InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
If `|z-5i|=|z+5i`, then the locus of `zdot` |
|
Answer» Let `z = x+iy` Then, `|x+iy-5i| = |x+iy+5i|` `=>|x+(y-5)i| = |x+(y+5)i|` `=>x^2+(y-5)^2 = x^2+(y+5)^2` `=> -10y = 10y` `=> -20y = 0` `=> y = 0` So, imaginary part of `z` is `0`. We can write it as, `(z-barz)/2 = 0` `z - barz = 0`, which is the required locus. |
|
| 152. |
If `a ,b ,c`are nonzero complex numbers of equal moduli and satisfy `a z^2+b z+c=0,`hen prove that `(sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.` |
|
Answer» `|a| = |b| = |c| = r ` Again ` az^(2) + bz = - c ` ` rArr |c| = |-az^(2) - bz| le |a||z^(2)| + |b| |z| ` ` rArr r le r |z|^(2) + r |z| ` ` rArr |z|^(2) + |z| - 1 ge 0 ` ` rArr |z| ge (sqrt5 - 1 )/( 2 ) " " (1)` Also from ` a z ^(2) = - bz - c,` `|z|^(2) - |z| - 1 le 0 ` ` rArr 0 lt |z| le (sqrt5 + 1 )/(2) " " ` (2) From (1) and (2) , ` (sqrt5 - 1 )/(2) le |z| le (sqrt 5 + 1 )/( 2 )` |
|
| 153. |
The region represented by the inequality |2z-3i| |
|
Answer» Correct Answer - B `(b)` `|2z-3i|^(2) lt |3z-2i|^(2)` `:. 4x^(2)+(2y-3)^(2) lt 9x^(2)+(3y-2)^(2)` `:.x^(2)+y^(2) gt 1` `:. |z|^(2) gt 1` |
|
| 154. |
What is the locus of `z ,`if amplitude of `(z-2-3i)`is `pi/4?` |
|
Answer» As `z = x+iy` `:. z-2-3i = x+iy-2-3i =(x-2)+i(y-3)` As `pi/4` is the amplitude of ` (x-2)+i(y-3)`, `:. tan (pi/4) = (y-3)/(x-2)` `=>1 = (y-3)/(x-2)` `=>y-3 = x-2` `=> x - y +1 = 0`, which is the locus of `z`. `:.` Locus of `z` represents a straight line. |
|
| 155. |
If `|z-1|lt=2a n d|omegaz-1-omega^2|=a``(w h e r eomegai sac u b erootofu n i t y)`, then complete set of values of `a`is`0lt=alt=2`b. `1/2lt=alt=(sqrt(3))/2`c. `(sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2`d. `0lt=alt=4`A. `0 le ale 2`B. `(1)/(2) le a le (sqrt(3))/(2)`C. `(sqrt(3))/(2)-(1)/(2)lea le (1)/(2) +(sqrt(3))/(2)`D. `0le ale 4` |
|
Answer» Correct Answer - D `|omegaz-1-omega^(2)|=a` `rArr |z+1|=arArr|z-1+2|=a` `rArr |z-1|+2ge arArr 0 le a le 4` |
|
| 156. |
Let `Z in C` with Im (z) = 10 and it satisfies `=(2z-n)/(2z+n)=2i-1` For some natural number n. thenA. n=20 and Re (z) =-10B. n=40 and Re (z) =10C. n=40 and Re(z)D. n=20 and Re (z)=10 |
|
Answer» Correct Answer - C Let z=x+10 I, as Im(z) = 10 ( given ) Since z satisfies `(2z-n)/(2z +n)=2i -1 , n ne N` `therefore (2x+20 i-n)=(2i -1)(2x+20 I +n)` `rArr (2x-n)+20 i=(-2 -n- 40 )+(4x+2n- 20)i` On comparing real imaginary parts ,we get `2x-n= -2 x-n 40 and 20 = 4x+2n-20` `rArr 4x = -40 and 20 = 4x 2n = 40 ` `rArr x=-10 and - 40 +2n = 40 rArr n = 40` So , n = 40 and x= Re (z) = -10 |
|
| 157. |
If `((a+i)^2)/((2a-i))=p+i q ,`show that: `p^2+q^2=((a^2+1)^2)/((4a^2+1))`. |
|
Answer» `(a+i)^2/(2a-i) = p+iq->(1)` `:. bar((a+i)^2/bar(2a-i)) = p-iq` `=>(a-i)^2/(2a+i) = p-iq->(2)` Multiplying (1) and (2), `((a+i)^2(a-i)^2)/((2a-i)(2a+i)) = (p+iq)(p-iq)` `=>((a+i)(a-i))^2/(4a^2 - i^2) = p^2-i^2q^2` `=>(a^2-i^2)^2/(4a^2+1) = p^2+q^2 ...[As i^2 = -1]` `=>(a^2+1)^2/(4a^2+1) = p^2+q^2` |
|
| 158. |
Find the real values of x and y for which`(1+i)y^2+(6+i)=(2+i)x ` |
|
Answer» `(1+i)y^2+(6+i) = (2+i)x` `=>y^2+iy^2 + 6+i = 2x+ix` `=>(y^2+6)+i(y^2+1) = 2x + ix` Comparing real and imaginary parts, `:. y^2+6 = 2x->(1)` `y^2+1 = x` `=>y^2 = x -1 ->(2)` Putting value of `y^2` in (1), `=> x-1+6 = 2x => x = 5` `:. y^2 = 5-1 = 4` `=> y = +-2` `:. x = 5, y = +-2.` |
|
| 159. |
If `a+i b=(c+i)/(c-i)`, where `c`is real, prove that:`a^2+b^2=1a n d b/a=(2c)/(c^2-1)dot` |
|
Answer» `a+ib = (c+i)/(c-i)` `=>a+ib = (c+i)/(c-i)**(c+i)/(c+i) = (c^2+i^2+2ci)/(c^2-i^2)` `=>a+ib = (c^2-1+2ci)/(c^2+1)` `=>a+ib = (c^2-1)/(c^2+1)+i(2c)/(c^2+1)` Comparing real and imaginary parts, `:. a = (c^2-1)/(c^2+1) and b = (2c)/(c^2+1)` (i) `L.H.S. = a^2+b^2 = [(c^2-1)/(c^2+1)]^2+ [(2c)/(c^2+1)]^2` `=(c^4+1-2c^2+4c^2)/(c^4+1+2c^2)` `=(c^4+1+2c^2)/(c^4+1+2c^2)` `=1 = R.H.S.` (ii) `L.H.S. = b/a = ((2c)/(c^2+1))/((c^2-1)/(c^2+1))` `=(2c)/(c^2-1) = R.H.S.` |
|
| 160. |
Find the real part of `(1-i)^(-i)dot` |
|
Answer» Let `z= (1-i)^(-i)`. Taking log on both sides, we have log `z = -I log_(e) (1-i)` `= -I log_(e)(sqrt(2)(cos.(pi)/(4)- i sin.(pi)/(4)))` `= - log_(e) (sqrt(2)e^((-ipi//4)))` `=-i[(1)/(2)log_(e)2 + log_(e) ^(-ipi//4)]` `= -i[(1)/(2)log_(e),2-(pi)/(4)]` `= -(i)/(2)log_(e)2-(pi)/(4)` `rArr z=e^(-pi//4)e^(-i(log2)2)` `rArr " "Re(Z) = e^(-pi//4) cos((1)/(2) log2)` |
|
| 161. |
If `(sqrt(8)+i)^(50)=3^(49)(a+i b)`, then find the value of `a^2+b^2dot` |
|
Answer» Given that `(sqrt(8) +i)^(50) = 3^(49) (a+ib)` Taking modulus and squaring both sides, we get `(8+1)^(50) = ^(98) (a^(2) + b^(2))` `or 9^(50) = 3^(98) (a^(2) + b^(2))` ` 3^(100) = 3^(98) (a^(2) + b^(2))` ` or (a^(2) + b^(2)) =9` |
|
| 162. |
Show that `(x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot` |
|
Answer» `(x^(2) + y^(2)) = |x+ iy|^(8)` `=|(x+iy)^(2)|^(4)` `=|(x^(2)-y^(2))+ 2ixy)|^(4)` `=|[(x^(2) -y^(2))+ 2ixy)]^(2)|^(2)` `=|(x^(2) -y^(2))^(2) +(2ixy)^(2) + 2(x^(2)-y^(2))(2ixy)|^(2)` `=|x^(4) -y^(2) -2x^(2)y^(2) - 4x^(2)y^(2) + i(4x^(3)y - 4xy^(3))|^(2)` `|x^(4) + y^(4) -6x^(2)y^(2) + i(4x^(3)y-4xy^(3))|^(2)` `=|x^(4) + y^(4) -6x^(2)y^(2) + i(4x^(3)y- 4xy^(3))|^(2)` `=(x^(4) -6x^(2)y^(2) +y^(4))^(2) + (4x^(3)y - 4xy^(3))^(2)` |
|
| 163. |
If `(1+i)(1+2i)(1+3i)1+m)=(x+i y)`, then show that `2xx5xx10xxxx(1+n^2)=x^2+y^2dot` |
|
Answer» We have , `(1+i) (1+2i)(1+3i).....(1+ni) = x+iy` `rArr |(1+i) (1+2i)...(1+ni)|=|x = iy|` `rArr |1+ i||1+2i|....|1+ni|=|x+iy|" "[because |z_(1)z_(2)...z_(n)|=|Z_(1)||z_(2)| .....|z_(n)|]` `rArr sqrt(1+1)sqrt(1+4).....sqrt(1+n^(2)) = sqrt(x^(2)+y^(2))` `rArr 2xx5xx10...(1+n^(2))= (x^(2) + y^(2))`[On squaring both side] |
|
| 164. |
If z is a complexnumber of unit modulus and argument q, then `a r g((1+z)/(1+ bar z))`equal(1) `pi/2-theta`(2) `theta`(3) `pi-theta`(4) `-theta`A. `- theta `B. `pi/2- theta`C. ` theta`D. `pi - theta` |
|
Answer» Correct Answer - C Given |z| =1 arg z= `theta` :. Z = `e^itheta` `therefore barz =e^(-itheta)rArr bar z = 1/z` `therefore arg (1+z)/(1+z)=arg (1+z/1+1/z)=arg (z)= theta` |
|
| 165. |
Covert the complex number `z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5)` in polar form. Find its modulus and argument. |
|
Answer» `z = 1 + cos (8pi)/(5) + I sin (8pi)/(5)` `= 2cos^(2)(4pi)/(5) + cos .(4pi)/(5)` `= 2cos.(4pi)/(5)(cos.(4pi)/(5) + isin .(4pi)/(5))` `= - 2cos.(pi)/(5)(-cos.(pi)/(5) + isin .(pi)/(5))` `= 2 cos.(pi)/(5)(cos.(pi)/(5)- isin .(pi)/(5))` `= 2cos.(pi)/(5) (cos(-(pi)/(5)) + isin (-(pi)/(5)))` Thus, `|z| = 2 cos .(pi)/(5) and arg(z) = (pi)/(5)` |
|
| 166. |
Find the modulus, argument, and the principal argument of the complex numbers.(i) `(tan1-i)^2` |
|
Answer» `z = (tan1 - i)^(2) = (tan^(2) 1-1)- (2 tan1)i` `|z|= sqrt((tan^(2)1-1)^(2) + 4 tan^(2)1)=sqrt((tan^(2)1+1)^(2))= sec^(2)1` Since `tan^(2) 1- 1 lt 0 and -2 tan 1 lt 0,` so z lies in the third quadrant. `rArr " " arg(z) = - pi + tan^(-1)|(2 tan1)/(1-tan^(2))| = - pi + tan^(-1)|tan2| = 2pi` |
|
| 167. |
Find the modulus, argument, and the principal argument of the complexnumbers.`(t a n1-i)^2``(i-1)/(i(1-cos(2pi)/5)+s inn(2pi)/5)` |
|
Answer» Correct Answer - `"Modulus"=(1)/(sqrt(2))"cosec"(pi)/(5),"argument"=(11pi)/(20)` `z=(i-1)/(i(1-cos.(2pi)/(5))+sin.(2pi)/(5))` `=(i-1)/(i2sin^(2).(pi)/(5) + 2sin.(pi)/(5)cos.(2pi)/(5))` `= (i-1)/((2sin.(pi)/(5))(cos.(pi)/(5) +isin.(pi)/(5)))` `|z|=(|i-1|)/((2sin.(pi)/(5))|(cos.(pi)/(5) +isin.(pi)/(5))|)` `=(sqrt(2))/((2sin.(pi)/(5))|(cos.(pi)/(5)+isin.(pi)/(5))|)` `=(1)/(sqrt(2)) cosec.(pi)/(5)` ` argz= arg[(i-1)/((2sin .(pi)/(5))(cos .(pi)/(5)+isin.(pi)/(5)))]` `=arg(-1+i) - arg(2sin.(pi)/(5))-arg(cos.(pi)/(5) + isin.(pi)/(5))` `=(3pi)/(4) -0-(pi)/(5)=(11pi)/(20)` |
|
| 168. |
If complex number `z(z!=2)`satisfies the equation `z^2=4z+|z|^2+(16)/(|z|^3)`,then the value of `|z|^4`is______. |
|
Answer» Correct Answer - 4 We know that `|z + iomega| le |z| +|iomega| =|z| +|i| |omega|=1` Given `|z+iomgea| = 2 rArr|z| =|omega| =1`. |
|
| 169. |
Modulus of nonzero complex number z satifying `barz + z =0` and `|z|^(2)-4iz=z^(2)` is _____. |
|
Answer» Correct Answer - 2 `barz + z = 0` `rArr barz = - z` Now `|z|^(2) -4zi = z^(2)" "["from (1)"]` `rArr -z^(2) - 4zi = z^(2)` `rArr 2z = - 4i` `rArr z = -2i` `rArr |z| = 2` |
|
| 170. |
Find the complex number `z`satisfying `R e(z^2 0=0,|z|=sqrt(3.)` |
|
Answer» `z = x +iy` or `z^(2) = x^(2) -y + 2ixy ` ` rArr Re(z^(2)) = x^(2) -y^(2)` Also, `|z| = sqrt(x^(2) + y^(2))` `rArr x^(2) -y^(2) = 0, x^(2) + y^(2) = 3` `rArr x^(2) = y^(2) = (3)/(2)` `rArr x =pm sqrt((3)/(2)), y = pm sqrt((3)/(2))` `rArr z = pm sqrt((3)/(2)) pm sqrt((3)/(2))i` Thus, there are four complex numbers. |
|
| 171. |
If `|z-i R e(z)|=|z-I m(z)|`, then prove that `z`, lies on the bisectors of the quadrants. |
|
Answer» `z = x +iy` `rArr Re (z) = x, Im (z) = y` `|z - iRe(z)|=|z- Im (z)|` `rArr |x + iy -ix|=|x + iy -y|` `rArr x^(2) +(x-y)^(2) = (x-y)^(2) + y^(2)` `rArr x^(2) = y^(2)` ` rArr |x| = |y|` Hence, z lies on the bisectors the quadrants. |
|
| 172. |
If `|z-2-i|=|z|sin(pi/4-a r g z)|` , where `i=sqrt(-1)` ,then locus of z, isA. a pair of straing linesB. circleC. parabolaD. ellispe |
|
Answer» Correct Answer - C We have, `|(x-2)+i(y-1)|=|z||(1)/(sqrt2)costheta-(1)/(sqrt2)sintheta|` where `theta =arg z`. `sqrt((x-2)^(2)+(y-1)^(2))=(1)/(sqrt2)|x-y|`, which represents a parabola |
|
| 173. |
If `z^2+z|z|+|z^2|=0,`then the locus `z`isa. a circleb. a straight linec. a pair of straight line d.none of theseA. a circleB. a straight lineC. a pair of straing lineD. none of these |
|
Answer» Correct Answer - C `z^(2)+z|z|+|z|^(2)=0` `rArr ((z)/(|z|))^(2)+(z)/(|z|)+1=0` `rArr (z)/(|z|)=omega,omega^(2)` `rArr z-omega |z|orz=omega^(2)|z|` `rArr x+iy=|z|((-1)/(2)+(isqrt3)/(2))orx+iy=|z|((-1)/(2)-(isqrt3)/(2))` `rArr =-(1)/(2)|z|,y=|z|(sqrt3)/(2)or x=-(|z|)/(2),y=(|z|sqrt3)/(2)` `rArr y+sqrt3x=0ory-sqrt(3)x=0rArr y^(2)-3x^(2)=0` |
|
| 174. |
If `z=x+iy` is a complex number with `x, y in Q and |z| = 1`, then show that `|z^(2n)-1|` is a rational numberfor every `n in N`. |
|
Answer» `|z|=1` `impliesz=e^(itheta)=x+iy` `impliesx=costheta,y=sintheta` Now `costheta" and "sinthetainQ`. Also, `|z^(2n)-1|^(2)=(z^(2n-1)(bar(z)^(2n)-1)` `=(zbar(z))^(2n)-z^(2n)-bar(z)^(2n)+1` `=2-(z^(2n)+bar(z)^(2n))` `=2-2cos2n theta=4sin^(2)ntheta` `implies|z^(2n)-1|=2|sinntheta|` Now, `sinntheta=""^(n)C_(1)cos^(n-1)thetasintheta-""^(n)C_(3)cos^(n-3)thetasin^(3)theta+...` `=" Rational number "(because sintheta, costheta" are rationals")` `implies|z^(2n)-1|=" Rational number "` |
|
| 175. |
Prove that the roots of the equation `x^4-2x^2+4=0`forms a rectangle. |
|
Answer» `x^(4)-2x^(2)+4=0` `:." "x^(2)=(2+-sqrt(4-16))/(2)=1+-sqrt(3)i=2(1+-sqrt(3)i)/(2)` `=2(cos(pi)/(3)+-isin(pi)/(3))` `:." "x=+-sqrt(2)(cos(pi)/(3)+-isin(pi)/(3))^(1//2)` `=+-sqrt(2)(cos(pi)/(6)+-isin(pi)/(6))` `:." "x=sqrt(2)e^(ipi//6),-sqrt(2)e^(ipi//6),-sqrt(2)e^(-ipi//6)` Clearly these points forms rectangle inscribed in circle of radius `sqrt(2)`. |
|
| 176. |
Show that the polynomial `x^(4p)+x^(4q+1)+x^(4r+2)+x^(4s+3)`is divisible by `x^3+x^2+x+1, w h e r ep ,q ,r ,s in ndot` |
|
Answer» Let `f(x) = x ^(4p) + x^(4q+1) + x^(4r +2) + x^(4s + 3)`. Now `x^(3) + x^(2) + x + 1 = (x^(2) + 1) (x+1)` ` = (x^(2) - i^(2))(x + 1)` `= (x + i) (x- i)(x +1)` ` f (i) = = i^(4p) + i^(4q+1) + i^(4r + 2) + i^(4s + 3)` `= 1 + i^(1) + i^(2) + ^(3)` `= 1 + i -1-i=0` `f (-i) = (-i)^(4p+1) +(-1)^(4r+2) + (-i)^(4s +3)` ` = 1 + (-i)^(1) +i= 0` `f (-1) = (-1)^(4p) + (-1)^(4q+1) + (-1) ^(4r+2)+ (-1)^(4s+3) = 0` Thus, by factor therem f(x) is divisible by `x^(3) + x^(2) + 1` |
|
| 177. |
If `ta n dc`are two complex numbers such that `|t|!=|c|,|t|=1a n dz=(a t+b)//(t-c), z=x+i ydot`Locus of `z`is (where a, b are complex numbers)a. line segment b.straight linec. circled. none of theseA. line segmentB. straight lineC. circleD. none of these |
|
Answer» Correct Answer - C `z=(at+b)/(t-c)rArrt=(b+cz)/(z-a)` Now, `|t|=1` `rArr |(b+cz)/(z-a)|=1` `rArr |(z+(b)/(c))/(z-a)|=(1)/(|c|)" " (ne 1" as "|c|ne|t|)` `rArr` locus of z is a circle |
|
| 178. |
If `z`is complex number, then the locus of `z`satisfying the condition `|2z-1|=|z-1|`isperpendicular bisector of line segment joining 1/2 and 1circleparabolanone of the above curvesA. perpeciular bisector of line segment joining 1/2 and 1B. circleC. parabolaD. none of the above curves |
|
Answer» Correct Answer - B `2|z-(1)/(2)|=|z-1|` `therefore (|z-1|)/(|z-(1)/(2)|)=2` So, locus of z is a circle. |
|
| 179. |
In the Argands plane what is the locus of `z(!=1)`such that `a rg{3/2((2z^2-5z+3)/(2z^2-z-2))}=(2pi)/3dot` |
|
Answer» `arg{(3)/(2)((2z^(2)-5z+3)/(3z^(2)-z-2))}=(2pi)/(3)` or `arg{(3)/(2)((z-1)(2z-3))/((z-1)(3z+2))}=(2pi)/(3)` or `arg{(3)/(2)((2z-3)/(3z+2))}=(2pi)/(3)` or `arg((z-3//2)/(z+2//3))=(2pi)/(3)` Thus, locus of z is minor arc whose end point are `(3)/(2)` and `(-3)/(2)` and included angle is `(2pi)/(3).` |
|
| 180. |
If `|z|=1a n dz!=+-1,`then all the values of `z/(1-z^2)`lie ona line not passing through the origin`|z|=sqrt(2)`the x-axis(d) the y-axisA. a line not passing through the originB. `|z|=sqrt(2)`C. the X-axiesD. the Y-axies |
|
Answer» Correct Answer - D Let `z=cos theta + I sin theta` `rArr z/(1-z^2)=(cos theta + sin theta )/(1- (cos 2 theta + sin 2 theta))` `=(cos theta + I sin theta )/(2 sin ^2 theta - 2 I sin theta cos theta)` `=(cos theta +I sin theta)/(-2 I sin theta (cos theta +i sin theta))=i/(2 sin theta)` Hence `z/1-z^2 ` lies on the imaginary axis ie, y-axis . Alternate Solution Let `E=(z)/(1-z^2)=z/(zbarz-z^2)=1/(barz -z)` which is an imaginary |
|
| 181. |
Suppose z and `omega` are two complex number such that `|z + iomega| = 2`. Which of the following is ture about `|z|` and `|omega|`?A. `|z|=|omega|= (1)/(2)`B. `|z|=(1)/(2),|omega|,|omega| = (3)/(4)`C. `|z| = |omega| = (3)/(4)`D. `|z| = |omega| = 1` |
|
Answer» Correct Answer - D We know that `|z + iomega| le |z| +|iomega| =|z| +|i| |omega|=1` Given `|z+iomgea| = 2 rArr|z| =|omega| =1`. |
|
| 182. |
Consider a quadratic equaiton `az^(2) + bz + c=0`, where a,b,c are complex number. The condition that the equaiton has one purely real roots isA. `(c bar a -a bar c)^(2) = (b barc + c bar b)(a bar a - bar a b)`B. `(c bar c -a bar c)^(2)= (b barc - c bar a)^(2) (a bar b + bar a b)`C. `(c bar a - a bar c)^(2) = (b barc + c bar b) (a bar b + a bar b)`D. `(c bar a -a bar c)^(2) = (b barc - c bar)(a bar b - bar ab)` |
|
Answer» Correct Answer - D Let `z_(1)` (purely imginary ) be a root of the given equation Then, `z_(1) = - barz_(1)` and `underline(az_(1)^(2) + bz_(1) + c)=0" "(1)` `rArr az_(1)^(2) + bz_(1) + c = 0` `rArr bara barz_(1)^(2) + barb barz_(1) + c = 0` `rArr bar z bar z_(1)^(2) + bar b bar z_(1) + barc = 0` `rArr bar a bar z_(1)^(2) - bar b barz_(1) + barc = 0" "(as barz_(1) = - z_(1))" "(2)` Now Eqs. (1) and (2) must have one common root. `therefore ( cbara-abarc)^(2) = (barbc+ cbarb) (-abarb - barab)` Let `z_(1)` and `z_(2)` be two purely imaginary roots. Then, `barz_(1) = -z_(1), barz_(2) = - z_(2)` Now , `underline(abarz^(2) + bz + c) = 0" "(3)` or `az^(2) + bz + c=bar0` or `bara barz_(20 + barb barz + barc =0` or `bara z^(2) - barbz + barc = 0" "(4)` Equations (3) and (4) must be identical as their roots are same. ` therefore (a)/(bara) = -(b)/(barb) =(c)/(barc)` `rArr abarc = barac, + barab = 0` and `b barc +barbc=0` . Hence, `barac` is purely real and `abarb` and `bbarc` are purely imaginary . let `z_(1)` (purely real ) be a root of the given equation . Then , `z_(1) = barz_(1)` ltbr gt and ``underline(az_(1)^(2) + bz_(1) + c)= bar0" "(5)` or `az_(1)^(2) + bz_(1) + c=0` or `baraz_(1)^(2) + bz_(1) + c = bar0` or `baraz_(1)^(2) + barb z_(1) + c= 0" "(6)` Now(5) and (6) must have one common root. Hence, `(cbara - abarc)^(2) = (b barc - cbarb)(abarb-barab)` |
|
| 183. |
Consider a quadratic equaiton `az^(2) + bz + c=0`, where a,b,c are complex number. If equaiton has two purely imaginary roots, then which of the following is not ture.A. `abarb` is purely imaginaryB. `b barc` is purely imaginaryC. `cbara` is purely realD. none of these |
|
Answer» Correct Answer - D Let `z_(1)` (purely imginary ) be a root of the given equation Then, `z_(1) = - barz_(1)` and `underline(az_(1)^(2) + bz_(1) + c)=0" "(1)` `rArr az_(1)^(2) + bz_(1) + c = 0` `rArr bara barz_(1)^(2) + barb barz_(1) + c = 0` `rArr bar z bar z_(1)^(2) + bar b bar z_(1) + barc = 0` `rArr bar a bar z_(1)^(2) - bar b barz_(1) + barc = 0" "(as barz_(1) = - z_(1))" "(2)` Now Eqs. (1) and (2) must have one common root. `therefore ( cbara-abarc)^(2) = (barbc+ cbarb) (-abarb - barab)` Let `z_(1)` and `z_(2)` be two purely imaginary roots. Then, `barz_(1) = -z_(1), barz_(2) = - z_(2)` Now , `underline(abarz^(2) + bz + c) = 0" "(3)` or `az^(2) + bz + c=bar0` or `bara barz_(20 + barb barz + barc =0` or `bara z^(2) - barbz + barc = 0" "(4)` Equations (3) and (4) must be identical as their roots are same. ` therefore (a)/(bara) = -(b)/(barb) =(c)/(barc)` `rArr abarc = barac, + barab = 0` and `b barc +barbc=0` . Hence, `barac` is purely real and `abarb` and `bbarc` are purely imaginary . let `z_(1)` (purely real ) be a root of the given equation . Then , `z_(1) = barz_(1)` ltbr gt and ``underline(az_(1)^(2) + bz_(1) + c)= bar0" "(5)` or `az_(1)^(2) + bz_(1) + c=0` or `baraz_(1)^(2) + bz_(1) + c = bar0` or `baraz_(1)^(2) + barb z_(1) + c= 0" "(6)` Now(5) and (6) must have one common root. Hence, `(cbara - abarc)^(2) = (b barc - cbarb)(abarb-barab)` |
|
| 184. |
`z_(1) and z_(2)` are the roots of the equaiton `z^(2) -az + b=0` where `|z_(1)|=|z_(2)|=1` and a,b are nonzero complex numbers, thenA. `|a| le 1`B. `|a| le 2`C. `arg(a^(2)) = arg(b)`D. `agr a = arg(b^(2))` |
|
Answer» Correct Answer - B::C `z_(1)` and `z_(2)` are the roots of the equation `z^(2) -az + b=0`. Hence, `z_(1)+z_(2) = a,z_(1)z_(2) = b` Now `,|z_(1) +z_(2)| le |z_(1)| + |z_(2) |` ` rArr |z_(1) + z_(2)| = |a| le |1+1=2" "(because |z_(1)|=|z_(2)| =1)` `rArr arg(a) = (1)/(2)[arg(z_(2) + arg(z_(1))]` Also , arg(b) `= arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2))` `rArr 2 arg (a) = arg (b)` |
|
| 185. |
Let `z`be a complex number satisfying the equation `z^3-(3+i)z+m+2i=0,w h e r em in Rdot`Suppose the equation has a real root. Then root non-real root. |
|
Answer» Let`alpha` be the root . Then, `alpha^(2) -(3+ i)alpha + m + 2i = 0` `rArr (alpha ^(2) - 3alpha + m) + i(2-alpha)=0` `rArr alpha^(2) - 3 alpha +m = 0 and 2-alpha =0` `rArr alpha = 2 and m =2` Product of the roots is 2(1+i) with one roots as 2. Hence, the nonreal roots is 1+i. |
|
| 186. |
If `z_(r):r = 1,2,3,.....50` are the roots of the equaiton `sum_(r=0)^(50) z^(r)= 0`, then find the value of ` sum_(r=1)^(50)1//(z_(r) - 1)` |
|
Answer» Correct Answer - `-25` `E = (1)/(z_(1)-1) + (1)/(z_(2)-1) +......+ (1)/(z_(50)-1)` Where `z_(1),z_(2),…..,z_(50)` are the roots of the equation `z^(51) -1=0` other than 1 Let . `1+z+z^(2)+……+z^(50)) = (z-z_(2)) …..(1-z_(50))` v`rArr log (1+z+z^(2) +…..+z^(50)) = log [(z-z_(1))(z -z_(2)).....(1-z_(50))]` Differentiating both sides w.r.t.s and putting z = 1 `(1+2z+3z^(2)+......+50_(z)^(49))/(1+z+z^(2) +......+z^(50))` `=(1)/(z-z_(1)) +(1)/(z-z_(2))+.......+(1)/(z-z_(50))` `rArr(50xx 51)/(2xx51)=-[(1)/(z_(1)-1)+(1)/(z_(2)-1)+......+(1)/(z_(50) -1)]` `therefore sum(1)/(z_(r)-1) = -25` |
|
| 187. |
Let `|Z_(r) - r| le r`, for all `r = 1,2,3….,n`. Then `|sum_(r=1)^(n)z_(r)|` is less thanA. nB. 2nC. n(n+1)D. `(n(n+1))/(2)` |
|
Answer» Correct Answer - C `|sum_(r=1)^(n)z_(r)|lesum_(r=1)^(n)|z_(r)|lesum_(r=1)^(n)|z_(r)-r|+sum_(r=1)^(n)rle2sum_(r=1)^(n)r` |
|
| 188. |
Let z be a non - real complex number which satisfies the equation ` z^(23) = 1 `. Then the value of ` sum_(22)^(k = 1 ) (1)/(1 + z ^( 8k) + z ^( 16k )) ` |
|
Answer» Correct Answer - 15 `sum_(k=1)^(22) (1)/(1+z^(8k) +z^(16k)) = sum_(k=1)^(22) (z^(8k)-1)/((z^(8k) -1)(z^(16) + z^(8k) +1))` `= sum_(k=1)^(22)(z^(8k)-1)/(z^(24k)-1)` `=sum_(k=1)^(22) (z^(8k)-1)/(z^(k)-1)" "(because z^(24k)=z^(23k) z^(k) = 1.z^(k) = z^(k))` `=sum_(k=1)^(22)(1+z^(k) + z^(2k) +......+z^(7k))` ltbvrgt `=22 +(0-1)xx7` = 15 |
|
| 189. |
Suppose n is a natural number such that `|i + 2i^2 + 3i^3 +...... + ni^n|=18sqrt2` where `i` is the square root of `-1`. Then n isA. `9`B. `18`C. `36`D. `72` |
|
Answer» Correct Answer - C `(c )` `S=i+2i^(2)+3i^(3)+…….+ni^(n)`………..`(i)` `:. iS=i^(2)+2i^(3)+3i^(4)+…….+ni^(n-1)`…………`(ii)` Subtracting, we get ,brgt `S(1-i)=i+i^(2)+i^(3)+………..+i^(n)-ni^(n+1)` `=(i(1-i^(n)))/(1-i)-ni^(n+1)` Now put the values of `n` and verify. |
|
| 190. |
The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`A. `-1`B. `i`C. `2i+95`D. `97+i` |
|
Answer» Correct Answer - C `(c )` `S=sum_(n=0)^(100)(i)^(n!)` `=(i)^(0!)+(i)^(1!)+(i)^(2!)+…..` `=i+i-1+i^(6)+i^(24)+(i)^(5!)+(i)^(6!)+..+(i)^(100!)` `=95+2i` |
|
| 191. |
Let `omega` be the complex number `cos((2pi)/3)+isin((2pi)/3)`. Then the number of distinct complex cos numbers z satisfying `Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0` is |
|
Answer» Correct Answer - 1 Let `A=[(1" "omega" "omega^2),(omega" "omega^2" "1),(omega^2" " 1 " "z+omega)]` `A=[(0" "0" "0),(0" "0" "0),(0" "0" "0)]`and Tr (A)=0,|A|=0 `A^3=0` `A=[(z+1" "omega" "omega^3),(omega" "z+omega^2" "1),(omega^2" "1" "z+omega)]`=[A+zl]=0 `rArr " "z^3=0` `rArr z=0 ` the number of z satisfying the given equation is 1. |
|
| 192. |
If `omega`is an imaginary fifth root of unity, then find the value of `loe_2|1+omega+omega^2+omega^3-1//omega|dot` |
|
Answer» Here, `omega^(5)=1.` Therefore, `omega^(-1)=omega^(4)` Also, `1+omega+omega^(2)+omega^(3)+omega^(4)=0` `:." "log_(2)|1+omega+omega^(2)+omega^(3)-(1)/(omega)|` `=log_(2)|1+omega+omega^(2)+omega^(3)-omega^(4)|` `=log_(2)|-2omega^(4)|=log_(2)2=1" "(because|omega|=1)` |
|
| 193. |
The value of the expression `1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2),` where omega is an imaginary cube root of unity, is……… |
|
Answer» Correct Answer - `((n(n+1))/(2))^(2) - n` Here `T_r=(r-1)(r-omega)(r-omega)^2]=(r^3-1)` `therefore " "S_n=underset(r=1)overset(n)Sigma(r^3-1)=[(n(n+1))/2]^2-n` |
|
| 194. |
If `x=omega-omega^2-2` then , the value of `x^4+3x^3+2x^2-11x-6` is (where `omega ` is a imaginary cube root of unity) |
|
Answer» Correct Answer - 1 We have `x= omega - omega^(2) - 2 or x + 2 = omega -omega^(2)` Squaring, `x^(2) + 4x + 4 = omega^(2) + omega^(4) - 2omega^(3) = omega^(2) + omega -2=-3` `rArr x^(2) + 4x + 7 =0` Dividing `x^(4) + 3x^(3) + 2x^(2) -11x - 6 by x^(2) + 4x +7`, we get `x^(4) + 3x^(3) + 2x^(2) - 11x -6 = (x^(2) + 4x + 7) (x^(2) -x-1)+1` `= (0) (x^(2) -x-1)+ 1=0 +1 =1` |
|
| 195. |
if `alpha` and `beta` are imaginary cube root of unity then prove `(alpha)^4 + (beta)^4 + (alpha)^-1 . (beta)^-1 = 0` |
|
Answer» Complex cube roots of unity are `omega,omega^(2)`. Let `alpha = omega, beta = omega^(2)`. Thne `alpha + beta^(2)+ alpha^(-1)beta^(-1)= omega^(4) +(omega^(2))^(4) +(omega^(-1))(omega^(2))^(-1)` `omega +omega^(2) + omega^(2) + 1=0` |
|
| 196. |
The value of `underset(k=1)overset(6)(sin (2 pi k)/(7) = I cos (2 pi k )/(7)` isA. -1B. 0C. `-i`D. I |
|
Answer» Correct Answer - D `(underset(k=1)overset(6)Sigmasin"" (2kpi)/7-i cos ""(2kpi)/7)` `=underset(k=1)overset(6)Sigma-i (cos""(2kpi)/7+sin""(2kpi)/7)` `=i{underset(k=1)overset(6)Sigma-i` |
|
| 197. |
The cube roots of unity when represented on Argand diagram form the vertices of an equilateral triangle. |
|
Answer» Correct Answer - True Since cube roote of unity are 1, `omega , omega^2` given by `A(1,0),B(-1/2,sqrt(3)/2),C(-1/2,-sqrt(3)/2)` `rArr AB= BC=CA= sqrt(3)` ltb rgt Hence , cube roots of untiy from an equilateral triangle . |
|
| 198. |
If `a^3+b^3+6a b c=8c^3&omega`is a cube root of unity then:`a , b , c`are in `AdotPdot`(b) `a , b , c ,`are in `HdotPdot``a+bomega-2comega^2=0``a+bomega^2-2comega=0`A. `a,c,b` are in A.PB. a,c,b are in H.PC. `a+bomega - 2comega^(2) = 0`D. `a+ bomega^(2) -2comega = 0` |
|
Answer» Correct Answer - A::C::D We have `a^(3) + b^(3) - 8c^(3) + 6abc = 0` `rArr a^(3) + b^(3) + (-2c)^(3) - 3ab(-2c) = 0` `rArr (a + b- 2c) (a+bomega - 2comega^(2)) (a+ boemga^(2)-2comega) =0` |
|
| 199. |
If `omega(!=1)`is a cube root of unity,and `(1""+omega)^7=""A""+""Bomega`. Then (A, B) equals(1) (0, 1) (2) (1, 1) (3) (1, 0) (4) `(-1,""1)`A. 0,1B. 1,1C. 1,2D. `-1,1` |
|
Answer» Correct Answer - B `(1+omega)^7=(1+omega)(1+omega)^6` `=(1+omega)(-omega^2)^6=1+omega` `rArr " "A+Bomega=1+omega` `rArr" "A=1,B=1` |
|
| 200. |
If `omega ` is the imaginary cube roots of unity, then the number of pair of integers (a,b) such that `|aomega + b| = 1` is ______. |
|
Answer» Correct Answer - 6 We have `|aomega + b| = 1` `rArr |aomega + b|^(2) =1` `rArr (aomega + b)(abaromega +b) = 1` `rArr a^(2) + ab (omega + baromega) +b^(2) =1` `rArr a^(2) -ab + b^(2)=1` `rArr (a-b)^(2)+ab = 1" "(1)` When `(a-b)^(2) = 0` and ab = 1, `then (1,1),(-1,-1)` when `(a-b)^(2) = 1 and ab = 0`, then `(0,1),(1,0),(0,-1),(-1,0)` Hence, there are 6 ordered pairs. |
|