ∠A = ∠C, therefore

∠A = ∠C = 45°

(i)

sin A cos C + cos A sin C 

= sin (45° + 45°)

= sin 90°

= 1

(ii)

sin A sin B + cos A cos B 

= cos (A + B)

= cos (90° + 45°)

= sin (45°)

\(\frac{1}{\sqrt{2}}\)

41.

Prove that (sin 65° + cos 25°)(sin 65° − cos 25°) = 0.

Answer»

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0

LHS = (sin 65° + cos 25°)(sin 65° − cos 25°)

= sin2 65° – cos2 25°

= sin2 65° – cos2 (90 – 65)°

= sin2 65° – sin2 65°

= 0

= RHS

42.

Evaluate :sin 25° cos 65° + cos 25° sin 65°

Answer»

sin 25° cos 65° + cos 25° sin 65° 

= sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°) 

= sin 25° sin 25° + cos 25° + cos 25° 

= sin2 25° + cos2 25° 

= 1. [∵ cos2 θ + sin2 θ = 1]

43.

If `cosec theta = 61/60, sec theta = 61/11` then `cot theta` =A. `(61^2)/600`B. `60/11`C. `11/60`D. can not be calculated

Answer» Correct Answer - C
44.

Evaluate: `"cosec"^(2)30^(@)+sec^(2)60^(@)+tan^(2)30^(@)`.

Answer» Correct Answer - `8(1)/(2)`
45.

Convert `(pi^(c ))/(15)` into the other two systems.

Answer» Correct Answer - `(40^(g))/(3)`
46.

If sec θ + tan θ = p, then what is the value of sec θ – tan θ?

Answer»

Given that sec θ + tan θ = p , 

We know that sec2 θ – tan2 θ = 1 

sec2 θ – tan2 θ = (sec θ + tan θ) (sec θ – tan θ) 

= p (sec θ – tan θ) 

= 1 (from given) 

⇒ sec θ – tan θ = \(\frac{1}{p}\)

47.

In the adjoining figure, find the value of tan B.

Answer» Correct Answer - `(4)/(3)`
48.

Convert `((200)/(3))^(g)` into other two systems.

Answer» Correct Answer - `60^(@), (pi)/(3)`
49.

Simplify (1 – cos θ) (1 + cos θ) (1 + cot2 θ)

Answer»

Given that 

(1 – cos θ) (1 + cos θ) (1 + cot2 θ) 

= (1 – cos2 θ) (1 + cot2 θ) 

[∵ (a – b) (a + b) = a2 – b2

= sin2 θ. cosec2 θ [∵ 1 – cos2 θ = sin2 θ; 1 + cot2 θ = cosec2 θ] 

= sin2 θ . \(\frac{1}{sin^2\, θ}\) [∵ cosec θ = \(\frac{1}{sin\, θ}\)

= 1

50.

Simplify and express `sec^(4) alpha- tan^(4) alpha` in their least exponents.

Answer» Correct Answer - `sec^(2) alpha+ tan^(2) alpha `