Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Check the commutativity and associativity of each of the following binary operations:(i) ‘*’ on Q defined by a * b = ab2 for all a, b ∈ Q(ii) ‘*’ on Q defined by a * b = a + ab for all a, b ∈ Q(iii) ‘*’ on R defined by a * b = a + b - 7 for all a, b ∈ R(iv) ‘*’ on Q defined by a * b = (a – b)2 for all a, b ∈ Q(v) ‘*’ on Q defined by a * b = ab + 1 for all a, b ∈ Q

Answer»

(i) Let us check commutativity of *

Let a, b ∈ Q, then

a * b = ab2

b * a = ba2

So,

a * b ≠ b * a

Thus, * is not commutative on Q

Let us check the associativity of *

Let a, b, c ∈ Q, then

a * (b * c) = a * (bc2)

= a(bc2)2

= ab2c4

(a * b) * c = (ab2) * c

= ab2c2

So, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(ii) We have to check commutativity of *

Let a, b ∈ Q, then

a * b = a + ab

b * a = b + ba

= b + ab

So, a * b ≠ b * a

Thus, * is not commutative on Q.

Let us prove associativity on Q.

Let a, b, c ∈ Q, then

a * (b * c) = a * (b + b c)

= a + a (b + b c)

= a + ab + a b c

(a * b) * c = (a + a b) * c

= (a + a b) + (a + a b) c

= a + a b + a c + a b c

So, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(iii) Let us check the commutativity of *

Let a, b ∈ R, then

a * b = a + b – 7

= b + a – 7

= b * a

Therefore,

a * b = b * a, for all a, b ∈ R

Thus, * is commutative on R

Let us prove associativity of * on R.

Let a, b, c ∈ R, then

a * (b * c) = a * (b + c – 7)

= a + b + c - 7 - 7

= a + b + c – 14

(a * b) * c = (a + b – 7) * c

= a + b – 7 + c – 7

= a + b + c – 14

So,

a * (b * c ) = (a * b) * c, for all a, b, c ∈ R

Thus, * is associative on R.

(iv) Let us check commutativity of *

Let a, b ∈ Q, then

a * b = (a – b)2

= (b – a)2

= b * a

Therefore,

a * b = b * a, for all a, b ∈ Q

Thus, * is commutative on Q

Let us prove the associativity of * on Q

Let a, b, c ∈ Q, then

a * (b * c) = a * (b – c)2

= a * (b2 + c2 – 2 b c)

= (a – b2 – c2 + 2bc)2

(a * b) * c = (a – b)2 * c

= (a2 + b2 – 2ab) * c

= (a2 + b2 – 2ab – c)2

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(v) Let us check the commutativity of *

Let a, b ∈ Q, then

a * b = ab + 1

= ba + 1

= b * a

Therefore

a * b = b * a, for all a, b ∈ Q

Thus, * is commutative on Q

Let us prove the associativity of * on Q

Let a, b, c ∈ Q, then

a * (b * c) = a * (bc + 1)

= a (b c + 1) + 1

= a b c + a + 1

(a * b) * c = (ab + 1) * c

= (ab + 1) c + 1

= a b c + c + 1

So, a * (b * c) ≠ (a * b) * c

Hence, * is not associative on Q.

52.

Determine whether the following operation define a binary operation on the given set or not:(i) ‘*’ on N defined by a * b = ab for all a, b ∈ N.(ii) ‘O’ on Z defined by a O b = ab for all a, b ∈ Z.(iii)  ‘*’ on N defined by a * b = a + b – 2 for all a, b ∈ N

Answer»

(i) Given ‘*’ on N defined by a * b = ab for all a, b ∈ N.

Let a, b ∈ N. Then,

a∈ N [∵ a≠ 0 and a, b is positive integer]

⇒ a * b ∈ N

So,

a * b ∈ N, ∀ a, b ∈ N

Thus, * is a binary operation on N.

(ii) Given ‘O’ on Z defined by a O b = ab for all a, b ∈ Z.

Both a = 3 and b = -1 belong to Z.

⇒ a * b = 3-1

= 1/3 ∉ Z

Thus, * is not a binary operation on Z.

(iii) Given ‘*’ on N defined by a * b = a + b – 2 for all a, b ∈ N

If a = 1 and b = 1,

a * b = a + b – 2

= 1 + 1 – 2

= 0 ∉ N

Thus, there exist a = 1 and b = 1 such that a * b ∉ N

Therefore, * is not a binary operation on N.

53.

Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation ‘O’ is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R.(i) Show that ‘O’ is commutative and associative on A(ii) Find the identity element in A(iii) Find the invertible element in A.

Answer»

(i) Let X = (a, b) and Y = (c, d) ∈ A, ∀ a, c ∈ Rand b, d ∈ R

Then, X O Y = (ac, bc + d)

And Y O X = (ca, da + b)

S0,

X O Y = Y O X, ∀ X, Y ∈ A

Thus, O commutative on A.

Let us check the associativity of O

Let X = (a, b), Y = (c, d) and Z = (e, f), ∀ a, c, e ∈ Rand b, d, f ∈ R

X O (Y O Z) = (a, b) O (ce, de + f)

= (ace, bce + de + f)

(X O Y) O Z = (ac, bc + d) O (e, f)

= (ace, (bc + d) e + f)

= (ace, bce + de + f)

So, X O (Y O Z) = (X O Y) O Z, ∀ X, Y, Z ∈ A

(ii) Let E = (x, y) be the identity element in A with respect to O, ∀ x ∈ Rand y ∈ R

Such that,

XOE = X = EOX, ∀ X ∈ A

XOE = X and EOX = X

(ax, bx +y) = (a, b) and (xa, ya + b) = (a, b)

Consider (ax, bx + y) = (a, b)

ax = a

x = 1

And bx + y = b

y = 0 [since x = 1]

Consider (xa, ya + b) = (a, b)

xa = a

x = 1

And ya + b = b

y = 0 [since x = 1]

So, (1, 0) is the identity element in A with respect to O.

(iii) Let F = (m, n) be the inverse in A ∀ m ∈ Rand n ∈ R

X O F = E and F O X = E

(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)

Consider (am, bm + n) = (1, 0)

am = 1

m = 1/a

And bm + n = 0

n = -b/a [since m = 1/a]

Consider (ma, na + b) = (1, 0)

ma = 1

m = 1/a

And na + b = 0

n = -b/a

So, the inverse of (a, b) ∈ A with respect to O is (1/a, -1/a)

54.

Determine whether the following operation define a binary operation on the given set or not:(i) ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6.(ii) ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b= {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6)(iii) ‘⊙’ on N defined by a ⊙ b= ab + ba for all a, b ∈ N(iv) ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q

Answer»

(i) Given that ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a × 6b = Remainder when ab is divided by 6.

Consider the table,

X612345
112345
224024
330303
442042
554321

Here all elements of table are not in S.

⇒ For a = 2 and b = 3,

a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ S

So, ×6 is not a binary operation on S.

(ii) Given ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a + 6b

= {(a + b, if a + b < 6), (a + b - 6, if a + b ≥ 6)

Consider the table

+6012345
0012345
1123450
2234501
3345012
4450123
5501234

Here all elements of table are not in S.

⇒ For a = 2 and b = 3,

a × 6b = 2 × 63 = remainder when 6 divided by 6 = 0 ≠ Thus, ×6 is not a binary operation on S.

(iii) Given that ‘⊙’ on N defined by a ⊙ b = ab + ba for all a, b ∈ N

Let a, b ∈ N. Then,

ab, ba ∈ N

⇒ ab + ba ∈ N [∵Add in binary operation on N]

⇒ a ⊙ b ∈ N

So, ⊙ is a binary operation on N.

(iv) Given ‘*’ on Q defined by a * b = (a – 1)/(b + 1) for all a, b ∈ Q

If a = 2 and b = -1 in Q,

a * b = (a – 1)/(b + 1)

= (2 – 1)/(- 1 + 1)

= 1/0 [which is not defined]

For a = 2 and b = -1

a * b does not belongs to Q

Therefore, * is not a binary operation in Q.

55.

Let S = {a, b, c}. Find the total number of binary operations on S.

Answer»

The number of binary operations on a set with n elements is nn^2

Here, S = {a, b, c}

The number of elements in S = 3

The number of binary operations on a set with 3 elements is 33^2

56.

Check the commutativity and associativity of each of the following binary operations:(i) ‘*’ on Z defined by a * b = a + b + ab for all a, b ∈ Z (ii) ‘*’ on N defined by a * b = 2ab for all a, b ∈ N(iii) ‘*’ on Q defined by a * b = a – b for all a, b ∈ Q(iv) ‘⊙’ on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q(v) ‘o’ on Q defined by a o b = (ab/2) for all a, b ∈ Q

Answer»

(i) First Let us check commutativity of *

Let a, b ∈ Z

Then a * b = a + b + ab

= b + a + ba

= b * a

So,

a * b = b * a, ∀ a, b ∈ Z

Let us prove associativity of *

Let a, b, c ∈ Z, Then,

a * (b * c) = a * (b + c + bc)

= a + (b + c + bc) + a (b + c + bc)

= a + b + c + bc + ab + ac + abc

(a * b) * c = (a + b + ab) * c

= a + b + a b + c + (a + b + a b) c

= a + b + a b + c + a c + b c + a b c

So,

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ Z

Thus, * is associative on Z.

(ii) Let us check commutativity of *

Let a, b ∈ N

a * b = 2ab

= 2ba

= b * a

So, a * b = b * a, ∀ a, b ∈ N

Thus, * is commutative on N

Let us check associativity of *

Let a, b, c ∈ N

Then, a * (b * c) = a * (2bc)

=2a ∗ 2bc

(a * b) * c = (2ab) * c

=2ab ∗ 2c

So, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on N

(iii) Let us check commutativity of *

Let a, b ∈ Q, then

a * b = a – b

b * a = b – a

So, a * b ≠ b * a

Thus, * is not commutative on Q

Let us check associativity of *

Let a, b, c ∈ Q, then

a * (b * c) = a * (b – c)

= a – (b – c)

= a – b + c

(a * b) * c = (a – b) * c

= a – b – c

Therefore,

a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q

(iv) Let us check commutativity of ⊙

Let a, b ∈ Q, then

a ⊙ b = a2 + b2

= b2 + a2

= b ⊙ a

So, a ⊙ b = b ⊙ a, ∀ a, b ∈ Q

Thus, ⊙ on Q

Let us check associativity of ⊙

Let a, b, c ∈ Q, then

a ⊙ (b ⊙ c) = a ⊙ (b2 + c2)

= a2 + (b2 + c2)2

= a2 + b4 + c4 + 2b2c2

(a ⊙ b) ⊙ c = (a2 + b2) ⊙ c

= (a2 + b2)2 + c2

= a4 + b4 + 2a2b2 + c2

So,

(a ⊙ b) ⊙ c ≠ a ⊙ (b ⊙ c)

Thus, ⊙ is not associative on Q.

(v) Let us check commutativity of o

Let a, b ∈ Q, then

a o b = (ab/2)

= (ba/2)

= b o a

So, a o b = b o a, ∀ a, b ∈ Q

Thus, o is commutative on Q

Let us check associativity of o

Let a, b, c ∈ Q, then

a o (b o c) = a o (b c/2)

= [a (bc/2)]/2

= [a (bc/2)]/2

= (a b c)/4

(a o b) o c = (ab/2) o c

= [(ab/2)c]/2

= (a b c)/4

So, a o (b o c) = (a o b) o c, ∀ a, b, c ∈ Q

Hence, o is associative on Q.

57.

Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.(i) On Z+, defined * by a * b = a – b(ii) On Z+, define * by a*b = ab(iii) On R, define * by a*b = ab2(iv) On Z+ define * by a * b = |a − b|(v) On Z+ define * by a * b = a(vi) On R, define * by a * b = a + 4b2Here, Z+ denotes the set of all non-negative integers.

Answer»

(i) Given that OnZ+, defined * by a * b = a – b

If a = 1 and b = 2 in Z+, then

a * b = a – b

= 1 – 2

= -1 ∉ Z[because Z+ is the set of non-negative integers]

For a = 1 and b = 2,

a * b ∉ Z+

So, * is not a binary operation on Z+.

(ii) Given that Z+, define * by a*b = ab

Let a, b ∈ Z+

⇒ a, b ∈ Z+

⇒ a * b ∈ Z+

So, * is a binary operation on R.

(iii) Given that on R, define by a*b = ab2

Let a, b ∈ R

⇒ a, b2 ∈ R

⇒ ab2 ∈ R

⇒ a * b ∈ R

So, * is a binary operation on R.

(iv) Given that on Z+ define * by a * b = |a − b|

Let a, b ∈ Z+

⇒ |a – b| ∈ Z+

⇒ a * b ∈ Z+

So,

a * b ∈ Z+, ∀ a, b ∈ Z+

Thus, * is a binary operation on Z+.

(v) Given that on Zdefine * by a * b = a

Let a, b ∈ Z+

⇒ a ∈ Z+

⇒ a * b ∈ Z+

So, a * b ∈ Z+ ∀ a, b ∈ Z+

Thus, * is a binary operation on Z+.

(vi) Given that On R, define * by a * b = a + 4b2

Let a, b ∈ R

⇒ a, 4b2 ∈ R

⇒ a + 4b2 ∈ R

⇒ a * b ∈ R

So, a *b ∈ R, ∀ a, b ∈ R

Hence, * is a binary operation on R.

58.

Let A be any set containing more than one element. Let ‘*’ be a binary operation on A defined by a * b = b for all a, b ∈ A Is ‘*’ commutative or associative on A?

Answer»

Let a, b ∈ A

Then, a * b = b

b * a = a

So, a * b ≠ b * a

Thus, * is not commutative on A

Let us check associativity:

Let a, b, c ∈ A

a * (b * c) = a * c

= c

So

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ A

Hence, * is associative on A

59.

Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.

Answer»

Consider the composition table :

LCM12345
112345
2226410
33531215
44412420
551015205

In the given composition table, all the elements are not in the set {1, 2, 3, 4, 5}.

If we consider a = 2 and b = 3, a * b = LCM of a and b = 6 ∉ {1, 2, 3, 4, 5}.

Thus, * is not a binary operation on {1, 2, 3, 4, 5}.

60.

Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4

Answer»

Given that a * b = 2a + b – 3

3 * 4 = 2(3) + 4 – 3

= 6 + 4 – 3

= 7

61.

If the binary operation o is defined by a O b = a + b – ab on the set Q – {-1} of all rational numbers other than 1, show that o is commutative on Q – [1].

Answer»

Let a, b ∈ Q – {-1}.

Now, aob = a + b – ab

= b + a – ba

= boa

So,

aob = boa for all a, b ∈ Q – {-1}

Hence, o is commutative on Q – {-1}

62.

Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by a * b = (3ab/5) for all a, b ∈ Q0. Show that * is commutative as well as associative. Also, find its identity element, if it exists.

Answer»

Let us prove the commutativity of *

Let a, b ∈ Q0

a * b = (3ab/5)

= (3ba/5)

= b * a

So, a * b = b * a, for all a, b ∈ Q0

Let us prove the associativity of *

Let a, b, c ∈ Q0

a * (b * c) = a * (3bc/5)

= [a(3bc/5)]/5

= 3 abc/25

(a * b) * c = (3ab/5) * c

= [(3ab/5)c]/5

= 3abc/25

So, a * (b * c) = (a * b) * c, for all a, b, c ∈ Q0

Thus * is associative on Q0

Let us find the identity element

Let e be the identity element in Z with respect to *

Such that, a * e = a = e * a ∀ a ∈ Q0

a * e = a and e * a = a, ∀ a ∈ Q0

3ae/5 = a and 3ea/5 = a, ∀ a ∈ Q0

e = 5/3 ∀ a ∈ Q[because a ! = 0]

Hence, 5/3 is the identity element in Q0 with respect to *.

63.

Let * be a binary operation on Z defined by a * b = a + b – 4 for all a, b ∈ Z.(i) Show that * is both commutative and associative.(ii) Find the identity element in Z(iii) Find the invertible element in Z.

Answer»

(i) Let us prove the commutativity of *

Let a, b ∈ Z. Then,

a * b = a + b – 4

= b + a – 4

= b * a

So,

a * b = b * a, ∀ a, b ∈ Z

Thus, * is commutative on Z.

Now, let us prove associativity of Z.

Let a, b, c ∈ Z. Then,

a * (b * c) = a * (b + c – 4)

= a + b + c - 4 – 4

= a + b + c – 8

(a * b) * c = (a + b – 4) * c

= a + b – 4 + c – 4

= a + b + c – 8

So,

a * (b * c) = (a * b) * c, for all a, b, c ∈ Z

Thus, * is associative on Z.

(ii) Let e be the identity element in Z with respect to *

Such that, a * e = a = e * a ∀ a ∈ Z

a * e = a and e * a = a, ∀ a ∈ Z

a + e – 4 = a and e + a – 4 = a, ∀ a ∈ Z

e = 4, ∀ a ∈ Z

Thus, 4 is the identity element in Z with respect to *.

(iii) Let a and b ∈ Z be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a = e

a + b – 4 = 4 and b + a – 4 = 4

b = 8 – a ∈ Z

So, 8 – a is the inverse of a ∈ Z

64.

If the pth, qth and rth terms of an A.P. are a, b, c respectively, prove that a(q – r) + b (r – p) + c(p – q) = 0.

Answer»

Let A be the first term and D be the common difference of A.P.

ap = a, ∴ A + (p – 1)D = a ….. (1) 

aq = b, ∴ A + (q – 1)D = b ……. (2) 

ar = c, ∴ A + (r – 1)D = c …….. (3) 

∴ a (q – r) + b (r – p) + c (p – q) = [A + (p – l) D] (q – r) + [A + (q – 1) D] 

(r – p) + [A + (r – 1) D] (p – q) [Using (1), (2) and (3)] 

= (q – r + r – p + p – q)A + [(p – l)(q – r) + (q – l)(r – p) + (r – l)(p – q)]D

= (0) A + (pq – pr – q + r + qr – pq – r + p + pr – p – qr + q)D 

= (0)A + (0)D = 0.

65.

Find the term independent of x in \((x^3 - \frac{3}{x^2})^{15}\)

Answer»

 \((x^3 - \frac{3}{x^2})^{15}\)

Here x → x3, a = \((\frac{-3}{x^2})^r\) and n = 15 

Tr+1 = 15Cr.(x3)15- r \((\frac{-3}{x^2})^r\)

= 15Cr.x45-r .x-2r (-3)r 

= 15Cr.(-3)r .x45-5r 

To find the term independent of x we have 45 – 5r = 0 

:. 45 = 5r ⇒ r = 9 

T9+1 = 15C9.(-3)9 .x0 

T10 = -15C9.(3)9 is the term independent of x.

66.

Find the coefficient of x18 in (x2 + \(\frac{3a}{x}\))15

Answer»

Here x → x2 a → \(\frac{3a}{x}\), n =15 

∴ Tr+1 = 15Cr.(x2)15-r(\(\frac{3a}{x}\))r 

= 15Crx30-2r.(3a)rxr 

15Cr .3r .ar .x30-3r 

To find the coefficient of x18, we get 30 – 3r = 18 

12 = 3r ⇒ r =4 

∴ T4+1 = 15C4.34 .a4 .x18 

∴ coefficient of x18 is 15C4.(3a)4

67.

Find the coefficient of x5 in (x + \(\frac{1}{x^2}\))17

Answer»

Here, x → x, a → \(\frac{1}{x^2}\) and n = 17 

Tr+1 = 17Cr.x17-r(\(\frac{1}{x^2}\))

= 17Crx17-3r 

To find the coefficient of x5, equate the power of x to 5 

∴ 17 – 3r = 5 

12 = 23 ⇒ r = 4 

T4+1 = T5 = 17C4.x5 

∴ The coefficient of x5 is 17C4

68.

Find the coefficient of  x-2 in (x + \(\frac{1}{x^2}\))17

Answer»

Here, x → x, a → \(\frac{1}{x^2}\)and n = 17 

∴ Tr+1 = 17Cr.x17-r(\(\frac{1}{x^2}\))

Tr+1 = 17Cr.x17-r-2r 

= 17Crx17-3r 

To find the coefficient of x-2, equate the power of x to -2 

17 – 3r = -2 ⇒ 17 + 2 = 3r ⇒ 3r ⇒ r = \(\frac{19}{3}\)

Since r is a fraction the coefficient of x-2 is 0.

69.

Write the general term in the expansion of (x2 – y)6

Answer»

To Find : General term, i.e. tr+1 

For (x2 - y)6 

a=x2 , b=-y and n=6

General term tr+1 is given by,

tr+1 = (rn) an-rbr

= (6r)(x2)6-r(-y)r

Conclusion : General term = (6r)(x2)6-r(-y)r

70.

The general term in the expansion of (x + a)n(A) nCr xn-r .ar(B) nCr xr .ar(C) nCn-r xn-r.ar(D) nCn-r xr.an-r

Answer»

Answer is (A) nCr xn-r .ar

General term in the expansion of (x + a)n

⇒ Tr+1 = nCr xn-r ar

71.

Find a positive value of m for which the coefficient of x2  in the expansion (1 + x)m is 6.

Answer»

Given 6 = coefficient of x2 in (1 + x)m

= mC2

∴ 6 = m(m - 1)/(2 x 1)

⇒ m(m - 1) = 12 = 4(3)

∴ m = 4

72.

Write the middle term in the expansion of \((x-\frac{1}{2x})^{6}\) .

Answer»

The general term in the expansion of \((x-\frac{1}{2x})^6\) is

Tr + 1 = (– 1)r 6Cr x6 – r \((\frac{1}{2x})^r\) = (– 1)r . 6Cr x6 – r . 2 – r x – r 

= (– 1)r . 6Cr x6 – 2r . 2– r

Now the power of binomial expansion being 6, (even), the middle term is \((\frac{6}{2}+1)th\) term = 4th term.

∴  T4 = T3+1 = (-1)3 . 6C3 x6-6 2-3 

\((-1) \times \frac{6\times 5 \times 4}{3 \times 2 \times 1} \times x^0 \times \frac{1}{8} = -\frac{5}{2}\)

73.

Find the 11th term from the beginning and the 11th term from the end in the expansion of (2x – 1/x2)25.

Answer»

Given as

(2x – 1/x2)25

Now, the given expression contains 26 terms.

Therefore, the 11th term from the end is the (26 − 11 + 1) th term from the beginning.

In other words, the 11th term from the end is the 16th term from the beginning.
Now,

T16 = T15+1 = 25C15 (2x)25-15 (-1/x2)15

25C15 (210) (x)10 (-1/x30)

= – 25C15 (210 / x20)

Then we shall find the 11th term from the beginning.

T11 = T10+1 = 25C10 (2x)25-10 (-1/x2)10

25C10 (215) (x)15 (1/x20)

25C10 (215 / x5)

74.

Using binomial theorem, prove that 23n – 7n – 1 is divisible by 49, where n ∈ N.

Answer»

Given as

23n – 7n – 1

Therefore, 23n – 7n – 1 = 8n – 7n – 1

Now,

8n – 7n – 1

8n = 7n + 1

= (1 + 7) n

nC0 + nC1 (7)1 + nC2 (7)2 + nC3 (7)3 + nC4 (7)2 + nC5 (7)1 + … + nCn (7) n

8n = 1 + 7n + 49 [nC2 + nC3 (71) + nC(72) + … + nCn (7) n-2]

8n – 1 – 7n = 49 (integer)

Therefore now,

8n – 1 – 7n is divisible by 49

Or

23n – 1 – 7n is divisible by 49.

Thus proved.

75.

The coefficient of x13 in the expansion of (1 – x)5 (1 + x + x2 + x3) 4 is(a)  4 (b)  –4 (c)   0 (d)   none of these 

Answer»

Correct option  (a)  4

Explanation:

Coefficient of x13 in = (1 – x)5 (1 + x + x+ x3) 4 = (1 – x)5 ((1 + x)(1 + x2))4

= (1 – x) {(1 – x)(1 + x)(1 + x2 )}4

= (1 – x) {(1 – x4)4 

= (1 – x) (1 – 4x4  + 6x– 4x12 + x16

∴  coefficient of x13 is  –1 x – 4 = 4

76.

If the expansion of (1 + x)n, C0 + C1 + C2 + C3 + … Cn are coefficients different terms then find the value C0 + C2 + C4… .

Answer»

(1 + x)nnC1n + nC1nC1n-1 x1

nC1n-2 x2 + nC1n-3x3 +….

Putting x = 1

(1 + 1)n = nC0 + nC1 +nC2 + nC3 + ….

Putting x = – 1

(1 – 1)n = nC0 – nC1 +nC2 – nC3 + ….

Here nC0 + nC1 +nC2 + nC3 + …. = 2n … (i)

“C0 – “Ci + ”C2 – “C3 + … = 0 … (ii)

Adding equation (i) and (ii)

2[nC0 + nC2 + nC4 + …] = 2n

⇒ nC0 + nC2 + nC4 + … = 2n – 1

or C0 + C2 + C4 + … = 2n – 1

77.

Find the value of 30C1 + 30C2 + 30C3 +… + 30C30 .

Answer»

(1 + x)n = nC0 + nC1x+nC2x2nC3x3+ ….

Putting x = 1

(1 + 1)n = nC0 + nC1 +nC2 + nC3 + …. +  nCn

or    2n = nC0 + nC1 +nC2 + nC3 + …. + nCn

Here, putting n = 30.

230 = 1+ 30C1 +30C2 + 30C3 + …. + 30C3o

⇒ 1+ 30C1 +30C2 + 30C3 + …. + 30C3o  = 230

⇒ 30C1 + 30C2 + 30C3 + … + 30c30 = 230 – 1

78.

Prove that (1 + x + x2 + x3 +….)  (1 + 3x + 6x2+ …)= (1 + 2x + 3x2 + …)2

Answer»

We know that

(1 – x)-1 = 1 + x + x2 + x3 +…           … (i)

and (1 – x)-3 = 1 + 3x + 6x2 + 10x3 + … (ii)

L.H.S. = (1 + x + x2 + x3 +…)(1 + 3x + 6x2 + …)

= {(1 – x)-1} {(1 – x)-3}

= {(1 – x)2}-2

= {(1 – x)-2}2

= (1 + 2x + 3x2 +…)2

= R.H.S.

79.

Expand (a + b)4 – (a – b)4. Using this find the value of (√3 + √2)4 – (√3 – √2)4

Answer»

By using binomial theorem,

(a + b)4 = 4C0 ab0 + 4C1 ab1
4C2 ab24C3 ab3 + 4Cab4

4C0 a4 + 4C1 ab1 + 4C2 ab2
4C3 ab3 + 4Cb4 …. (1)

and (a – b)4 = 4C0 a4 (-b)04C1 a3 (-b)1
4C2 a2 (-b)2 + 4Ca1 (-b)3 + 4Ca0 (-b)4

4C0 a4 – 4C1 a3 b + 4C2 a2 b2
– 4C3 ab4 + 4C4 b4 …. (2)

From equation (1) and (2) we have,

(a + b)4 – (a – b)4

= [4C0 a4 + 4C1 ab +4C2 a2 b2 + 4C3 ab3 + 4C4 b4]
– [4C0 a4 – 4Cab + 4Cab2 –4C3 ab3 + 4Cb4]

4Ca4 + 4C1 ab + 4Cab2 + 4Cab3 + 4Cb4
– 4Ca4 + 4Ca3b – 4C2 a2b2 + 4Cab3 – 4Cb4

= 2. 4C1 a3 b + 2. 4C3 ab3

= 2ab [4C1 a2 + 4Cb2]

= 2ab [4a2 + 4b2]  [∴ 4C1 = 4, 4C3 = 4]

= 2ab (a2 + b2)

Hence, (a + b)4 – (a – b)4 = 8ab (a2 + b2)

Now, putting a= √3 and b = √2

(√3 + √2)4 – (√3 – √2)4

= 8 √3 × √2 [(√3)2 + (√2)2]

= 8 √6 (3 + 2)

= 8 √6 × 5 – 40 √6

Hence (√3 + √2 )4 – (√3 – √2 )4 = 40 √6

80.

If (1 + x + 2x2) 20 = a0 + a1x + a2 x2 + a3x3  +.......+ a40x40, then a0 + a2 + a4 +........+ a38 is equal to (a)   219(220 – 1) (b)   220(219 – 1)(c)   219(220 + 1)(d)   none of these 

Answer»

Correct option (a)  219(220 – 1)

Explanation: 

Put x = 1 and x = –1 and adding we get 420+220 = 2(a0 + a2 + a4 +....+ a38 + a40)

 239 + 219 = a0 + a2  + ..... + a38 + 220 

∴ a0 + a2 + a4 +.....+ a38 

=239 + 219 – 220 

= 219(220 + 1– 2)

= 219(220 – 1)

81.

If expansion of (1 + x – 2x2)6 is denoted by 1 + a1x+ a2x2 + a3x3 + … + a12x12 then prove that a2 + a4 + a6 + … + a12 = 31.

Answer»

Given expansion is :

(1 + x – 2x2)6 = 1 + a1x+ a2x2 + a3x3 + … + a12x12 … (i)

Putting x = – 1 in equation (i)

{1 + 1 – 2(1)2}6 = 1+ a1 + a2 + a3 + … + a12

⇒ (2 – 2)6 = 1 + a1 + a2 + a3 + … + a12

⇒ 1 + a1 + a2 + a3 + … + a12 = 0 … (ii)

Putting x = – 1 in equation (i)

{(1 – 1 – 2(-1)2}6 = 1 – a1 + a2 + a3 + … + a12

⇒ (-2)6 = 1 – a1 + a2 + a3 + … + a12

⇒ 1- a1 + a2 + a3 + … + a12 = 64       … (iii)

Adding equation (ii) and (iii) we get

⇒ 2 + 2a2 + 2a4 + … + a12 = 64

⇒   2(1 + a2 + a4 + … + a12) = 64

⇒  1 + a2 + a4 + … + a12 = 64/2 = 32

⇒ a2 + a4 + a6 … + a12 = 32 – 1 = 31

Hence, a2 + a4 + a6 … + a12 =31.

Hence proved.

82.

In the expansion of (1+ a)m+n , prove that coefficients of am and an  are equal.

Answer»

We have Tr + 1 = m + nCr ar

⇒ Coefficient of ar = m + nCr

∴ Coefficient of am = m + nCm

Similarly, coefficient of an = m + nCn

= m + nC(m + n) - n

= m + nCm

∴ Coefficient of am = coefficient of an

83.

The sum of coefficients of the expansion \((\frac{1}{x}+2x)^n\) is 6561. The coefficient of term independent of x is(a) 16. 8C4 (b) 8C4 (c) 8C5 (d) None of these

Answer»

Answer : (a) 16. 8C4   

Sum of the coefficients of the expansion \((\frac{1}{x} +2x)^n\)  = 6561

Putting x = 1, (1 + 2)n = 6561 ⇒ 3n = 38 

⇒ n = 8

 \(\therefore\) Tr + 1 in the expansion of \((\frac{1}{x} +2x)^8\) 

= 8Cr \((\frac{1}{x})^{8-r}\) (2x)r = 8Cr 2x2r-8 

Since this term is independent of x, 2r – 8 = 0 ⇒ r = 4.

∴ Reqd. term = 8C4 . 24 

= 16 . 8C4.

84.

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and nth hour?

Answer»

Number of bacteria at the beginning = 30 

Number of bacteria after 1 hour = 30 × 2 = 60 

Number of bacteria after 2 hours = 30 × 22 = 120 

Number of bacteria after 4 hours = 30 × 24 = 30 × 16 = 480 

∴ Number of bacteria after nth hour = 30 × 2n

85.

Find the sum of the coefficient in (x + y)8.

Answer»

To get the sum of coefficients of (x + y)8

Put x = 1 and y = 1, we get

 (1 + 1)8 = 28 = 256

86.

Which term is greater (1, 2)4000 or 800?

Answer»

(1, 2)4000 = (1 + 0.2)4000 

Now, expanding by binomial theorem, we get 

(1 + 0.2)4000 = 4000 C0 (1)4000  (0.2)0 + 4000 C1 (14000  – 1 (0.2)1 +4000 C3 (1)4000 – 3 (0.2)3 + …

 = 1 + 4000(0.2) + other terms of the expansion 

= 1 + 800 + other terms of the expansion 

= 801 + other terms of the expansion 

Hence, (1, 2)4000  > 800

87.

Which term is independent of x in expansion of (3x3 − \(\frac{1}{2x^3}\))10

Answer»

Let (r + 1)th term be independent of in the given expression 

Now Tr + 1 = 10Cr (3x)10 – r ( –\(\frac{1}{2x^3}\))r

= 10Cr (3x)10 – r ( –\(\frac{1}{2}\))r x30 − 6

This term is independent of x, if 

30 – 6r = 0 

⇒ r = 5 

So, (5 + 1)th i.e 6th terms is independent of x

88.

Write number of terms in the expansion of {(2x +y3 )4 }7

Answer»

Given, 

{(2x + y3 )4 }7 

= (2x + y3 ) 28 

Hence, there are 29 terms in the expansion

89.

In the expansion of (1 – 3x + 3x2 – x3)2n, the middle term is (a) (n + 1)th term (b) (2n + 1)th term (c) (3n + 1)th term (d) None of these

Answer»

Answer : (c)  (3n + 1)th term 

(1 – 3x + 3x2 – x3)2n = ((1 – x)3)2n = (1 – x) 6n 

∴ Middle term = \((\frac{6n}{2}+1)\)th term 

= (3n+1)th term.

90.

The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is(a) 102 (b) 25 (c) 26 (d) None of these

Answer»

(c) 26 is the correct choice since the total number of terms are 52 of which 26 terms get cancelled.

The correct option is (C) 26

Explanation:

We have to expand (x + a)51 – (x – a)51
At first,  (x + a)51 = 51C0 x51 + 51C1 x50 a + 51C2 x49 a2 + ...... + 51C51 a51
then, (x – a)51 = 51C0 x51 - 51C1 x50 a + 51C2 x49 a2 - ...... - 51C51 a51

When we subtract both the values i.e. (x + a)51 – (x – a)51 we get, 
2( 51C1 x50 a + 51C3 x48 a3 + ...... + 51C51 a51)

Thus count the number of terms that is number of odd numbers up to 51. 

i.e 1, 3, 5, 7, ......, 49, 51

Apply AP:
a + (n-1)d = 51
1 + (n-1)2 = 51
n = 26
So, the total numbers of terms in the expansion is 26.