Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Let A,B,C be three sets of complex number as defined below `A={z:lm (z) ge 1}` `B={z:|z-2-i|=3}` `C={z:Re((1-i)z)=sqrt(2)}` Let z be any point in `A cap B cap C` and let w be any point satisfying `|w-2-i|lt 3` Then `|z|-|w|+3` lies betweenA. `-6 and 3`B. `-3 and 6`C. `-6 and 6`D. `-3 and 9 `

Answer» Correct Answer - D
Since `|w-(2+i)| lt 3 rArr |w|-|2+i|lt 3 `
`rArr -3+sqrt(5)lt |w| lt 3 + sqrt(5)` ltbr `rArr -3-sqrt(5)lt -|w|lt 3 -sqrt(5)`
Also `|z-2(2+i)|=3`
`rArr -3 + sqrt(5) le |z| le 3 +sqrt(5)`
`therefore -3 lt |z| -|w|+3 lt 9 `
102.

Let `S=S_1 cap S_2 cap S_3` where `S_1={z in C:|z| lt 4"}",S_2={z in C: lm[(z-1+sqrt(3)i)/(1-sqrt(3)i)]gt0}` and `S_3:{z in : Re z lt 0 }` Let z be any point in `A cap B cap C` The `|z+1-i|^2+|z-5-i|^2` lies betweenA. 25 and 29B. 30 and 34C. 35 and 39D. 40 and 44

Answer» Correct Answer - C
`|z+1-i|^2+|z-5-i|^2`
= `(x+1)^2 +(y-1)^2+(x-5)^2+(y-1)^2`
`=2(x^2+y^2-4x-2y)+28`
`=2(4)+28=36 " "[ because x^2+y^2-4x-2y =4]`
103.

Find nonzero integral solutions of `|1-i|^x=2^xdot`

Answer» We have,
`|1-i|^(x) = 2^(x)`
`(sqrt(1^(2) +(-1)^(2)))^(x) = 2^(x)`
`rArr (sqrt(2))^(x) = 2^(x)`
`or 2^(x//2) = 1`
`or 2^(x//2) = 2^(x)`
`or 2^(x//2) = 2^(0) or (x)/(2) = 0 or x = 0`
Hence, the given equation has no solution.
104.

Let z be a complex number satisfying `|z| = 3 |z-1|`. Then prove that `|z-(9)/(8)| = (3)/(8)`

Answer» Let `z = x + iy`
Now, `|z| = 3|z-1|`
`rArr|z|^(2) = 9|z-1|^(2)`
`rArr |x+iy|^(2) = 9|(x -1)+iy|^(2)`
`rArr x^(2) +y^(2) = 9 [(x-1)+iy|^(2)`
`rArr 8x^(2) + 8y^(2) - 18x x + 9 = 0`
`rArr (x-(9)/(8))^(2) + y^(2) =(9)/(64)`
`rArr |(x-(9)/(8)) + iy| =(3)/(8)`
`rArr |z-(9)/(8)| = (3)/(8)`
105.

Match the statements of Column I with those of Column II Here ,z takes values in the complex plane and Im (z) and Re(z) denote respectively , the imaginary part and the real part of z

Answer» Correct Answer - `A rarr q,r ; B rarr p ; C to p , s , t ; D to q ,r , st `
A.Let Z=x+iy
`rArr we get ysqrt(x^+y^2)=0`
`rArr y=0`
`rArr I_m(z)=0`
B. We have
`rArr 10_e =8`
`rArr e=4/5`
`rArr b^2=25(1-16/25)=9`
`therefore x^2/25+y^2/9=1`
C. Let `w=2(cos theta +I sin theta)`
`therefore z=2 (cos theta+ i sin theta)-(1)/(2 cos theta _ i sin theta)`
`=2 (cos theta + i sin theta)-1/2(cos theta - sin theta)`
`=3/2 cos theta + 5/2 i sin theta`
Let z=x+iy
`rArr x=3/2 cos theta and y= 5/2 sin theta`
`rArr ((2x)/(3))^2+((2y)/(5))^2=1`
`rArr (x^2)/(9//4)+(y^4)/(25//4)=1`
`therefore e=sqrt(1-9//4/25//4=4/5`
D Let `W= cos theta + i sin theta`
Then `z=x+iy = cos theta + i sin theta +1/( cos theta + i sin theta)`
`= 2 cos theta`
`rArr x=2 cos theta y=0`
106.

If `z=x+iy` and `w=(1-iz)/(z-i)`, then `|w|=1` implies that in the complex plane(A)`z` lies on imaginary axis (B) `z` lies on real axis (C)`z` lies on unit circle (D) None of theseA. z lies on the imaginary axisB. z lies on the real axisC. z lies on the unit circleD. None of these

Answer» Correct Answer - B
Since `|w| =1 rArr |(1-iz)/(z-i)|=1`
`rArr |z-i|=|1-iz|`
`rArr |z-i|=|z+i| [ therefore |1-iz|=|-i||z+i|=|z+i|]`
`therefore` It is a perpendicular bisector of (0,1)
i.e. X-axis .Thus z lies on the real axis
107.

If `alpha,beta,gamma` are the cube roots of p, then for any x,y,z `(x alpha + y beta + z gamma)/(x beta + y gamma + z alpha` =

Answer» Correct Answer - `omega^(2)`
`(xalpha+ybeta+zgamma)/(zbeta+ygamma+zalpha)=(x(p)^(1//3)+y(p)^(1//3)+omega+z(p)^(1//3)omega^2omega^2x(+yomega+zomega^2))/(x(p)^(1//3)omega^2+y(p)^(1//3)omega^(3)+z(p)^(1//3)omegaomega^2(xomega+yomega^2+z))`
`(omega^2(x+yomega+zomega^2))/(x+yomega +zomega^2)=omega`
108.

If the expression`([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])`is real, then the set of all possible values of `x`is.........

Answer» Correct Answer - x = `2 n pi + 2 alpha , alpha = tan^(-1) k ` , where k `in (1 ,2 )` or x = 2 `n pi`
`((sin x/2+cos x/2)- I tan x )/(1+2 i sin x/2)in R`
`=((sin"" x/2+ cos""x/2-i tanx)(1-2 i sin ""x/2))/(1+4 sin^2""x/2)`
Since , it is real so imaginary part will be zero
`therefore -2 sin ""x/2(sin ""x/2+ cos ""x/2)-tan x=0`
`rArr -2 sin ""x/2(sin ""x/2+ cos ""x/2)cos x+2 sin ""x/2cos ""x/2=0`
`rArr sin ""x/2[(sin""x/2cos ""x/2)(cos^2""x/2- sin ^2""x/2)+cos""x/2]=0`
`therefore sin ""x/2=0`
`rArr x= 2 npi`
or `(sin ""x/2+cos ""x/2)(cos^2""x/2- sin ^2""x/2)+cos""x/2=0`
on dividing by `cos^3""x/2` we get
`(tan ""x/2+1)(1-tan^2""x/2)+(1+tan^2""x/2)=0`
`rArr tan^3""x/2-tan""x/2-2=0`
Let `tan""x/2=t`
and `f(t)=t^3-t-2`
then `f(1)=-2 lt 0`
and `f(2)=4 gt 0 `
Thus f(t) changes sign from negative to positve in the interval (1,2)
`therefore` Let t= k be the root for which
f(k)=0 and `k in (1,2)`
`therefore` t=k or `tan ""x/2=k = tan alpha`
`rArr x//2 = npi+alpha`
`rArr {:{(x=2npi+2alpha ","alpha=tan^(-1)k",where k" in "(1,2)"),(" "or x=2npi):}`
109.

Find the square roots of the following:(i) `7-24 i`(ii) `5+12 i`

Answer» (i) Let `sqrt(7-42i) = x + iy ,` Then
`sqrt(7-24i) = x+iy`
` or 7-24i = (x+iy)^(2)`
`or 7 -24i =(x^(2) -y^(2)) + 2iy`
`or x^(2) - y^(2) = 7" "(1)`
` and 2xy = - 24" "(2)`
Now, `(x^(2)+y^(2) )^(2) = (x^(2)-y^(2))^(2)+4x^(2)y^(2)`
` or (x^(2)+y^(2))^(2) = 49+576= 625`
` or x^(2) +y^(2)" "[because x^(2)+y^(2) gt 0]" "(3)`
on solving (1) and (3), we get
`x^(2) = 16 and y^(2) = 9 rArr x = pm 4 and y = pm 3`
From (2), 2xy is negative. So, x and y are of opposite signs.
Hence, x =4 and y = - 3 or x= - 4 and y = 3
Hence, `sqrt(7-24i)= pm (4-3i)`
(ii) Let `sqrt(5+12i) = x + iy`, Then
`sqrt(5+12i) = x+iy`
`or 5+12i=(x+iy)^(2)`
`or 5+12i=(x^(2) -y^(2)) + 2ixy`
`or x^(2) - y^(2) = 5" (1)`
`and 2xy = 12" "(2)`
Now,`(x^(2) +y^(2))^(2)=(x^(2)-y^(2))^(2)+4x^(2)y^(2)`
`or (x^(2) +y^(2))^(2) = 5^(2) + 12^(2) = 169`
`or x^(2)+y^(2) = 13" "(because x^(2)+y^(2) gt 0)" (3)`
On sloving (1) and (2) , we get
`x^(2) = 9 and y^(2) = 4 rArr x = pm3 and y = pm 2`
From (2), 2xy is positive . So, x and y are of the same sign.
Hence,
`x = 3 and y = 2 or x = - 3 and y = -2`
Hence, `sqrt(5+12i) = pm (3+2i)`
(iii) Let `sqrt(-15 -8i) = x+iy`. Then
`sqrt(-15-8i) = x + iy`
` or -5-8i = (x+iy)^(2)`
`or -15-8i= (x+iy)^(2)`
`or -15 = x^(2) -y^(2)" "(1)`
`and 2xy = - 8 " "(2)`
Now `,(x^(2)+y^(2))^(2) = (x^(2) -y^(2))^(2) + 4x^(2) y^(2)`
`or (x^(2)+y^(2))^(2) = (-15)^(2) + 64 = 289`
`or x^(2)+y^(2) = 17`
On sloving (1) and (3), we get
`x^(2) = 1 and y^(2) = 16 rArr x = pm 1 and y = pm 4`
From (2), 2xy is negative . So, x and y are of oppsite signs.
Hence, x = 1 and y = - 4 or x = -1 and y = 4
Hence, `sqrt(-15-8i) =pm (1-4i)`.
110.

Find all possible values of `sqrt(i)+sqrt(-i)dot`

Answer» `sqrt(i) + sqrt(-i) = sqrt(0+1.i)+sqrt(0-1.i)`
Now`sqrt(a+i.b) = {sqrt((1)/(2){sqrt(a^(2)+b^(2))+a})+ isqrt((1)/(2){sqrt(a^(2)+b^(2))-a})}`
`and sqrt(a-i.b) =om{sqrt((1)/(2){sqrt(a^(2)+b^(a))+a}-i)sqrt((1)/(2){sqrt(a^(2)+b^(2))-a})}`
`rArr sqrt(0+1.i) = pm{sqrt((1)/(2){sqrt(0 +1^(2)) +0})+isqrt((1)/(2){sqrt(0+1^(2)) -0})}`
`= pm (1)/(sqrt(2)) (1-i)`
` and sqrt(0-1.i)= pm {sqrt((1)/(2) {sqrt(0+1^(2))+0})-isqrt((1)/(2){sqrt(0+1^(2))-0})}`
` = pm (1)/(sqrt(2)) (1-i)`
Now ` sqrt(i) + sqrt(-i) = pm (1)/(sqrt(2)) (1+i) pm (1)/(sqrt(2))(1-i)`
`or sqrt(i) + sqrt(-i) =pmsqrt(2) + 0.ior 0pm sqrt(2i)`
111.

For any two complex number `z_1,z_2` and any real numbers a and b, `|az_1-bz_2|^2+|bz_1+az_2|^2`=….

Answer» Correct Answer - `(a^(2) + b^(2)) (|z_(1)|^(2) + |z_(2))|^(2))`
`|az_1-bz_2|+|bz_1+az_2|^2`
`=[|a|^2|z_1|^2+b^2|z_2|^2-2ab Re (z_1barz_2)]+[a^2|z_1|^2+a^2|z_2|^2+2abRe(z_1barz_2)]`
`=(a^2+b^2)(|z_1|^2+|z_2|^2)`
112.

If one root of the equation `z^2-a z+a-1=0i s(1+i),w h e r ea`is a complex number then find the root.

Answer» Correct Answer - z=1
`z^(2) -az + a 1 =0`
Putting z = 1 + i
a=2+i
`rArr z^(2) - (2+i)z + 1 + i=0` is the equaiton
`rArr z = 1` is the other roots
113.

If `z=(sqrt3/2+i/2)^5+(sqrt3/2-i/2)^5`, thenA. `Re(z) =0`B. `Im ( z) =0`C. `Re(z) gt 0 ,Im(z) gt 0 `D. `Re(z) gt 0,Im (z) lt 0`

Answer» Correct Answer - B
Given `z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5`
`[because omega=(-1+isqrt(3))/(2) and omega^2=(-1-isqrt(3))/(2)]`
Now , `sqrt(3+i)/2=-i((-1+isqrt(3))/2)=-iomega`
and `(sqrt(3)-1)/2=((-1-isqrt(3))/2)=i omega^2`
`therefore z=(-iomega)^5+(iomega^2)^5=iw^2+iw`
`=i(omega-omega^2)=i(isqrt(3))=-sqrt(3)`
`rArr Re(z) lt 0 andlm (z)=0`
Alternate Solution
We know that `z+bar z =2 Re (z)`
If ` z=(sqrt(3)/2+i/2)^5 +(sqrt(3)/2-i/2)^5` then z is purely real ,i,e Im (z)=0
114.

Find the least positive integer `n`such that `((2i)/(1+i))^n`is a positive integer.

Answer» Correct Answer - n =8
`((2i)/(1+i))+((2i(1-i))/((1+i)(1-i)))^(n)= ((2(i-i^(2)))/(2)))^(n)`
`= (i+1)^(n)`
`=(2i)^(n//2)`
Hence , n= 8 is the least positive interger for which the given complex number is a positive integer.
115.

Let ` z_1 and z_2` be complex numbers of such that `z_1!=z_2 and |z_1|=|z_2|. If z_1` has positive real part and `z_2` has negative imginary part, then which of the following statemernts are correct for te vaue of `(z_1+z_2)/(z_1-z_2)` (A) 0 (B) real and positive (C) real and negative (D) purely imaginaryA. zeroB. real and positiveC. real and negativeD. purely imaginary

Answer» Correct Answer - A::D
Given `|z_1|=|z_2|`
Now `(z_1+z_2)/(z_1-z_2)xx(barz_1-barz_2)/(z_1-z_2)=(z_1barz_1-z_1barz_2+z_2barz_1-z_2barz_2)/(|z_1-z_2|)`
`=(|z|^2+(z_2barz_1-z_1barz_2)-|z_2|^2)/(|z_1-z_2|^2)`
`=(z_2barz_1-z_1barz_2)/(|z_1-z_2|^2)" "[because |z_1|^2=|z_2|^2]`
As we know `z-bar z `=2 i Im (z)
`therefore ( z_2barz_1-z_1barz_2=2i Im (z_2 bar z_1)`
`therefore (z_1+z_2)/(z_1-z_2)=(2i Im(z_2 bar z_1))/(|z_1-z_2|^2)`
Which is purely imaginary or zero.
116.

Express the following complex numbers in `a+i b`form:`((3-2i)(2+3i))/((1+2i)(2-i))`(ii) `(2-sqrt(-25))/(1-sqrt(-16))`

Answer» Correct Answer - (a) `(63)/(25) -(16)/(25)i`
(b) `(12)/(17) + (3)/(17)i`
(a) `((3-2i)(2+3i))/((1+2i)(2-i)) = ((6+6)+i(-4+9))/((2+2)+i(4-1))`
`- (12+5i)/(4+3i)`
` (12 + 5i)/(4+3i)(4-3i)/(4-3i)`
`= ((48 = 15)+i(-36+20))/(16-9i^(2))`
`= (63)/(25)-(16)/(25i)`
(b) `(2-sqrt(25))/(1-sqrt(-16)) = (2-5i)/(1-4i)`
`= (2-5i)/(1-4i)xx(1+4i)/(1+4i)`
`= ((2+20)+i(8-5))/(1-16i^(2))`
`= (22+ 3i)/(17) = (22)/(17) + (3)/(17) i`
(c) `((2i)/( 1+i))^(2) = ((2i(1-i))/((1+i)(1-i))^(n)`
` = ((2(i-i)^(2))/(2))^(n)`
`= (i+1)^(n)`
` = (2i)^(n//2)`
Hence n = 8 is the least positive integer for which the given complex number is a positive integer.
117.

If `z=r e^(itheta)`, then prove that `|e^(i z)|=e^(-r s inthetadot)`

Answer» `z = re^(i0) = r (cos theta + i sin theta)`
`rArr iz = ir (cos theta + i sin theta)`
`=- rsin theta + ir cos theta`
`rArr e^(1z) = e^((-rsin theta+ ir cos theta))`
`= e^((-rsin theta)) e^((ri cos theta))`
`rArr |e^(iz)|=|e^(-rsin theta)||e^(r icos theta)|`
`= e^((- r sin theta))|e^(ialpha)|," ""where"alpha = r cos theta`
`= e^(-rsin theta)`
118.

The polynomial `x^6+4x^5+3x 64+2x^3+x+1`is divisible by_______ where `w`is the cube root of units`x+omega`b. `x+omega^2`c. `(x+omega)(x+omega^2)`d. `(x-omega)(x-omega^2)`where `omega`is one of the imaginary cuberoots of unity.A. `x + omega `B. ` x + omega^(2)`C. `( x+ omega) (x + omega^(2))`D. `(x + omega)(x - omgea^(2))`

Answer» Correct Answer - D
Let `f(x) = x^(6) + 4x^(5) + 3x^(4) + 2x^(3) + x+ 1`. Hence,
`f(omega) = omega^(6) + 4omega^(5) + 3omega^(4) + 2omega^(3) + omega + 1`
`= 1+ 4 omega ^(2)+ 3omega^(4) + 3omega + 2 + omega +1`
`= 4(omega^(2) + omega + 1)`
`= 0`
Hence, `f(x)` is divisible by `x-omega` Then `f(x)` is also divisible by `x - omega^(2)` (as complex roots occur in conjugate pairs).
`f(-omega) = (-omega)^(6) + 4(-omeaga)^(5) + 3(-omega)^(4) + 2(-omega)^(3) + (-omega) +1`
`= omega^(6) - 4omega^(5) + 3omega^(4) - 2omega^(3) - omega + 1`
` = 1 - 4omega^(2) + 3omega- 2 - omega + 1`
` ne 0`.
119.

If `sqrt(5-12 i)+sqrt(5-12 i)=z`, then principal value of `a rgz`can be`pi/4`b. `pi/4`c. `(3pi)/4`d. `-(3pi)/4`A. `-(pi)/(4)`B. `(pi)/(4)`C. `(3pi)/(4)`D. `-(3pi)/(4)`

Answer» Correct Answer - A::B::C::D
`sqrt(5-12i) = sqrt((3-2i)^(2)) = pm (3-2i)`
`sqrt(-5-12i)= sqrt((2-3i)^(2)) = pm (2-3i)`
`rArr z = sqrt(5-12i) + sqrt(5-12i) = sqrt((3-2i)^(2)) = pm (3-2i)`
`sqrt(-5-12i)= sqrt((2-3i)^(2)) = pm (2-3i)`
`rArr z = sqrt(5-12i) + sqrt(-5-12i)`
`=- 1-i, -5 + 5i,5-5i, 1+i`
Therefore, principal values of arg are `- 3pi//4, 3pi//4,-pi//4, pi//4`.
120.

If `x` and `y`are complex numbers, then the system of equations `(1+i)x+(1-i)y=1,2i x+2y=1+i`hasA. unique solutionB. no solutionC. infinte number of solutionsD. none of theses

Answer» Correct Answer - C
Observing carefully the system of equations , we find
`(1+i)/(2i) = (1-i)/(2) =(1)/(1+i)`
Hence,there are infinite number of solutions.
121.

प्रश्न 11 से 13 तक कि सम्मिश्र संख्याओं में प्रत्येक का गुणात्मक प्रतिलोम ज्ञात कीजिए । `4-3i`

Answer» Correct Answer - `(4)/(25) +(3)/(25) i`
We have `z = 4-3i`
Multiplcative inverse of z is
`(1)/(z)=(1)/(4-3i)=(4+3i)/((4-3i)xx(4+3i)) = (4+3i)/(16-9i^(2)) = (4+3i)/(25)=(4)/(25) +(3)/(25)i`
122.

The value of `i^(1+3+5++(2n+1))`is, If n is odd.

Answer» Correct Answer - z=`{:{(,"1, if n is odd"),(,"i, if n is even"):}`
Let `z = i^([1+3+5+......+(2n+1)])`
Now , `1+3+5+…..+(2n+1)` are `n+1` terms of an A.P whose sum is
`(n+1)/(2)[1+2n +1]=(n+1)^(2)`
Hence, `z=i^((n+1))`. Now put n = 1,2,3,4,5....
`n =1,z=i^(4) = 1,n=2, z = i^(9) = i`
`n=3,z=i^(16)=1,n=4`
`z=i^(25)=i,n = 5,z =i^(12) = 1,......`
Thus, `z{{:(,"1,if n is odd"),(,"i, if n is even"):}`
123.

Suppose `A`is a complex number and `n in N ,`such that `A^n=(A+1)^n=1,`then the least value of `n`is`3`b. `6`c. `9`d. `12`A. 3B. 6C. 9D. 12

Answer» Correct Answer - B
Let `A=x+iy.`Given,
`|A|=1rArrx^(2)+y^(2)=1`
and `|A+1|=1rArr(x+1)^(2)+y^(2)=1`
`rArr x=-(1)/(2)andy=pm(sqrt3)/(2)`
`rArr A=omegaoromega^(2)`
`rArr (omega)^(n)=(1+omega)^(n)=(-omega^(2))^(2)`
Therefore, n must be even and divisible by 3.
124.

If `a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n``z_1+z_2=0`b. `z_1z_2=1`c. `z_1=z _2`d. none of theseA. `z_(1)+z_(2) = 0`B. `z_(1)z_(2) = 1`C. `z_(1)=barz_(2)`D. none of these

Answer» Correct Answer - B::C
`amp(z_(1)z_(2)) = 0`
` rArr amp z_(1) + ampz_(2) = 0`
` therefore amp z_(1) + amp z_(2) = amp barz_(2)`
Since `|z_(1)| = |z_(2)|`, we get `|z_(1)| = |barz_(1)|`.
So, `z_(1) = barz_(2)`. Also, `barz_(1)z_(2) = barz_(2)z_(2) = |z_(2)|^(2) = 1` because `|z_(2)|=1`
125.

lf `z = ilog(2-sqrt(-3))`, then `cos z =`A. `-1`B. `-1//2`C. 1D. 2

Answer» Correct Answer - D
`z=ilog(2=sqrt3)`
`rArr e^(iz)=e^(i"^(2)log(2-sqrt3))=e^(-log(2-sqrt3))`
`=e^(log(2-sqrt3)^(-1))=e^(log(2+sqrt3))=(2+sqrt3)`
`rArr cosz=(e^(iz)+e^(-iz))/(2)=((2+sqrt3)+(2-sqrt3))/(2)=2`
126.

If `z=(i)^{(i)^(i)} w h e r e i=sqrt(-1),t h e n|z|`is equal toA. 1B. `e^(-pi//2)`C. `e^(-pi)`D. none of these

Answer» Correct Answer - A
`i=cos.(pi)/(2)+isin.(pi)/(2)=e^((ipi)/(2))`
`rArr i^(i)=(e^((ipi)/(2)))^(i)=e^((pi)/(2))`
`rArrz=(i)^("(i)"^(i))=i^(e^(-(pi)/(2)))`
`rArr |z|=1`
127.

If `|z_1/z_2|=1` and `arg (z_1z_2)=0` , thenA. `z_(1) = z_(2)`B. `|z_(2)|^(2) = z_(1)z_(2)`C. `z_(1)z_(2)= 1`D. more than 8

Answer» Correct Answer - B
Let `z_(1)=|z_(1)|(costheta_(1)+I sintheta_(1))`.
Now, `|(z_(1))/(z_(2))|=1rArr|z_(1)|=|z_(2)|`
Also, `arg(z_(1)z_(2))=0orarg(z_(1)+arg(z_(2))=0`
`rArr arg(z_(2))=-theta_(1)`
`rArr z_(2)=|z_(2)|(cos(-theta_(1))+i sin(-theta_(1)))`
`=|z_(1)|(costheta_(1)-isintheta_(1))=barz_(1)`
`rArr |z_(2)|=bar((barz_(1)))=z_(1)`
`rArr|z_(2)|^(2)=z_(1)z_(2)`
128.

Given `alpha,beta,`respectively, the fifth and the fourth non-real roots of units, thenfind the value of`(1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)`

Answer» As ` alpha` is the fifth nonreal root of unity, we have `alpha^(4) + alpha^(3) + alpha^(2) + alpha + 1=0`
`beta ` is the fouth nonreal root of unity . Therefore,
`beta^(3) + beta^(2) + beta + 1=0`
Now, `( 1 + alpha )(1 + alpha^(2))(1 + alpha^(4))(1+ beta)(1+ beta^(2))(1 + beta^(3))`
`= (1+ alpha + alpha^(2)+ alpha^(3) ) (1+alpha^(4)) (1+ beta + beta^(2) + beta^(3))(1+ beta^(3)) (because 1+ beta + beta^(2) + beta^(3) = 0)`
`= 0`
129.

If `a ,b ,c`and `u ,v ,w`are the complex numbers representing the vertices of two triangles suchthat `(c=(1-r)a+r b`and `w=(1-r)u+r v ,`where `r`is a complex number, then the two triangleshave the same area(b) are similarare congruent(d) None of theseA. have the same areaB. are similarC. are congruentD. Non of these

Answer» Correct Answer - B
Since a,b,c and u,v ware the vertice of two triangles
Also `c=(1-r) a+ rb `
and `w= (1-r ) u+rb `
Applying `R_3rarr R_3-{(1-r)R_1+rR_2)}`s
`=|{:(" "a" "u" "1),(" "b" "v" "1),(c-(1-r)a-rb w-(1-r)u-rv 1 - (1-r)-r):}|`
`=|(a,u,1),(b,v,1),(0,0,0)|=0 " "[from Eq. (i) ]`
130.

Find the value of `x^4+9x^3+35 x^2-x+4`for `x=-5+2sqrt(-4).`

Answer» Correct Answer - `-160`
we have,
`x = -5 + 4i`
`or (x+5)^(2) =- 16`
`or x^(2) + 10 x + 41 = 0`
Now, `x^(4) + 9x^(3) +35x^(2) - x +4`
`= x^(2)(x^(2)+10x+41)-x(x^(2)+10x + 41) + 4(x^(2) + 10 + 41) - 160`
`=0x^(2) = 0x + 4 xx 0 - 160=-160" "["Using(1)"]`
131.

Find the principal argument of the complex number `((1+i)^5(1+sqrt(3i))^2)/(-1i(-sqrt(3)+i))`

Answer» `z = ((1+i)^(5)(1+sqrt(3i))^(2))/(-2i(-sqrt(3)+i))`
`(sqrt(2)^(5)((1)/(sqrt(2))+(i)/(sqrt(2))).2^(2)((1)/(2)+(sqrt(3))/(2)i))/((2i)2(sqrt(3)/(3)-(i)/(2)))`
`5 arg((1)/(sqrt(2))+(1)/(sqrt(2)))+2 arg((1)/(2)+(sqrt(3))/(2)i)`
`therefore arg(Z) - arg(i) - arg((sqrt(3))/(2)-(i)/(2))" "(because arg(sqrt(2)^(5)),arg(2^(2)), arg (4)=0)`
`=(5pi)/(4) + (2pi)/(3)-(pi)/(2)+(pi)/(6) = (19pi)/(12)= 2pi - (5pi)/(12)`
Therefore, Z lies in the fourth quadrant.
Hence, pricncipal argument is `- (5pi)/(12)`
132.

If for complex numbers `z_1 and z_2, arg(z_1) -arg(z_2)=0` then `|z_1-z_2|` is equal toA. `|z_(1)|+|z_(2)|`B. `|z_(1)| - |z_(2)|`C. `||z_(1)|-|z_(2)||`D. 0

Answer» Correct Answer - C
We have
`|z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))`
where `theta_(1)=arg(z_(1))and theta_(2)=arg(z_(2))`. Given,
`arg(z_(1))-arg(z_(2))=0`
`rArr|z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2|z_(1)||z_(2)|`
`=(|z_(1)|-|z_(2)|)^(2)`
`rArr|z_(1)-z_(2)|=||z_(1)|-|z_(2)||`
133.

For any integer k, let `alpha _h= cos. (k pi)/(7)+ I sin. (k pi)/(7) " where if "=sqrt(-1).` The value of the expression `(Sigma_(k=1)^(12) |alpha_(k+1)-alpha_k|)/(Sigma_(k=1)^(3) |alpha_(4k+1)-alpha_(4k-2)|)`is

Answer» Correct Answer - 4
Given `alpha_(k) = cos ((kpi)/(7)) + i sin ((k pi)/(7))`
`= cos ((2k pi)/(14)) + i sin ((2 kpi)/(14))`
`therefore alpha_(k)` are vertices of regular polygon having 14 sides .
Let the side length of regular polygon be `alpha`.
`therefore |alpha_(k + 1) - alpha_(k)| ` = length of a side of the regular polygon
`= alpha " " ... (i)`
and `|alpha_(4k-1) - alpha_(4k-2)|` = length of a side of the regular polygon
` = alpha " " .... (ii)`
`therefore ( sum_(h=1)^(12) |alpha_(k+1) - alpha_(k)|)/(sum_(h=1)^(3) |alpha_(4k-1) - alpha_(4k-2)|) = (12(a))/(3(a)) = 4`
134.

If `z=costheta+isintheta`is a root of the equation `a_0z^n+a_2z^(n-2)++a_(n-1)z^+a_n=0,`then prove that`a_0+a_1costheta+a_2^cos2theta++a_ncosntheta=0``a_1"sin"theta+a_2^sin2theta++a_nsinntheta=0`

Answer» Dividing the given equation by `z^(n),` we get
`a_(0)+a_(1)z^(-1)+a_(2)z^(-2)+…+a_(n-1)z^(1-n)+a_(n)z^(-n)=0`
Now, `z=costheta+isintheta=e^(itheta)` satisfies the above equation. Hence,
`a_(0)+a_(1)e^(-itheta)+a_(2)e^(-2itheta)+…+a_(n-1)e^(-i(n-1)theta)+a_(n)e^(-intheta)=0`
`implies(a_(0)+a_(1)costheta+a_(2)cos2theta+...+a_(n)cosntheta)`
`-i(a_(1)sintheta+a_(2)sin2theta+...+a_(n)sinntheta)=0`
`impliesa_(0)+a_(1)costheta+a_(2)cos2theta+...+a_(n)cosntheta=0`
and `a_(1)sintheta+theta_(2)sin2theta+...+a_(n)sinntheta=0`
135.

Match the conditions /expression n Column I with statement in Column II `(z ne 0` is a complex number )

Answer» Correct Answer - `A to q ; B to p`
Let z=a+ ib
Given `Re(z)=0 rArr a=0`
Then `z=ib rArr z^2 =- b^2 or lm(z^(2))=0`
Therefore sds`A rarr q`
Also, given ,arg (z)`= pi/2`
Let `z=r(cos"" pi/4 - I sin""pi/4)`
Then `z^2r^2( cos^2 "" pi/4 - sin^2 L"" pi/4)+2 ir^3 ""pi/4 sin "" pi/4`
`=ir^2 sin pi//2 = ir^2`
Therefore , `Re (z^2)=0 rArr B rArr p.`
`rArr a= b= 2 - sqrt(3) " " [ because a, b larr (0,1)] `
136.

If `z=z_0+A( z -( z )_0), w h e r eA`is a constant, then prove that locus of `z`is a straight line.

Answer» `bar(z)=bar(z)_(0)+A(z-z_(0))`
`impliesAz-bar(z)-Az_(0)+bar(z)_(0)=0" "(1)`
`impliesbar(A)bar(z)-z-bar(A)bar(z)_(0)+z_(0)=0" "(2)`
Adding (1) and (2), we get
`(A-1)z+(bar(A)-1)bar(z)-(Az_(0)+bar(A)bar(z)_(0))+z_(0)+bar(z)_(0)=0`
This is of the form `bar(a)z+abar(z)+b=0," where "a=bar(A)-1" and "b=-1(Az_(0)+bar(A)bar(z)_(0))+z_(0)+bar(z)_(0)inR.` Hence, locus of z is a straight line.
137.

If `z_1, z_2, z_3`are three complex numbers such that `5z_1-13 z_2+8z_3=0,`then prove that`|z_1( z )_1 1z_2( z )_2 1z_3( z )_3 1|=0`

Answer» `5z_(1)-13z_(2)+8z_(3)=0`
or `(5z_(1)+8z_(2))/(5+8)=z_(3)`
This mean that `z_(3)` divides segment joining `z_(1)" and "z_(2)` in the ratio 8 : 5.
Hence, `z_(1),z_(2),z_(3)` are collinear.
`implies|{:(z_(1),bar(z)_(1),1),(z_(2),bar(z)_(2),1),(z_(3),bar(z)_(3),1):}|=0" "("condition of collinear points")`
138.

If `z = (3)/( 2 + cos theta + I sin theta)`, then prove that z lies on the circle.

Answer» Given `z = (3)/(2 + cos theta + i sintheta)`
` rArr cos theta + i sin theta = (3)/(z) - 2 = (3-2z)/(z)`
`rArr 1= (|3-2z|)/(|z|)" "["taking modulus"]`
`rArr (|z-(3)/(2)|)/(|z|) = (1)/(2)`
Therefore, locus of z is circle.
139.

Prove that `|Z-Z_1|^2+|Z-Z_2|^2=a`will represent a real circle [with center `(|Z_1+Z_2|^//2+)`] on the Argand plane if `2ageq|Z_1-Z_1|^2`

Answer» `|z-z_(1)|^(2)+|z-z_(2)|^(2)=a`
`implies(z-z_(1))(bar(z)-bar(z)_(1))+(z-z_(2))(bar(z)-bar(z)_(2))=a`
`implies2zbar(z)-z(bar(z)_(1)+bar(z)_(2))-bar(z)(z_(1)+z_(2))+z_(1)bar(z)_(1)+z_(2)bar(z)_(2)=a`
`implieszbar(z)=z((bar(z_(1))+bar(z_(2)))/(2))-bar(z)((z_(1)+z_(2))/(2))+(z_(1)bar(z)_(1)+z_(2)bar(z)_(2)-a)/(2)=0" "(1)`
Above equation is of the form `zbar(z)+alphabar(z)+bar(alpha)z+beta=0`, which represents the real circle if `alphabar(alpha)-betage0`
`implies((z_(1)+z_(2))(bar(z_(1))+bar(z_(2))))/(4)ge(z_(1)bar(z_(1))+z_(2)bar(z_(2))-a)/(2)`
`implies2agez_(1)bar(z_(1))+z_(2)bar(z_(2))-z_(1)bar(z_(2))-z_(2)bar(z_(1))`
`implies2age|z_(1)-z_(2)|^(2)`
140.

For three non-colliner complex numbers `Z,Z_(1)` and `Z_(2)` prove that `|Z-(Z_(1)+z_(2))/(2)|^(2) + |(Z_(1) -Z_(2))/(2)|= (1)/(2) | Z - Z_(1)|^(2) +(1)/(2)|Z- Z_(2)|^(2)`

Answer» Consider the formed by A(Z), `B(Z_(1))` and `C(Z_(2))`.
Let midpoint of BC be D having complex number `(Z_(1)+Z_(2))/(2)`
By Apollononius therorem, we have
`AB^(2) + AC^(2) + 2(AD^(2) + BD^(2))`
`therefore |Z-(Z_(1) +Z_(2))/(2)|^(2) + |(Z_(1) +Z_(2))/(2)|`
`AD^(2) + BD^(2)`
`=(1)/(2)AB^(2) + (1)/(2)Ac^(2)`
`= (1)/(2)|Z- Z_(1)|^(2)+(1)/(2)|Z-Z_(2)|^(2)`
141.

If `omega = z//[z-(1//3)i] and |omega| = 1`, then find the locus of z.

Answer» Correct Answer - Perpendicular bisector of the line joininig 0+ 0i and `0 + (1//3)i`
`omega = (z)/(z-(1)/(2)i)`
or ` |omega| = |(z)/(z-(1)/(3)i)|`
or ` |z| = |omega||z-(1)/(3)i|`
or ` |z| = |z-(1)/(3)i|" "(because |omega|=1)`
Hence, locous of z is perpendicular bisector of the line joining `0 + 0i` and `0+(1//3)i`. Hence z lies on a straight line .
142.

If `|z|=1` and let `omega=((1-z)^2)/(1-z^2)`, then prove that the locus of `omega`is equivalent to `|z-2|=|z+2`

Answer» Given
`omega=((1-z)^(2))/(1-z^(2))=(1-z)/(1+z)`
`implies" "omega=(zbar(z)-z)/(zbar(z)+z)=(bar(z)-1)/(bar(z)+1)=-((bar(1-z))/(1+z))=-bar(omega)`
`:." "omega+bar(omega)=0`
`implies omega" is purely imaginary. Hence, "omega" lies on the y-axis."`
Also `|z-2|=|z+2|impliesz` lies on perpendicular bisector of line segment joning 2 and -2, which is the imaginary axis.
143.

Identify the locus of `z`if ` z = a +(r^2)/(z-a),> 0.`

Answer» `bar(z)=bar(a)+(r^(2))/(z-a)`
or `bar(z)-bar(a)=(r^(2))/(z-a)`
or `(z-a)(bar(z)-bar(a))=r^(2)`
or `|z-a|^(2)=r^(2)`
or `|z-a|=r`
Hence, locus of z is circle having center a and radius r.
144.

If `|z|

Answer» Correct Answer - 9
`|iz + 3 - 4i| le |iz| + | 3 - 4i| `
` " " = |z| + 5 le 4 + 5 = 9`
Hence, `|z|_(max) = 9`.
145.

`Z in C`satisfies the condition `|Z|>-3.`Then find the least value of `|Z+1/Z|`

Answer» Correct Answer - `8//3`
`|Z + (1)/(Z)| = |Z - (-(1)/(Z))| ge |Z| ~|- (1)/(Z)| ge 3~ (1)/(3) = (8)/(3)`
146.

Let `z in C` be such that `|z| lt 1 `.If `omega =(5+3z)/(5(1-z)` thenA. `4 Im ( omega) gt 5`B. `5 Re (omega) gt 1`C. `5 Im(omega) lt 1 `D.

Answer» Correct Answer - B
Given complex number `omega=(5+3z)/(5(1-z))`
`rArr 5 omega -5 omega z=5+3z`
`rarr (3+5 omega)z=5 omega-5`
`rArr |3+5 omega||z|=|5 omega- 5|`
[applying modulus both sides and `|z_1z_2|=|z_2||z_2|]`
`therefore | z| lt 1 `
`therefore |3+5 omega| gt |5 omega - 5|" "["from Eq.(i)"]`
`rArr " "|omega+3/5| gt | omega-1|`
Let `omega` =x+iy, then `(x+3/5)^2+y^2 gt (x-1)^2+y^2`
`rArr x^2+9/25+6/5 x lt x^2 +1 -2x`
`rArr 16x/5 gt 16/25 rArr x gt 1/5 rArr lt 1`
`rArr 5 Re(omega ) gt 1`
147.

If `I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0`, then find the locus of `zdot`

Answer» Correct Answer - Circle having centre at `1 + i0` and radius 1
Let `u = (z -1)/(e^(thetai)) rArr (e^(thetai))/(z-1) = (1)/(u)`
Now `(u +(1)/(u)) - (baru +(1)/(baru))= 0`
` rArr (u- baru)(1(1)/(ubaru))=0`
If u is not purely real, then `ubaru = 1`
`rArr |(z-1)/(e^(thetai))| = 1 rArr |z-1|=1`
Hence, z lies on circle haivng centre at 1+ i0 and radius 1.
148.

If `|z|=1,`then the point representing the complex number `-1+3z`will lie ona. a circleb. a parabolac.``a straight lined. a hyperbolaA. a circleB. a straight lineC. a parabolaD. a hyperbola

Answer» Correct Answer - A
`|z|=1," let "alpha=-1+3z`
`rArr alpha +1=3z`
`rArr |alpha+1|=3|z|=3`
Hence, `alpha` lies on a circle centered at `-1` and radius equal to 3.
149.

If `z`is any complex number such that `|3z-2|+|3z+2|=4`, then identify the locus of `zdot`

Answer» `|3z-2|+|3z+2|=4`
`implies|z-(2)/(3)|+|z+(2)/(3)|=(4)/(3)" "(1)`
If P(z) be any point `A-=(-2//3,0),` then (1) represents
`PA+PB=4`
Clearly, `AB=4//3impliesPA+PB=AB`
`impliesP" lies on the line segment AB."`
150.

All the points in the set `S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt(-1))lie` on aA. cicle whose radius is `sqrt(2)`B. straight line whose slope is -1C. circle whose radius is 1.D. straight line whose slope is 1.

Answer» Correct Answer - C
Let x+I y = `(alpha +i)/(alpha- i)`
`rArr x+iy=((alpha+i)^2)/(alpha ^2+1) and y=(2 alpha )/(alpha^2n+1)`
Now `x^2+y^2=((alpha^2-1)/(alpha ^2+1))^2+((2alpha )/(alpha)^2+I)^2`
`=(alpha^4+1-2alpha^2+4 alpha^2)/(alpha^2 +1)^2=(alpha ^2+1)^2/(alpha^2+1)^2=1`
`rArr x^2+y^2=1`
Which is an equations of circle with centre (0,0) and radius 1 unit . So,`S={(alpha+i)/(alpha-1),alpha ne R}` lies on a circle with radius 1.