

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
a) Srinu said “Angle of elevation is equal to the angle of depression.”b) Srikanth said “Angle of depression is equal to the angle of elevation.”A) Only A is True B) Only B is True C) Both A and B are True D) Both A and B are False |
Answer» Correct option is: C) Both A and B are True |
|
2. |
Verify:2 sin 45° cos 45° = sin 90° |
Answer» L.H.S. = 2 sin 45° cos 45° = 2 × (1/√2) × (1/√2) = (2 × 1/2) = 1 R.H.S. = sin 90° = 1 L.H.S. = R.H.S. |
|
3. |
Verify that the equation ‘sin2 θ + cos2 θ = 1’ is true when θ = 0° or θ = 90°. |
Answer» sin2 θ + cos2 θ = 1 i. lf θ = 0°, LH.S. = sin2 θ + cos2 θ = sin2 0° + cos2 0° = 0 + 1 … [∵ sin 0° = 0, cos 0° = 1] = R.H.S. ∴ sin2 θ + cos2 θ = 1 ii. If θ = 90°, L.H.S.= sin2 θ + cos2 θ = sin 90° + cos 90° = 1 + 0 … [ ∵ sin 90° = 1, cos 90° = 0] = 1 = R.H.S. ∴ sin2 θ + cos2 θ = 1 |
|
4. |
Verify:2 sin 30° cos 30° = sin 60° |
Answer» L.H.S. = 2 sin 30° cos 30° = 2 × (1/2) × (√3/2) = √3/2 R.H.S. sin 60° = √3/2 L.H.S. = R.H.S. |
|
5. |
Verify:cos 60° cos 30° + sin 60° sin 30° = cos 30° |
Answer» L.H.S. = cos 60° cos 30° + sin 60° sin 30° = (1/2) × (√3/2) + (√3/2)(1/2) = (√3/4) + (√3/4) = √3/2 R.H.S. cos 30° = √3/2 L.H.S. = R.H.S. |
|
6. |
Evaluate:sin 60° cos 30° + cos 60° sin 30° |
Answer» We know that, sin 60° = √3/2 = cos 30° and sin 30° = 1/2 = cos 60° Now, sin 60° cos 30° + cos 60° sin 30° = (√3/2)( √3/2) + (1/2)(1/2) = (3/4) + (1/4) = 4/4 = 1 |
|
7. |
Verify:sin 60° cos 30° − cos 60° sin 30° = sin 30° |
Answer» L.H.S. = sin 60° cos 30° — cos 60° sin 30° = (√3/2) × (√3/2) – (1/2)(1/2) = (3/4) – (1/4) = 2/4 = 1/2 R.H.S.: sin 30° = 1/2 LHS = RHS |
|
8. |
Evaluate:cos 60° cos 30° − sin 60° sin 30° |
Answer» We know that, cos 60° = 1/2 = sin 30° and cos 30° = √3/2 = sin 60° Now, cos 60° cos 30° — sin 60° sin 30° = (1/2) × (√3/2) – (√3/2) × (1/2) = (√3/4) – (√3/4) = 0 |
|
9. |
Prove that cos 54° cos 36° − sin 54° sin 36° = 0. |
Answer» LHS = cos54° cos36° − sin54° sin36° = cos54° cos36° − sin(90° - 36°) sin(90° - 54°) = cos54° cos36° – cos36°cos54° = 0 = RHS |
|
10. |
If A = 60° and B = 30°, verify that cos (A + B) = cos A cos B − sin A sin B. |
Answer» cos (A + B) = cos A cos B — sin A sin B If A = 60° and B = 30° Verify: cos (90°) = cos 60° cos 30° — sin 60° sin 30° R.H.S. = cos 60° cos 30° – sin 60° sin 30° = (1/2) × (√3/2) – (√3/2)(1/2) = (√3/4) – (√3/4) = 0 = cos 90° = L.H.S. |
|
11. |
If A = 60° and B = 30°, verify that sin (A − B) = sin A cos B − cos A sin. |
Answer» sin (A – B) = sin A cos B – cos A sin B If A = 60° and B = 30°, then LHS : = sin(60°- 30°) = sin 30° = 1/2 R.H.S. = sin 60° cos 30° – cos 60° sin 30° = (√3/2) × (√3/2) – (1/2) (1/2) = (3/4) – (1/4) = 2/4 = 1/2 L.H.S. = R.H.S. |
|
12. |
If tanθ = 7/8, then the value of (1+sin θ)(1−sin θ)/(1+cos θ)(1−cos θ) ……..A) 64/49B) 49/64C) 8/7D) 7/8 |
Answer» Correct option is: A) \(\frac{64}{49}\) We have tan\(\theta\) = \(\frac{7}{8}\) Now, \(\frac{(1+sin \theta)(1-sin \theta)}{1+cos \theta)(1-cos \theta)}\) = \(\frac {1-sin^2\theta}{1-cos^2\theta} = \frac {cos^2\theta}{sin^2\theta} \) (\(\because\) \(sin^2\theta + cos^2\theta = 1\)) = \((\frac {cos\theta}{sin\theta})^2 = cot^2\theta\) = \(\frac {1}{tan^2 \theta} = \frac {1}{(\frac 78)^2} = \frac {8^2}{7^2}\) = \(\frac {64}{49}\) Correct option is: A) \(\frac{64}{49}\) |
|
13. |
sin 2A = 2 sin A is true when A = A. 0° B. 30° C. 45° D. 60° |
Answer» Sin 2 A = 2 sin A [∵ 2A = 2 sin A. Cos A] ⇒ 2 sin A . cos A = 2 sin A ⇒ cos A = 1 = cos 0° ⇒ A = 0° |
|
14. |
If A = 60° and B = 30°, verify that cos (A − B) = cos A cos B + sin A sin B. |
Answer» cos (A – B) = cos A cos B + sin A sin B If A = 60° and B = 30°, then Verify: cos (30°) = cos 60° cos 30° + sin 60° sin 30° R.H.S. = cos 60° cos 30° + sin 60° sin 30° = (1/2) × (√3/2) + (√3/2)(1/2) = (√3/4) + (√3/4) = √3/2 = cos 30° = L.H.S. |
|
15. |
sin (A + B) cos (A – B) + sin (A – B) cos (A + B) = A) sin 2AB) sin 2B C) cos 2A D) cos 2B |
Answer» Correct option is: A) sin 2A sin (A + B) cos (A – B) + sin (A – B) cos (A + B) = sin (A + B) + (A-B)) (\(\because\) sin (x + y) = sin x cos y + cos x sin y, here x = A + B and y = A-B) = sin (2A) Correct option is: A) sin 2A |
|
16. |
If A = 60° and B = 30° , verify that: (i) sin (A + B) = sin A cos B + cos A sin B (ii) cos (A + B) = cos A cos B - sin A sin B |
Answer» A = 60° and B = 30° Now, A + B = 60° + 30° = 90° Also, A – B = 60° – 30° = 30° (i) sin (A + B) = sin 90° = 1 sin A cos B + cos A sin B = sin 60° cos 30° + cos 60° sin 30° = \((\frac{\sqrt{3}}2\times\frac{\sqrt{3}}2+\frac{1}2\times\frac{1}2)\) = \((\frac{3}4+\frac{1}4)\) = 1 ∴ sin (A + B) = sin A cos B + cos A sin B (ii) cos (A + B) = cos 90° = 0 cos A cos B - sin A sin B = cos 60° cos 30° - sin 60° sin 30° = \((\frac{{1}}2\times\frac{\sqrt{3}}2-\frac{{\sqrt3}}2\times\frac{1}2)\) = \((\frac{\sqrt3}4+\frac{\sqrt3}4)\) = 0 ∴ cos (A + B) = cos A cos B - sin A sin B |
|
17. |
Prove that cos2A – cos2B + cos2C = 1 – 4 sinA · cosB · sinC |
Answer» L.H.S. = cos 2A – cos2B + cos2C = -2 sin(A + B) . sin(A – B) + 1 – 2sin2C = 1 – 2 sinC sin (A – B) – 2 sin2C [∵ sin(A+B)-sinc] = 1 – 2 sinC [sin(A – B) + sinC] = 1 – 2 sinC [sin(A + B) + sin(A – B)] = 1 – 2 sinC [2sinA . cosB] = 1 – 4 sinA cosB sinC = R.H.S. |
|
18. |
Prove that cos2A + cos2B + cos2C = -1 – 4 cosA cosB cosC |
Answer» L.H.S. = cos2A + cos2B + cos2C = 2cos(A + B) · cos(A – B) + 2cos2C – 1 = -2cosC . cos(A – B) + 2cos2C – 1 = -2cosC[cos (A – B) – cos C] – 1 = -2cosC{cos (A – B) + cos(A + B)} – 1 = -2 cosC (2cosA · cosB) – 1 = – 1 – 4 cos A cosB cosC = R.H.S. |
|
19. |
Prove that sin 35° sin 55° − cos 35° cos 55° = 0 |
Answer» LHS = sin35° sin55° − cos35° cos55° = sin(90° – 55°) sin(90° – 35°) − cos35° cos55° = cos55° cos35° – cos35° cos55° = 0 = RHS |
|
20. |
Prove that sin2 48° + sin2 42° = 1 |
Answer» sin2 48° + sin2 42° = 1 LHS = sin2 48° + sin2 42° = sin2 48° + sin2 (90 – 48)° = sin2 48° + cos2 48° = 1 = RHS |
|
21. |
In the adjacent figure ‘θ’ is called as angle ofA) elevation B) distance C) depression D) length |
Answer» Correct option is: C) depression In the given figure \(\theta\) is called angle of depression. Correct option is: C) depression |
|
22. |
The height of the tower, in the given figure.A) 45 m B) 60 m C) 50 m D) 90 m |
Answer» Correct option is: B) 60 m |
|
23. |
From the adjacent figurea) Ravi said ‘y = √3’b) Ramu said ‘y = V3 ‘c) Kiran said ‘ y = 1/2,Do you agree with whom ? (Or) With whom do you agree ? ……………A) Ravi B) Kiran C) Ramu D) All of them |
Answer» Correct option is: B) Kiran |
|
24. |
Sin (A + B) = Sin A + Sin B is true forA) A = 30°; B = 60° B) A = 30°; B = 45° C) A = 45°; B = 60° D) None of these |
Answer» Correct option is: D) None of these (A) A = \(30^\circ\) and B = \(60^\circ\) = A + B = \(30^\circ\) + \(60^\circ\) = \(90^\circ\) Now, sin A + sin B = sin \(30^\circ\) + sin \(60^\circ\) = \(\frac 12\) + \(\frac {\sqrt3}{2}\) = \(\frac {1+\sqrt3}{2} >1\) But sin (A +B) = sin \(90^\circ\) = 1 Hence, sin A + sin B \(\neq\) sin (A+B) (B) A = \(30^\circ\), B = \(45^\circ\) \(\therefore\) A + B = \(30^\circ\) + \(45^\circ\) = \(75^\circ\) Now, sin A + sin B = sin \(30^\circ\) + sin \(45^\circ\) = \(\frac 12\) + \(\frac 1{\sqrt2}\) = \(\frac {1+\sqrt2}2 > 1\) But sin (A+B) = sin \(75^\circ\) < 1 (\(\because\) -1 \(\leq\) sin \(\theta\) \(\leq\)1) Hence, sin (A+B) \(\neq\) sin A + sin B (C) A = \(45^\circ\), B = \(60^\circ\) \(\therefore\) A + B = \(45^\circ\)+\(60^\circ\) = \(105^\circ\) Nw, sin A + sin B = sin \(45^\circ\) + sin \(60^\circ\) = \(\frac 1{\sqrt2}\) + \(\frac {\sqrt3}{2}\) = \(\frac {\sqrt2+\sqrt3}{2}\) >1 But sin (A+B) = sin \(105^\circ\) < 1 ( \(\because\) -1 \(\leq\) sin \(\theta\) \(\leq\) 1) Hence, sin A + sin B \(\neq\) sin (A+B) Correct option is: D) None of these |
|
25. |
Ramu said Cos A = 2 ; Ravi said Cos A = 1. Do you agree with whom ?A) Ramu B) Ravi C) Ramu and Ravi D) Nobody |
Answer» Correct option is: B) Ravi \(\because\) -1 \(\leq\) cos \(\theta\) \(\leq\) 1 since, 2 > 1 \(\therefore\) cos A never be equal to 2. Hence, Ramu is saying wrong. But cos A = 1 (Possible) Hence, Ravi is saying truth. We have to agree with Ravi. Correct option is: B) Ravi |
|
26. |
Prove that sin4A + sin4B + sin4C = -4sin2A . sin2B · sin2C |
Answer» L.H.S = sin4A + sin4B + sin4C [A+B+C = 180] = 2 sin(2A + 2B) · cos(2A – 2B) + 2 sinc.cos2C [2A + 2B + 2C = 360] = (-sin2C) · cos(2A – 2B) + (2 sin2C · cos2C) [2A + 2B = 360 – 20] = -2 sin2C [cos(2A – 2B) – cos2C] [sin(2A + 2B) = – sin2C] = – 2 sin2C [cos(2A – 2B) – cos(2A + 2B)] [cos(2A + 2B) = cos 2C] = -2 sin2C[-2 sin2A · sin(-2B)] = – 4 sin2A · sin2B · sin2C = R.H.S. |
|
27. |
If sinθ = \(\frac{3}4\), prove that \(\sqrt{\frac{cosec^2θ -cot^2θ}{sec^2θ-1}}\) = \(\frac{\sqrt{7}}{3}\) |
Answer» sin θ = \(\frac{3}4\) ⇒ cosθ = \(\frac{\sqrt{7}}4\) \(\sqrt{\frac{cosec^2θ -cot^2θ}{sec^2θ-1}}\) = \(\sqrt{\frac{1+cot^2θ -cot^2θ}{1+tan^2θ-1}}\) = \(\sqrt{\frac{1}{tan^2\theta}}\) = cotθ = \(\frac{cosθ}{sinθ}\) = \(\frac{\sqrt{7}}4\) = \(\frac{4}3\) = \(\frac{\sqrt{7}}3\) |
|
28. |
Roshani saw an eagle on the top of a tree at an angle of elevation of `61^(@)`, while she was standing at the door of her house. She went on the terrace of the house so that she could see it clearly. The terrace was at a height of `4m`. While observing the eagle from there the angle of elevation was `52^(@)`. At what height from the ground was the eagle? `tan 61^(@)=1.8, tan 52^(@)=1.28, tann 29^(@)=0.55, tan 38^(@)=0.78)` |
Answer» Correct Answer - 13.85 metre |
|
29. |
Show that tan4 θ +tan2 θ = sec4 θ -sec2 θ. |
Answer» L.H.S: tan4θ + tan2 θ Taking tan2 θ common, we get tan2 θ (tan2 θ + 1) = tan2 θ sec2 θ [∵ sec2 θ – tan2 θ = 1 ⇒ tan2 θ + 1 = sec2 θ] = (sec2 θ – 1) sec2 θ [∵tan2 θ = sec2 θ – 1] = sec4 θ – sec2 θ : R.H.S |
|
30. |
If 2 sin2 θ -cos2 θ =2, then find the value of θ. |
Answer» Given: 2 sin2 θ – cos2 θ = 2 ⇒ 2 sin2 θ – (1 – sin2 θ) = 2 [∵ sin2 θ + cos2 θ = 1 ⇒ cos2 θ = 1 – sin2 θ] ⇒ 2 sin2 θ – 1 + sin2 θ = 2 ⇒ 3 sin2 θ = 3 ⇒ sin2 θ = 1 ⇒ sin θ = 1 ⇒ θ = sin-1 (1) ⇒ θ = 90° |
|
31. |
The ratio of lengths of opposite sides of 30°, 60°, 90° isA) 1 : 2 : 3 B) 1 : 1 : √2 C) 1 : 3 : 2 D) 1 : √3 : 2 |
Answer» Correct option is: D) 1 : √3 : 2 By sine formula for triangle, \(\frac a {sin\, A} = \frac b{sin\,B} = \frac c{sin \, C} = \lambda\) (Let) = a = \(\lambda\) sin A, where a is length of side opposite to <A. b = \(\lambda\) sin B, where b is length of side opposite to < B. c = \(\lambda\) sin C, where c is length of side opposite to < C. Let A = \(30^\circ\), B = \(60^\circ\) & C = \(90^\circ\) Then a = \(\lambda\) sin \(30^\circ\) = \(\frac \lambda2\) b = \(\lambda\) sin \(60^\circ\) = \(\frac {\sqrt3 \lambda}2\) c = \(\lambda\) sin \(90^\circ\) = \(\lambda\) \(\therefore\) a : b : c = \(\frac \lambda2\) : \(\frac {\sqrt3 \lambda}2\) : \(\lambda\) = \(\lambda\) : \(\sqrt3 \lambda\) : 2\(\lambda\) (\(\because\) On multiplying by 2) = 1 : \(\sqrt3\) : 2 (\(\because\) On multiplying by \(\lambda\)) Hence, the ratio of lengths of opposite side of \(30^\circ\), \(60^\circ\) , \(90^\circ\) is 1 : \(\sqrt3\): 2 Correct option is: D) 1 : √3 : 2 |
|
32. |
Sin2 θ . Cot2 θ + Cos2 θ . Tan2 θ =A) 0 B) 2 C) 1 D) -1 |
Answer» Correct option is: C) 1 \(Sin^2 \theta . Cot^2 \theta + Cos^2 \theta . Tan^2 \theta\) = \(sin^2\theta.\frac {cos^2\theta}{sin^2\theta} + cos^2\theta. \frac {sin^2\theta}{cos^2\theta}\) (\(\because\) tan \(\theta\) = \(\frac {sin\, \theta}{cos\, \theta}\) & cot \(\theta\) = \(\frac {cos\, \theta}{sin \, \theta}\)) = \(cos^2\theta + sin^2\theta \) = 1 (\(\because\) \(cos^2\theta + sin^2\theta \) = 1) Correct option is: C) 1 |
|
33. |
If x Sin (90° – θ) Cot (90° – θ) = Cos (90° – θ) then x = A) 0 B) 1 C) – 1 D) 2 |
Answer» Correct option is: B) 1 Given that x sin (\(90^\circ\) - \(\theta\)) cot(\(90^\circ\) - \(\theta\)) = cos (\(90^\circ\) - \(\theta\)) = x cos \(\theta\) tan \(\theta\) = sin \(\theta\) (\(\because\) cos (\(90^\circ\) - \(\theta\)) = sin \(\theta\), sin (\(90^\circ\) - \(\theta\)) = cos \(\theta\), cot (\(90^\circ\) - \(\theta\)) = tan \(\theta\)) = x cos \(\theta\) \(\frac {sin \, \theta}{cos \, \theta} = sin \, \theta\) (\(\because\) tan \(\theta\) = \(\frac {sin \, \theta}{cos \, \theta} \)) = x sin \(\theta\) = sin \(\theta\) = x = \(\frac {sin \, \theta}{sin \, \theta} \) = 1 Correct option is: B) 1 |
|
34. |
Sec θ (1 – Sin θ) (Sec θ + Tan θ) = A) 0 B) 1 C) 2 D) -1 |
Answer» Correct option is: B) 1 Sec \(\theta\) (1 – Sin \(\theta\)) (Sec \(\theta\) + Tan \(\theta\)) = sec \(\theta\) (1- sin \(\theta\)) (\(\frac 1{cos\, \theta} + \frac {sin \, \theta}{cos \, \theta}\)) = sec \(\theta\) ( 1- sin \(\theta\)) . \(\frac {1+sin\, \theta}{cos \, \theta}\) = \(\frac {1-sin^2\theta}{cos^2\theta} \) (\(\because\) sec \(\theta\) = \(\frac 1{cos\, \theta}\) ) = \(\frac {cos^2\theta}{cos^2\theta} = 1 \) (\(\because\) \(1- sin^2\theta = cos^2\theta\)) Correct option is: B) 1 |
|
35. |
If sinθ + sin2θ = 1, then cos2θ + cos4θ = ………A) -1 B) 1 C) 0 D) None of these |
Answer» Correct option is: B) 1 We have sin\(\theta\) + \(sin^2\theta\) = 1...(1) = \(1-sin^2\theta = sin\,\theta\) = \(cos^2\theta = sin\,\theta\) ...(2) (\(\because\) \(1- sin^2\theta = cos^2\theta\)) Now, \(cos^2\theta + cos^4\theta = cos^2\theta + (cos^2\theta)^2\) = sin \(\theta\) + \((sin \, \theta)^2\)(\(\because\) \(cos^2\theta = sin \theta \) from (2)) = sin \(\theta\) + \(sin^2\theta\) = 1 (From (1)) Correct option is: B) 1 |
|
36. |
Sec2 27° – Cot2 63° =A) 3 B) 0 C) 1 D) 2 |
Answer» Correct option is: C) 1 \(sec^2 \,27^\circ – cot^2 \,63^\circ\) = \(1 + tan^2 \, 27^\circ - cot^2\, 63^\circ \) (\(\because\) \(sec^2 \theta = 1 + tan^2\theta\)) = \(1 + tan^2 (90^\circ - 63^\circ) - cot^2\, 63^\circ\) ( \(\because\) \(27^\circ\) = \(90^\circ\) - \(63^\circ\)) = \(1 + cot^2 \, 63^\circ - cot^2\, 63^\circ\) (\(\because\) tan (\(90^\circ\) -\(\theta\)) = cot \(\theta\)) = 1 Correct option is: C) 1 |
|
37. |
Tan2θ – Sec2θ = ………A) 1 B) -1 C) 0 D) ∞ |
Answer» Correct option is: B) -1 \(tan^2 \theta – sec^2 \theta = -(sec^2\theta - tan^2\theta) = -1\) (\(\because\) \(sec^2\theta - tan^2\theta = 1\)) Correct option is: B) -1 |
|
38. |
`tan(A+B)tan(A-B)`= ___________. |
Answer» Correct Answer - `(tan^(2)A-tan^(2)B)/(1-tan^(2)Atan^(2)B)`. | |
39. |
If `Delta ABC` is an isosceles traingle and right angled at B, then `(tanA+tanC)/(cotA+cotC)`=____________. |
Answer» Correct Answer - 1 | |
40. |
In a ∆ ABC right angled at B, ∠A = ∠C. Find the values of (i) sin A cos C + cos A sin C(ii) sin A sin B + cos A cos B |
Answer» In a ∆ABC right angled at B, ∠A = ∠C, therefore ∠A = ∠C = 45° (i) sin A cos C + cos A sin C = sin (45° + 45°) = sin 90° = 1 (ii) sin A sin B + cos A cos B = cos (A + B) = cos (90° + 45°) = sin (45°) = \(\frac{1}{\sqrt{2}}\) |
|
41. |
Prove that (sin 65° + cos 25°)(sin 65° − cos 25°) = 0. |
Answer» (sin 65° + cos 25°)(sin 65° − cos 25°) = 0 LHS = (sin 65° + cos 25°)(sin 65° − cos 25°) = sin2 65° – cos2 25° = sin2 65° – cos2 (90 – 65)° = sin2 65° – sin2 65° = 0 = RHS |
|
42. |
Evaluate :sin 25° cos 65° + cos 25° sin 65° |
Answer» sin 25° cos 65° + cos 25° sin 65° = sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°) = sin 25° sin 25° + cos 25° + cos 25° = sin2 25° + cos2 25° = 1. [∵ cos2 θ + sin2 θ = 1] |
|
43. |
If `cosec theta = 61/60, sec theta = 61/11` then `cot theta` =A. `(61^2)/600`B. `60/11`C. `11/60`D. can not be calculated |
Answer» Correct Answer - C | |
44. |
Evaluate: `"cosec"^(2)30^(@)+sec^(2)60^(@)+tan^(2)30^(@)`. |
Answer» Correct Answer - `8(1)/(2)` | |
45. |
Convert `(pi^(c ))/(15)` into the other two systems. |
Answer» Correct Answer - `(40^(g))/(3)` | |
46. |
If sec θ + tan θ = p, then what is the value of sec θ – tan θ? |
Answer» Given that sec θ + tan θ = p , We know that sec2 θ – tan2 θ = 1 sec2 θ – tan2 θ = (sec θ + tan θ) (sec θ – tan θ) = p (sec θ – tan θ) = 1 (from given) ⇒ sec θ – tan θ = \(\frac{1}{p}\) |
|
47. |
In the adjoining figure, find the value of tan B. |
Answer» Correct Answer - `(4)/(3)` | |
48. |
Convert `((200)/(3))^(g)` into other two systems. |
Answer» Correct Answer - `60^(@), (pi)/(3)` | |
49. |
Simplify (1 – cos θ) (1 + cos θ) (1 + cot2 θ) |
Answer» Given that (1 – cos θ) (1 + cos θ) (1 + cot2 θ) = (1 – cos2 θ) (1 + cot2 θ) [∵ (a – b) (a + b) = a2 – b2] = sin2 θ. cosec2 θ [∵ 1 – cos2 θ = sin2 θ; 1 + cot2 θ = cosec2 θ] = sin2 θ . \(\frac{1}{sin^2\, θ}\) [∵ cosec θ = \(\frac{1}{sin\, θ}\) ] = 1 |
|
50. |
Simplify and express `sec^(4) alpha- tan^(4) alpha` in their least exponents. |
Answer» Correct Answer - `sec^(2) alpha+ tan^(2) alpha ` | |