Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `omega(!=1)`is a cube root of unity,and `(1+omega)^7= A + B omega`. Then (A, B) equalsA. `(-1,1)`B. `(0,1)`C. `(1,1)`D. `(1,0)`

Answer» Correct Answer - C
`(1+ omega)^(7) = A + Bomega `
` therefore (-omega^(2))^(7) = A + Bomega`
`therefore -omega^(2) = A Bomega `
`therefore 1+ omega = A + Bomega `
`therefore A = 1 , B = 1`
` therefore (A,B) = (1,1)`
52.

If `z!=1`and `(z^2)/(z-1)`is real, then the pointrepresented by the complex number z lies(1)either on thereal axis or on a circle passing through the origin(2)on a circle withcentre at the origin(3)either on thereal axis or on a circle not passing through the origin(4)on the imaginaryaxisA. either on the real axis or on a circle passing thorugh the origin.B. on a circle with centre at the origin.C. either on the real axis or an a circle not possing through the origin .D. on the imaginary axis .

Answer» Correct Answer - A
`(z^(2))/(z-1) ` is purely real lt
`therefore (z^(2))/(z-1) = (barz^(2))/(barz-1)`
` rArr zbarzz - z^(2) = zbarzbar - barz^(-2)`
`rArr (z-barz) (|z|^(2) -( z+ barz))= 0`
Either `z = barz`
`rArr ` z lies on real axis.
or `|z|^(2) = z+z`
`rArr zbarz - z - barz = 0`
`rArr x^(2) + y^(2) -2x = 0`
Which represents a cricle passing throught origin.
53.

If z is a complexnumber of unit modulus and argument q, then `a r g((1+z)/(1+ bar z))`equal(1) `pi/2-theta`(2) `theta`(3) `pi-theta`(4) `-theta`A. `-theta`B. `(pi)/(2 ) - theta`C. `theta`D. `pi-theta`

Answer» Correct Answer - C
Since `|z| = 1, z.barz= 1`
`therefore arg((1+z)/(1+z)) = arg((1+z)/(1+(1)/(z)))= arg=((1+z)/(z+1))`
`=argz = theta`
54.

If `z` is a complex number such that `|z|>=2` then the minimum value of `|z+1/2|` isA. is equal to `(5)/(2)`B. lies in the interval (1,2)C. is strictly gerater than `(5)/(2)`D. is strictly greater than `(3)/(2)` but less than `(5)/(2)`

Answer» Correct Answer - B
`|z| ge2`
`therefore |z+(1)/(2)||ge|-|(1)/(2)||ge |2-(1)/(2)|ge(3)/(2)`
Hence, minimun distance between z and `(-(1)/(2),0)` is `(3)/(2)`.
55.

The equation `|z-i|=|z-1|,i= sqrt(-1)`representsA. a circule of radius `1/2`B. the line passing through the origin with slope 1C. a cicle of radius 1D. the line passing the origin with slope-1

Answer» Correct Answer - B
Let the complex nuber z = x+ iy
Also given |z-i|=|z-1|
`rArr | x+iy -I |=|x+ iy -1|`
`rArr sqrt(x^2+(y-1)^2=sqrt((x-1)^2+y^2)`
`[therefore|z| = sqrt((Re(z))^2+Im(z)^2)]`
On squaring both sides , we get
`x^2+y^2-2y+1=x^2+y^22x+1`
`rArr y= x` which of the represents a line through the origin with slope 1.
56.

If `z_1,z_2 and z_3` are complex numbers such that `|z_1|=|z_2|=|z_3|= |1/z_1+1/z_2+1/z_3|=1, then |z_1+z_2+z_3|` is (A) equal to 1 (B) gt1 (C) gt3 (D) equal to 3A. equal to 1B. less than 1C. greater than 3D. equal to 3

Answer» Correct Answer - A
Given `" "|z_1|=|z_2|=|z_3|=1`
Now `" "|z_1|=1`
`rArr " " |z_1|^2=1 rArr z_1 bar z_1=1`
similarly `z_2barz_2=1,z_3 bar z_3=1`
Again Now `" "|1/z_1+1/z_2+1/z_3|=1`
`rArr |barz_1+barx_2+bar3 |=1rArr |z_1+z_2+z_3=1`
`rArr " "|z_1+z_2+z_3|=1`
57.

Acomplex number z is said to be unimodular if . Suppose `z_1`and `z_2`are complex numbers such that `(z_1-2z_2)/(2-z_1z_2)`is unimodular and `z_2`is not unimodular. Then the point `z_1`lieson a :(1)straight line parallel to x-axis(2) straight line parallel to y-axis(3)circle of radius 2(4) circle of radius `sqrt(2)`A. straight line parallel to x-axisB. straight line parallel to y-axiesC. circle of radius 2D. circle of radius `sqrt(2)`

Answer» Correct Answer - C
If is unimodular then |z|=1 also use property of modules I,e `zz=|z|^2`
Given `z_2` is not unimodular I,e `|z_2|ne 1` and `(z_1-2z_2)/(2-z_1barz_2)|` is unimodular
`rArr |(z_1-2z_2)/(2-z_1barz_2)|=1 rArr |z_1-2z_2|^2=|2-z_1barz_2|^2`
`rArr ( z_1-2z_2)(barz_1-2barz_2)=(2-z_1bar z_2)(2-barz_1z_2)" "[zbarz=|z|^2]`
`rArr |z|^2+4|^2-2barz_1z_2-2z_1bar z_2`
`rArr 4+|z_1|^2|z_2|^2-2barz_1z_2-2z_1barz_2rArr(|z_2 |^2-1)(|z_1|^2-4)=0`
`because " "|z_2|ne1`
`therefore |z_1|=2`
Let `z_1=x+iy rArr x^2+y^2=(2)^2`
`therefore`Point `z_1`lies on circle of radius
58.

If `a gt 0 and z=(1+i)^2/(a- i)` has magnitude `sqrt(2/5) then barz is ` equal toA. `1/5-3/5 i`B. `-1/5-3/5 I `C. `1/5+3/5 I `D. `-3/5-1/5 I `

Answer» Correct Answer - B
The given complex number `z=((1+i)^2)/(a-i)`
`=((1-1+2i)(a+i))/(a^2+1)" "[ therefore i^2 = -1]`
`=(2i(a+i))/(a^2+1)=(-2+2 ai )/(a^2+1)`
`therefore | z|= sqrt(2//5)`
`rArr sqrt(4+4a^2)/(a^2 +1)^2=sqrt(2/5)rArr (2)/(sqrt(1+a^2)=sqrt(2/5)`
`rArr (4)/(1+a^2)= 2/5 rArr a^2+1 = 10 `
`rArr a^2=9 rArr a=3`
`therefore z=(-2 + 6 i)/(10) " " [From Eq.(i)]`
So, `barz=((-2+6i)/(10))=(-1/5+3/5i)rArr barz=-1/5-3/5i`
`[ therefore if z= x+ iy , then bar z x-iy]`
59.

If `k>0`, `|z|=w=k`, and `alpha=(z-bar w)/(k^2+zbar(w))`, then `Re(alpha)` (A) 0 (B) `k/2` (C) `k` (D) None of these

Answer» Correct Answer - A
`alpha=(z-barw)/(k^(2)+zbarw)rArr baralpha=(barz-w)/(k^(2)+barzw)`
But `zbarz =wbarw =k^(2)`. Hence,
`rArr " "baralpha=((k^(2))/(z)-(k^(2))/(barw))/(k^(2)+(k^(2))/(z)(k^(2))/(barw))=(barw-z)/(zbarw+k^(2))=-alpha`
`rArralpha+baralpha=0`
`rArr Re(alpha)=0`
60.

Let z be a complex number such that |z| + z = 3 + i (Where `i=sqrt(-1))` Then ,|z| is equal toA. `sqrt(34)/3`B. `5/3`C. `sqrt(41)/4`D. `5/4`

Answer» Correct Answer - B
We have `|z|+z=+i`
Let z=x+iy
`therefore sqrt(x^2+y^2)+x+iy+3+i`
`rArr (x+sqrt(x^2+y^2))+iy=3+i`
`rArr x+sqrt(x^2+y^2)=3 and y=1`
Now , `sqrt(x^2+1)=3-x`
`rArr x^2+1=9-6x+x^2`
`rArr 6x=8 rArr x=4/3`
`therefore z=4/3+i`
`rArr |z|=sqrt(16/9)+1=sqrt(25/9) rArr |z|=5/3`
61.

Let `z_1 and z_2` be two complex numbers satisfying `|z_1|=9` and `|z_2-3-4i|=4` Then the minimum value of `|z_1-Z_2|` isA. 1B. 2C. `sqrt(2)`D. 0

Answer» Correct Answer - D
Clearly `|z_1|=9 ` represents a circle having centre `C_1(0,0)` and radius `r_1=9`
and `|z_2-3-4i|=4` represents a circle having centre `C_2(3,4)` and radius `r_2=4`
The minimum value of f`|z_1-z_2| ` is equals to minimum distance between circless `|z_1|=9` and `|z_2-3-4i|=4`
`therefore C_1 C_2= sqrt((3-0)^2(4-0)^2)= sqrt(25)=5`
and `|r_1-r_2|=|9-4|=5 rArr C_1C_2 = |r_1-r_2|`
`therefore `Circles touches each other internally .
Hence , `|z_1-z_2|_(min)=0`
62.

If `|z| =1 ` and `w=(z-1)/(z+1)` (where `z != -1`) then `Re(w)` is (A) 0 (B) `-1/|z+1|^2` (C) `|z/(z+1)| 1/|z+1|^2` (D) `sqrt2/|z+1|^2`

Answer» Correct Answer - A
Since `|z| =1 and w = (z-1)/(z+1)`
`rArr z-1 =wz+w rArr =(1+w)/(1-w)rArr |z|=(|1+w|)/(|1-w|)`
`rArr |1-w|=|1+w| " "[ becaue |z|=1]` ltbr. On squaring both sides we get
`1+ |w|^2-2|w| Re (w) =1 + |w|^2+2|w|Re (W)`
[using `|z_1pm z_2|^2=|z_1|^2+|z_2|^2pm 2 |z_1||z_2| Re (bar z_1 z_2)]`
`rArr 4 |w|Re |w|=0`
`rArr " " Re (w)=0`
63.

Let `(z-alpha)/(z+alpha)` is purely imaginary and `|z|=2, alphaepsilonR` then `alpha` is equal to (A) `2` (B) `1` (C) `sqrt2` (D) `sqrt3`A. `sqrt(2)`B. `1/2`C. 1D. 2

Answer» Correct Answer - D
Since the complex number `(z-a)/(z+a)(alpha ne R)`j is purely imaginary number therefore
`(z-alpha)/(z+alpha)+(barz-alpha)/(bar z + alpha)=0 " "[ therefore alpha in R]`
`rArr zbarz-abarz+az-alpha^2+zbarz-alphabarz-alpha^2=0`
`rArr 2|z|^2-2alpha^2=0" "[because zbarz=|z|^2]`
`rArr alpha^2=|z|^2=4`
`rArr alpha=pm2`
64.

The expression `[(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8` is equal isA. 1B. `-1`C. iD. `-i`

Answer» Correct Answer - B
Let `sin""(pi)/(8)+icos""(pi)/(8)=z`
`rArr [(1+sin""(pi)/(8)+icos""(pi)/(8))/(1+sin""(pi)/(8)-icos""(pi)/(8))]^(8)`
`=((1+z)/(1+(1)/(z)))^(8)=z^(8)`
`=(sin""(pi)/(8)+icos""(pi)/(8))^(8)`
`=(cos""((pi)/(2)-(pi)/8)+isin""((pi)/(2)-(pi)/(8)))^(8)`
`=(cos""(3pi)/(8)+isin""(3pi)/(8))^(8)=cos3pi=-1`
65.

Given `z=(1+isqrt(3))^(100),`then `[R E(z)//I M(z)]`equals`2^(100)`b. `2^(50)`c. `1/(sqrt(3))`d. `sqrt(3)`A. `2^(100)`B. `2^(50)`C. `(1)/(sqrt(3))`D. `sqrt(3)`

Answer» Correct Answer - C
`z=(1+isqrt(3))^(100)=2^(100)(cos""(pi)/(3)+isin""(pi)/(3))^(100)`
`=2^(100)(cos""(100pi)/(3)+isin""(100pi)/(3))`
`=2^(100)(-cos""(pi)/(3)-isin""(pi)/(3))`
`=2^(100)(-(1)/(2)-(isqrt(3))/(2))`
`rArr (Re(z))/(Im(z))=(-1//2)/(-sqrt(3)//2)=(1)/(sqrt(3))`
66.

Let z be a complex number such that the imaginary part of z is nonzero and a = z2 + z + 1 is real. Then a cannot take the value(A) –1 (B)1 3(C)1 2(D)3 4A. `-1`B. `1/3`C. `1/2`D. `3/4`

Answer» Correct Answer - D
IF `ax^2+bx+c=0` has roots `alpha ,beta ` then `alpha,beta=(-bpmsqrt(b^2-4ac))/(2a)`
For roots to be real `b^2-4ac ge0` ltbgt Description of situation As imeginary part of z=x+iy is non-zero
`rArr y ne 0 `
Method I let z=x+iy
`therefore " "a=(x+iy)^2+(x+iy)+1`
`rArr (x^2-y^2+x+1-a)+i(2xy+y)=0`
`rArr (x^2y^2+x+1-a)+iy(2x+1)=0`
If is purely real if y(2x+1)=0
but imaginary part of z.ie y is non-zero
`rArr 2x+1=0 or x=-1//2`
From Eq.(i) `1/4-y^2=1/2+1a=0`
`rArr a=-y^2+3/4 rArr a lt 3/4`
Method II `Here z^2+z+(1-a)=0`
`therefore " "z=(-1pmsqrt(1-4(1-a)))/(2xx1)`
`rArr " "z=(-1pmsqrt(4a-3))/(2)`
For z do not have real roots `4a-3 lt 0 rArr a lt 3/4`
67.

Find the common roots of `x^12-1=0 and x^4+x^2+1=0`

Answer» Correct Answer - `x + pm omega^(2), pm omega`
`x^(1//2)-1=(x^(6) + 1)(x^(6)-1)=(x^(6)+1)(x^(2)-1)(x^(4)+x^(2)+1)`
Common roots are given by `x^(4) + x^(2) + 1=0`
`therefore " " x^(2)=(-1pm,isqrt(3))/(2) = omega,omega^(2) or omega^(4),omega^(2)" "(because omega^(3)=1)`
` or x = pm omega^(2), pm omega`
68.

If `z + z^(-1)= 1`, then find the value of `z^(100) + z^(-100)`.

Answer» Correct Answer - `-1`
`z +z ^(-1)=1`
` or z^(2) -z + 1=0`
`rArr z =- omega or -omega^(2)`
For `z = -omega`
`z^(100) + z^(-100) = (-omega)^(100) + (-omega)^(100)`
`= omega+(1)/(omega) = omega + omega^(2)=1`
For `z = -omega^(2)`,
`z^(100) + z^(-100)=- (-omega^(2))^(100) _ (-omega^(2))^(-100)`
` = omega^(200) + (1)/(omega^(200))`
`= omega^(2)+(1)/(omega^(2)) = omega^(2) + omega = -1`
69.

Write the comple number in a + ib form unsing cube roots of unity: (a) `(-(1)/(2) + sqrt(3)/(2)i)^(1000)`(b)If `z =(sqrt(3) + i)^(17)/((1-i)^(50))` (c) `(i + sqrt(3))^(100) + (i+ sqrt(3))^(100) + 2^(100)`

Answer» Correct Answer - `omega = - (1)/(2) + sqrt(3)/(2)i`" " (b) `(1)/(2^(8))((-1-isqrt(3))/(2))` " "(c) 0
(a) Here, `-1//2 + (1//2) isqrt(3)` is one of the tow imaginary cube roots of unity. If the we denote it b `omega`, then
`omega^(100) = omega^(999) omega=(omega^(3))^(333) omega = omega = -(1)/(2) + (sqrt(3))/(2) i`
`z =(sqrt(3) + i)^(17)/((1-i)^(50))`
`= (1)/(i^(17))((isqrt(3) +i^(2))^(17))/([(1-i)^(2) ]^(25))`
`= (2^(17))/(i) (((isqrt(3)-1)/(2))^(7))/(-2i)^(25)`
`=(1)/(2^(8)) (omega)^(17)`
`= (1)/(2^(8)) (omega)^(2)`
`= (1)/(2^(8)) ((-1-isqrt(3))/(2))`
(c) `(i+sqrt(3))^(100) + (i-sqrt(3))^(100) + 2^(100)`
`=((i^(2) + isqrt(3))/(i))^(100) + ((i^(2)-isqrt(3))/(i))^(100) + 2^(100)`
`= (2^(100))/(i^(100)) ((-1+isqrt(3))/(2))^(100) + (2^(100))/(i^(100)) ((-1-isqrt(3))/(2)) +2^(100)`
`= 2^(100) (omega) ^(100) + 2^(100) (omega^(2))^(100) + 2^(100)`
`=2^(100) (omega^(100) + omega^(200)+1)`
` = 2^(100) (omega + omega^(2) + 1) =0`
70.

Let a,b ` in ` R and `a^(2) + b^(2) ne 0` . Suppose `S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0}`, where `i= sqrt(-1)`. If `z = x + iy` and z in S, then (x,y) lies onA. the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)` for `a gt 0 be ne 0`B. the circle with radius `-(1)/(2a)` and centre `(-(1)/(2) ,0) a lt 0, b ne 0`C. the axis for `a ne 0, b =0`D. the y-axis for `a = 0, bne 0`

Answer» Correct Answer - A::C::D
`z =(1)/(a+ibt)`
`rArr x +iy = (a-ibt)/(a^(2) + b^(2)t^(2))`
`rArr x = (a)/(a^(2) + b^(2)t^(2)),y = (-bt)/(a^(2) =b^(2)t^(2))`
Eliminating t, we get
`x^(20 + y^(2) = (x)/(a)`
`rArr (x-(1)/(2a))^(2) +y^(2) = ((1)/(2a))^(2)`
`therefore `Option (1) is correct.
(3),(4) can be verified by putting b = 0 and a=0 respectively.
71.

Which of the following is equal to `root(3)(-1)?`A. `(sqrt(3)+sqrt(-1))/( 2)`B. `(-sqrt(3)+sqrt(-1))/(sqrt(-4))`C. `(sqrt(3)-sqrt(-1))/(sqrt(-4))`D. `-sqrt(-1)`

Answer» Correct Answer - B
`x =root(3)(-1)`
`rArr x^(3)=-1`
`rArr -x^(3)=1`
`rArr-x=1,omega,omega^(2)` ltbgt `rArr x=-1,-omega,-omega^(2)`
`=-1,(1+sqrt3i)/(2),(1-sqrt3i)/(2)`
`=-1,(-sqrt3+i)/(2i),(sqrt3+i)/(2i)`
`=-1,(-sqrt3+sqrt(-1))/(sqrt(-4)),(sqrt(3)+(sqrt(-1)))/(sqrt(-4))`
72.

Let P(x) and Q(x) be two polynomials.Suppose that `f(x) = P(x^3) + x Q(x^3)` is divisible by `x^2 + x+1,` thenA. P(x) is divisible by (x-1),but Q(x) is not divisible by x -1B. Q(x) is divisible by (x-1), but P(x) is not divisible by x-1C. Both P(x) and Q(x) are divisible by x-1D. f(x) is divisible by x-1

Answer» Correct Answer - C::D
We have
`x^(2) + x+1 = (x-omega)(x- omega^(2))`
Simce `f(x)` is divisible by `x^(2) + x + 1,f(omega)=0, f(omega^(2)) = 0` so
`p(omega^(3)) + omegaQ(omega^(3)) = 0 rArr p(1) + omegaQ(1) = 0" "(2)`
`P (omega^(6)) + omega^(2)Q(omega^(6)) = 0 rArr P(1) + omega^(2) Q(1)= 0 " (2)`
Solving Eqs. (1) and (2), we obtain
`P(1) = 0 and Q(1) = 0`
Therefore, both P(x) and Q(x) are divisble by x-1. Hence,
`P(x^(3)) and Q(x^(3))` are divisible by `x^(3) -1` and soby x -1 Since
`f(x) = P(x^(3)) + xQ(X^(3))`, we get f(x) is divisible by x-1
73.

If `x^2+x+1=0` then the value of `(x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(x^27))^2` isA. 27B. 72C. 45D. 54

Answer» Correct Answer - D
`x^(2)+x+1=0`
`rArr x = omegaor omega^(2)`
Let `x = omega`. Then,
`x+(1)/(x)=omega+(1)/(omega)=omega+omega^(2)=-1`
`x^(2)+(1)/(x^(2))=omega^(2)+(1)/(omega^(3))=omega^(2)+omega=-1`
`x^(3)+(1)/(x^(3))=omega^(3)+(1)/(omega^(3))=2`
`x^(4)+(1)/(x^(4))=omega^(4)+(1)/(omega^(4))=omega+omega^(2)=-1,` etc.
`therefore (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+* * *+(x^(27)+(1)/(x^(27)))^(2)`
`=[(x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+* * *+(x^(26)+(1)/(x^(26)))^(2)]`
`+[(x^(3)+(1)/(x^(3)))^(2)+(x^(6)+(1)/(x^(6)))^(2)+(x^(9)+(1)/(x^(9)))^(2)+* * *+(x^(27)+(1)/(x^(27)))^(2)]`
`=18+9(2)^(2)=54`
74.

If `5x^(3) +Mx+ N, M,N in R` is divisible by `x^(2) + x+1`, then the value of `M +N ` isA. 5B. 4C. `-4`D. `-5`

Answer» Correct Answer - D
Let `f(x)=5x^(2)+Mx+N`.
Also, `x^(2)+x+1=(x-omega)(x-omega^(2))`
It is given that `f(x)` is divisible by `x^(2)+x+1`.
`therefore f(omega)=5+Momega+N=0`
and `f(omega^(2))=5+Momega^(2)+N=0`
So, `M =0 and N=-5`
`therefore M+N =-5`
75.

Sum of common roots of the equations `z^(3) + 2z^(2) + 2z + 1 =0` and `z^(1985) + z^(100) + 1=0` isA. `-1`B. 1C. 0D. 1

Answer» Correct Answer - A
We have, `z^(3)+2z^(2)+2z+1=0`
`rArr (z^(3)+1)+2z(z+1)=0`
`rArr (z+1)(z^(2)+z+1)=0`
`rArrz=-1,omega,omega^(2)`
Since, `z=-1` does not satisfy `z^(1985)+z^(100)+1=0` while `z=omega, omega^(2)` satisfy it, hence, sum is `omega+omega^(2)=-`
76.

Let a be a complex number such that `|a| lt 1` and `z_(1),z_(2)…..` be vertices of a polygon such that `z_(k)=1+a+a^(2)+a^(3)+a^(k-1)`. Then, the vertices of the polygon lie within a circle.A. `|z-(1)/(1-a)|=(1)/(|a-1|)`B. `|z+(1)/(a+1)| = (1)/(|a+1|)`C. `|z-(1)/(1-a)|=|a-1|`D. `|z+(1)/(1-a)|=|a-1|`

Answer» Correct Answer - A
Given,
`z_(k) = 1 + a+ a^(2) +......+a^(k-1) = (1-a^(k))/(1-a)`
`rArr a_(k) -(1)/(1-a) = - (a^(k))/(1-a)`
`rArr |z_(k)-(1)/(1-a)|= (|a|^(k))/(|1-a|) lt (1)/(|1-a|)" " [because|a| lt 1]`
Hence , `z_(k)` lies within the circle.
`therefore |z-(1)/(1-a)|= (1)/(|1-a|)`
77.

If `n in N >1`, then the sum of real part of roots of`z^n=(z+1)^n`is equal to`n/2`b. `((n-1))/2`c. ` n/2`d. `((1-n))/2`A. `(n)/(2)`B. `((n-1))/(2)`C. `-(n)/(2)`D. `((1-n))/(2)`

Answer» Correct Answer - D
The equations `z^(n) = (z+ 1)^(n)` will have excactly n - 1 roots. We have
`((z+1)/(z^(n)))= 1 or |(z+1)/(z)|= 1` or `|z+1|= |z|`
Therefore,z lies on the the right bisector of the segment connecting the points (0,0) and (-1,0). Thus `Re(z) = - 1//2`. Hence roots are colliner and will have their real parts of roots is `(-1//2)(n-1)`
78.

If `z(1+a)=b+i ca n da^2+b^2+c^2=1,`then `[(1+i z)//(1-i z)=``(a+i b)/(1+c)`b. `(b-i c)/(1+a)`c. `(a+i c)/(1+b)`d. none of theseA. `(a+ib)/(1+c)`B. `(b-ic)/(1+a)`C. `(a+ic)/(1+b)`D. none of these

Answer» Correct Answer - A
`(1+iz)/(1-izx)=(1+i(b+ic)//(1+a))/(1-i(b+ic)//(1+a))`
`=(1+a-c+ib)/(1+a+c-ib)`
`=((1+a-c+ib)(1+a+c+ib))/((1+a+c)^(2)+b^(2))`
`=(1+2a+a^(2)-b^(2)-c^(2)+2ib+2iab)/(1+a^(2)+c^(2)+b^(2)+2ac+2(a+c))`
`=(2a+2a^(2)+2ib+2iab)/(2+2ac+2(a+c))" "(therefore a^(2)+b^(2)+c^(2)=1)`
`=(a^(2)+a^(2)+ib+iab)/(1+ac+(a+c))`
`=(a(a+1)+ib(a+1))/((a+1)(c+1))=(a+ib)/(c+1)`
79.

If `a^2+b^2=1` then `(1+b+i a)/(1+b-i a)=`A. 1B. 2C. 5D. 8

Answer» Correct Answer - C
Given that `a^(2) +b^(2)=1` Therefore,
`(1+b + ia)/(1+b -ia) =((1+b+ia)(a+b+ia))/((1+ b-ia)(1+b+ia))`
`= ((1+b)^(2) -a^(2)+2ia(1+b))/(1+ b^(2)+2b+a^(2))`
`= ((1-a^(2)) + 2b b^(2) + 2ia(1+b))/(2(l+b))`
`= (2b^(2) + 2b + 2ia(1+b))/(2(1+b))= b + ia`
80.

If `alpha`and `beta`are different complex numbers with `|beta|=1,`then find `|(beta-alpha)/(1- baralphabeta)|`.

Answer» Given, `|beta|=1`
`implies" "betabar(beta)=1" or "beta=(1)/(beta)" "(1)`
Now, `|(beta-alpha)/(1-bar(alpha)beta)|=|((1)/(bar(beta))-alpha)/(1-bar(alpha)beta)|=|(1)/(bar(beta))||(1-alphabar(beta))/(1-bar(alpha)beta)|=(1)/(|beta|)|bar(1-alphabar(beta))/(1-bar(alpha)beta)|`
`=|(1-bar(alpha)beta)/(1-bar(alpha)beta)|=1`
81.

Solve the equation `z^(3) = barz (z ne 0)`

Answer» As `zne0,`
`|z^(3)|=|bar(z)|`
`implies" "|z|^(3)=|bar(z)|`
`implies" "|z|^(3)=|z|`
`implies" "|z|=1`
`:." "z^(3)=bar(z)`
`implies" "z^(4)=zbar(z)=|z|^(2)=1`
`implies" "z=+-1,+-i`
82.

If `z_1, z_2 in C , z_1^2 in R , z_1(z_1^2-3z_2^2)=2` and `z_2(3z_1^2-z_2^2)=11`, then the value of `z_1^2+z_2^2`isA. 10B. 12C. 5D. 8

Answer» Correct Answer - C
We have,
`z_(1)(z_(1)^(2)-3z_(2)^2) = 2 " "(1)`
`z_(2)(3z_(1)^(2)-z_(2)^(2)) = 11`
multiplying (2) by I and adding it to (1), we get
`z_(1)^(3) - 3z_(2)^(2)z_(1) + i(3z_(1)^(2)z_(2) - z_(2)^(3)) = 2 +11i`
`rArr (z_(1) +iz_(2))^(3) = 2 + 11i" "(3)`
Multiply (2) by i and subtracting it form (1), we get
`z_(1)^(3) - 3z_(2)^(2)z_(1) - i(3z_(1)^(2)z_(2)-z_(2)^(2)) = 2- 11i`
`rArr (z_(1) + iz_(2))^(3) = 2+ 11i`
Multiplying (3) and (4), we get
`(z_(1)^(2) + z_(2)^(2))^(3) = 2^(2) - 121i^(2) = 4 + 121 = 125`
`rArr z_(1)^(2) + _(2)^(2) = 5`
83.

`Z_1!=Z_2`are two points in an Argand plane. If `a|Z_1|=b|Z_2|,`then prove that `(a Z_1-b Z_2)/(a Z_1+b Z_2)`is purely imaginary.

Answer» Let `Z_(1) = r_(1) e^(itheta),Z_(2) =r_(2)e^(i(theta + alpha))` Given that `ar_(1) = br_(2)`
`therefore Z = (aZ_(1) - bZ_(2))/(aZ_(1) + bZ_(2))=(e^(itheta)-e^(i(theta + alpha)))/(e^(itheta) + e^(itheta+alpha))`
`= (1-e^(ialpha))/(1+e^(ialpha))" "("Dividing Nr. and Dr. by" e^(itheta))`
`(e^(-ialpha//2)-e^(ialpha//2))/(e^(-ialpha//2) + e^(ialpha//2))" "("Dividing Nr. and Dr.by " e^(ialpha//2))`
`= (-2i sin.(alpha)/(2))/(2cos.(alpha)/(2))`
`=-i tan .(alpha)/(2)`
Hence, Z is purely imaginary.
84.

Prove that `|z_1+z_2|^2=|z_1|^2, ifz_1//z_2`is purely imaginary.

Answer» Given
`|z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)`
or `|z_(1)|^(2)+|z_(2)|^(2)+z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=|z_(1)|^(2)+|z_(2)|^(2)`
or `z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=0`
or `(z_(1))/(z_(2))+(bar(z)_(1))/(bar(z)_(2))=0`
or `(z_(1))/(z_(2))+(bar(z)_(1))/(z_(2))=0`
Hence, `(z_(1))/(z_(2))` is purely imaginary
85.

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3`A. `1//sqrt(2)`B. `1//2`C. `1//sqrt(7)`D. `1//3`

Answer» Correct Answer - C
Given circles are
`(x - x_(0))^(2) + (y-y_(0))^(2) = r^(2)`
and `(x-x_(0))^(2) + (y - y_(0))^(2) = 4r^(2)" "(1)`
or `|z-z_(0)| = r`
and `|z-z_(0)| = 2 r`
where `z_(0) - x_(0) + iy_(0)`
Now `alpha` and `(1)/(baralpha)` lies on circle (1) and (2), respectively. Then
` |alpha -z_(0)| = r and |(1)/(baralpha) - z_(0)| = 2r`
`rArr |alpha - z_(0)| = r and |1-baralphaz_(0)| = 2r |baralpha|`
`rArr |alpha -z_(0)| = r and |1-baraz_(0)| = 2r|baralpha|`
`rArr |alpha - z_(0)|^(2) =r^(2) and |1-baralphaz_(0)| = 4r^(2) |alpha|^(2)`
Subtracting, we get
`|1-baralphaz_(0)|^(2) - |alpha -z_(0)|^(2) = 4r^(2) |alpha| - r^(2)`
`rArr 1+ |alphaz_(0)|^(2) -baralphaz_(0) - alphabarz_(0) -(|alpha|^(2) + |z_(0)|^(2) -baralphaz_(0) -alphabarz_(0))`
`4r^(2) |alpha|^(2) -r^(2)`
`rArr 1+|alpha|^(2) |z_(0)|^(2) - |alpha|^(2) -|z_(0)|^(2) = 4r^(2)|alpha|^(2)-r^(2)`
Given ` 2|z_(0)|^(2) = r^(2) + 2`
`2|z_(0)|^(2) = r^(2)+ 2`
`rArr (1-|alpha|^(2))(1-(r^(2) +2)/(2)) = 4r^(2)|alpha|^(2) -r^(2)`
`rArr (1-|alpha|^(2))((-r^(2))/(2))= 4r^(2)|alpha|^(2) -r^(2)`
`rArr |alpha|^(2) -1 = 8|alpha|^(2)-2`
`rArr |alpha|^(2) =(1)/(7) rArr |alpha| = (1)/(sqrt(7))`
86.

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3`A. `1/(sqrt(2))`B. `1/2`C. `1/sqrt(7)`D. `1/3`

Answer» Correct Answer - C
Formula used
`|z|^2=z. bar z`
and `|z_1=z_2|^2=(z_1-z_2)(barz_1-z_2)`
`=|z_1|^2-z_1barz_2-z_2bar z_1+|z|^2`
Here `(x-x_0)^2+(y-y_0)^2`
and `(x-x_0)^2+(y-y_0)^2=4r^2`
since `alpha and 1/alpha` lies on first and second respectively
`therefore " "|alpha-z_0|^2=r^2 and |(1)/(bar alpha -z_0)|^2=4r^2`
`rArr (alpha-z_0)(baralpha-alpha _0)=r^2`
`rArr |alpha^2|-z_0 bar alpha- bar z_0 alpha+|z_0|^2=r^3`
and `|1/(alpha)-z_0|^2=4r^2`
`rArr 1/alpha-z_0=4r^2`
`rArr 1/(|alpha|^2)-(z)/alpha-(barz_0)/(baralpha)+|z_0|^2=4r^2`
Since `|alpha|=alpha.alpha`
`1/(|alpha|^2)-(z_0.baralpha)/(|alpha|^2)-barz_0/(|alpha|^2).alpha+|z_0|^2=4r^2`
`rArr 1-z_0baralpha-barz_0alpha+|alpha|^2|z_0|^2=4r^2|alpha|^2`
On subtracting Eqs. (i) and (ii) ,we get
`(|alpha|^2-1)(1-|z_0|^2)=r^2(1-4|alpha|^2)`
`rArr(|alpha|^2-1)(1-|z_0|^2)=r^2(1-4|alpha|^2)`
`rArr (|alpha|^2-1)(1-(r^2+2)/(2))=r^2(1-4|alpha|^2) `
Given `|z_0|^2=(r^2+2)/(2)`
`rArr (|alpha|^2-1).((-r^2)/2)=r^2(1-4|alpha|^2)`
`rArr |alpha|^2-1=-2+8|alpha|^2`
`rArr |alpha|^2-1=-2+8|alpha|^2`
`rArr " "7|alpha|^2=1`
`therefore |alpha|=1 //sqrt(2)`
87.

Find the value of expression`(cospi/2+is inpi/2)(cospi/(2^2)+is inpi/(2^2)) tooo`

Answer» `(cos.(pi)/(2)+ i sin.(pi)/(2))(cos.(pi)/(2^(2))+i sin.(pi)/(2^(2))) ...."to" oo`
`=cos((pi)/(2)+(pi)/(2^(2)) +....)+ isin ((pi)/(2)+(pi)/(2^(2))+.....)`
`=cos [(pi)/(2)(1+(1)/(2)+(1)/(2^(2))+.....)]+ isin[(pi)/(2)(1+(1)/(2)+(1)/(2^(2))+......)]`
`cos[(pi)/(2)((1)/(1-(1)/(2)))] + isin [(pi)/(2)((1)/(1-(1)/(2)))] = cos pi + isin pi =-1`
88.

If `z=4+isqrt(7)`, then find the value of `z^3-4z^2-9z+91.`

Answer» `z = 4 + I sqrt(7)`
or ` x z- 4 = isqrt(7)`
or ` z^(2) - 8z + 16 = - 7`
or ` z^(2) - 8z + 23 = 0`
Now dividing `z^(3) - 4z^(2) - 9z + 91 ` by `z^(2) - 8z + 23` we get
`z^(3) - 4z^(2) - 9 z + 91 = (z^(2) - 8z + 23) (z +4) - = -1`.
89.

Express each of the following in the standerd from ` a + ib` (i) `(5+4i)/(4+ 5i)` (ii) ` ((1 +i)^(2))/(3-i)` (iii)` (1)/(1-cos theta + 2i sintheta)`

Answer» (i) `(5+4i)/(4+5i) =(5+4i)/(4+5i)xx(4-5i)/(4-5i)`
` =((20 +20) +i(16-25))/(16-25i) =(40-9i)/(41) =(40)/(41) -(9)/(41)i`
(ii) `((1+i)^(2))/(3-i) =(1+2i+i^(2))/(3-i)`
`=(2i)/(3-i) =(2i)/(3-i) xx(3+i)/(3+i) = (6i+2i^(2))/(9-i)`
`=(-2+6i)/(10) = -(1)/(5) + (3)/(5) i`
(iii) `(1)/(1- cos thets + 2i sin theta) `
`= (1)/(1-cos theta + 2i sin theta) xx(1- cos theta - 2i sin theta)/(1- cos theta - 2i sin theta)`
`=(1- cos theta - 2i sin theta)/((1- cos theta)^(2) + 4 sin theta)`
`=(1-cos theta- 2i sin theta)/(1-2 cos theta + cos^(2) theta + 4 sin^(2) theta)`
`= (1- cos theta - 2 i sin theta)/( 2-2 cos theta + 3 sin^(2) theta)`
`= ((1-cos theta)/( 2-2 sin theta + 3 sin^(2) theta))+i((-2 sin theta)/(2-2 cos theta + 3 sin^(2)theta))`
90.

In an Agrad plane `z_(1),z_(2) and z_(3)` are, respectively, the vertices of an isosceles trinagle ABC with AC= BC and `/_CAB = theta`. If `z_(4)` is incentre of triangle, then The value of `(z_(2)-z_(1))^(2)tan theta tan theta //2` isA. `(z_(1) + z_(2)-2z_(3))`B. `(z_(1)+z_(2)-z_(3))(z_(1) +z_(2)-z_(4))`C. `-(z_(1) +z_(2)-2z_(3))(z_(1)+z_(2)-2z_(4))`D. `z_(4)=sqrt(z_(2)z_(3))`

Answer» Correct Answer - C
Keeping in mind that `tan theta = CD//AD and tan theta//2 = ID//BD`, we have
`(z_(3) - (z_(1)+z_(2))/(2))/(z_(1) - (z_(1)+z_(2))/(2))=(|z_(3)-(z_(1)+z_(2))/(2)|)/(|z_(1) -(z_(1) +z_(2))/(2)|)e^(-i(pi)/(2)`
`rArr (2z_(3) -z_(1) -z_(2))/(z_(1)-z_(2)) =(CD)/(AD)e^(-i(pi)/(2))" "(1)`
`and (z_(4) -(z_(1)+z_(2))/(4))/(z_(2) -(z_(1)+z_(2))/(2))=(|z_(4) -(z_(1) + z_(2))/(2)|)/(|z_(2) -(z_(1) +z_(2))/(2)|)`
`rArr (2z_(4) -z_(1) -z_(2))/(z_(2)-z_(1)) = (ID)/(BD) e^(-i(pi)/(2))" "(2)`
Multiplying (1) and(2) we have,
`(2z_(3)-z_(1) -z_(2))/(z_(1)z_(2))( 2z_(4) -z_(1) -z_(2))/(z_(2)-z_(1)) = (CD)/(AD)(ID)/(BD) = tan theta tan .(theta)/(2)`
`rArr (z_(2) -z_(1))^(2) tan theta tan.(theta)/(2) = - (z_(1) +z_(2)+2z_(3))(z_(1) + z_(2)+2z_(4))`
91.

In an Agrad plane `z_(1),z_(2) and z_(3)` are, respectively, the vertices of an isosceles trinagle ABC with AC= BC and `/_CAB = theta`. If `z_(4)` is incentre of triangle, then The value of `(z_(4) -z_(1))^(2) (cos theta + 1) sec theta ` isA. `((z_(2)-z_(1))(z_(3)-z_(1)))/((z_(4) -z_(1)))`B. `(z_(2)-z_(1))(z_(3) -z_(1))`C. `(z_(2)-z_(1))(z_(3)-z_(1))^(2)`D. `((z_(2) -z_(1))(z_(1)-z_(3)))/((z_(4)-z_(1))^(2))`

Answer» Correct Answer - B
From (1),
`((z_(2)-z_(1))(z_(3) -z_(1)))/(z_(2) -z_(1)) =2((AD)/(IA))^(2)((AC)/(AD)) " " (because AB = 2AD)`
`rArr (z_(2) -z_(1)) (z_(3) -z_(1)) =(z_(4) -z_(1))^(2) 2 cos^(2). (theta)/(2) sec theta`
`= (z_(4) -z_(1))^(2) (cos theta + 1)`
92.

If `a,b,c,d in R` and all the three roots of `az^3 + bz^2 + cZ + d=0` have negative real parts, thenA. `ab gt 0 `B. `bv gt 0`C. `ad gt 0`D. `bc-ad gt 0`

Answer» Correct Answer - A::B::C::D
Let the roots of `az^(3) + bz^(2) + cz + d = 0 ` be `z_(1) = x_(1),z_(2) = x_(2) + iy_(2)` and `z_(3) = x_(2) -iy_(2)`
`therefore z_(1) + z_(2) + z_(3) = -(b)/(a)`
`rArr x_(1) +2x_(2) = - (b)/(a) lt 0`
`rArr ab gt 0`
`z_(1)z_(2) + z_(2)z_(3) + z_(1) +z_(3) = (c)/(a)`
`x_(1)(x_(2) + iy_(2)) + (x_(2)^(2) + y_(2)^(2)) + x_(1)(x_(2) -iy_(2))`
` =2x_(1)x_(2) + x_(2)^(2) + y_(2)^(2) gt 0`
`rArr (c)/(0) gt0`
`rArr ac gt 0`
`rArr a^(2) bc gt 0 `
`bc gt 0`
Also, `z_(1)z_(2)z_(3)= x_(1)(x_(2)^(2) + y_(2)^(2)) = -(d)/(a)`
`rArr ad gt 0`
Futher,`-(bc)/(a^(2)) = (-(b)/(a))((c)/(a))`
`= (x_(1)+ 2x_(2)) (2x_(1)x_(2) + x_(2)^(2) + y_(2)^(2))`
`=x_(1)(x_(2)^(2) + y^(2)_(2)) + 2x_(1)^(2) x_(2) + 2x_(1)x_(2)^(2) + 2x_(2) (x_(2)^(2) + y_(2)^(2))`
`lt x_(1)(x_(2)^(2) + y_(2)^(2))`
`rArr -(bc)/(a^(2)) lt - (d)/(a)`
`rArr bc gt ad`
93.

Number of solutions of the equation `z^3+[3(barz)^2]/|z|=0` where z is a complex number isA. 2B. 3C. 6D. 5

Answer» Correct Answer - D
Given, `z^(3)+(3(barz)^(2))/(|z|)=0`
Let `z=re^(itheta)`
`rArr r^(3)e^(i3theta)+3re^(-2theta)=0`
Since r cannot be zero, so
`re^(i5theta)=-3`
Which will hold for r = 3 and five values of `theta`. Thus, there are five solution.
94.

Find the real numbers `x and y ,`if `(x-i y)(3+5i)`is the conjugate of `-6-24 i`

Answer» Correct Answer - ` x = 3, y=-3`
Let `z = (x-iy) (3+5i)`
`=3x + 5xi - 3yi - 5yi^(2)`
`= (3x + 5y)+i(5x -3y)`
`therefore barz = (3x + 5y) - i(5x - 3y)`
It is given that ,`barz = - 6- 24i`
Equating real and imaginary parts, we get
` 3x + 5y = -6`
`5x -3y = 24`
Sloving we get
`x = 3, y = -3`
95.

If `Z^5` is a non-real complex number, then find the minimum value of `(Imz^5)/(Im^5z)`

Answer» Correct Answer - `-4`
Let z= a+ ib,
`b ne 0` where Im Z = b
`therefore " " Z^(5) = (a+ib)^(5)`
`= a^(5) + 5a^(4) bi + 10^(3)b^(2)i^(2) + 10a^(2)b^(3)i^(2) + 5ab^(4)i^(4) + i^(5)b^(5)`
`therefore" " Lm z^(5)=5a^(4)b- 10a^(2)b^(3) + b^(5)`
`y= (ImZ^(5))/((ImZ^(5)))=((a)/(5))^(2)-10((a)/(b))^(2)+1`
`= 5[((a)/(b))^(4)-2((a)/(b))^(2)+(1)/(5)]`
`=5[(((a)/(b))^(2)-1)^(2) +(1)/(5)-1]`
`=5(((a)/(b))^(2)-1)^(2)=4`
So, `y_("min")= -4`
96.

The complex number, `z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`A. lies on real axisB. lies on imaginary axisC. lies in first quadrantD. lies in second quadrant

Answer» Correct Answer - B
`(b)` `((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`
`=(sqrt(3)(-1+sqrt(3)i)(1-i))/(3(sqrt(3)+i)(i)(1+i))`
`=((-1+sqrt(3)i)(1-i))/(sqrt(3)(-1+sqrt(3)i)(1+i))`
`=((1-i)^(2))/(2sqrt(3))=(-2i)/(2sqrt(3))`, which lies on imaginergy axis
97.

The number of complex numbers `z`satisfying `|z-3-i|=|z-9-i|a n d|z-3+3i|=3`area. oneb. twoc. fourd. none of theseA. oneB. twoC. fourD. none of these

Answer» Correct Answer - A
Let `z = x +iy`. Then,
`|z-3-i|=|z-9-i|`
`rArr sqrt((x-3)^(2)+(y -1)^(2))=sqrt((x-9)^(2)+(y-1)^(2))`
`rArr x = 6`
`|z-3+3i|=3`
`rArr sqrt((x-3)^(2)+(y+3)^(2))=3`
For `x =6, y=-3`.
`therefore z =6-3i`
98.

Simplify:`(sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))`

Answer» Correct Answer - `-(3)/(2)i`
`((sqrt(5+12i)+sqrt(5-12i))(sqrt(5+12i)+sqrt(5-12i)))/((sqrt(5+12i)-sqrt(5-12i))(sqrt(5+2i)+sqrt(5-12i)))`
`(5+12i+5-12i+2sqrt(5+12i)sqrt(5-12i))/(5+12i-5+12i)`
`=(10+2xx13)/(24i)`
` = -(3)/(2)i`
99.

If `z=2-3i`show that `z^2-4z+13=0`and hence find the value of `4z^3-3z^2+169.`

Answer» `z = 2-3i`
Now, `z^2-4z+13 = (2-3i)^2-4(2-3i)+13`
`=4+9i^2-12i-8+12i+13`
`=4-9+5 = 0...[As i^2 = -1]`
`:. z^2-4z+13 = 0`
Now, `4z^3-3z^2+169 = 4z^3-16z^2+13z^2+52z-52z+169`
`=4z^3-16z^2+52z+13z^2-52z+169`
`=4z(z^2-4z+13) + 13(z^2-4z+13) `
`=4z(0)+13(0) = 0`
`:. 4z^3-3z^2+169 = 0.`
100.

If `x_n`=cos`pi/(2^n)`+isin`pi/(2^n)`, prove that `x_1x_2x_3 x_oo=-1.`

Answer» Here, `x_n = cos(pi/(2^n))+isin(pi/(2^n))`
`:.L.H.S. = x_1x_2x_3...x_oo`
`= (cos(pi/(2))+isin(pi/(2)))(cos(pi/(2^2))+isin(pi/(2^2)))(cos(pi/(2^3))+isin(pi/(2^3)))...oo`
`=cos(pi/2+pi/2^2+pi/2^3+...oo)+isin(pi/2+pi/2^2+pi/2^3+...oo)`
`= cos((pi/2)/(1-1/2))+isin((pi/2)/(1-1/2))`
`=cospi+isinpi`
`= -1+0 = -1 = R.H.S.`