Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

If `g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x` then f(x) is equal toA. `1+2x^(2)`B. `2+x^(2)`C. `1+x`D. 2+x

Answer» Correct Answer - B
652.

Let `f(x)=(alpha x)/(x+1), x ne -1.` Then, for what value of `alpha " is " f[f(x)]=x` ?A. `sqrt(2)`B. `-sqrt(2)`C. 1D. -1

Answer» Correct Answer - D
Given, `f(x)=(alphax)/(x+1)`
`f[f(x)]=f((alphax)/(x+1))=(alpha((alphax)/(x+1)))/((alphax)/(x+1)+1)`
`=((alpha^(2)x)/(x+1))/((alphax+(x+1))/(x+1))=(alpha^(2)x)/((alpha+1)x+1)=x` [given] ...(i)
`rArr alpha^(2)x=(alpha +1)x^(2)+x`
`rArr x[alpha^(2)-(alpha +1)x-1]=0`
`rArr x(alpha +1)(alpha -1-x)=0`
`rArr alpha -1=0 and alpha +1=0`
`rArr alpha = -1`
But `alpha =1` does nto satisfy the Eq. (i).
653.

Let `f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0)` then f(x) equalsA. `x^(2)-` for all xB. `x^(2)-2"for all" |x| gt 2`C. `x^(2)-2"for all "|x|lt2`D. none of these

Answer» Correct Answer - B
654.

Let `f : R to R : f (x) = x^(2) + 2 "and " g : R to R : g (x) = (x)/(x-1) , x ne 1 .` Find f o g and g o f and hence find (f o g) (2) and ( g o f) (-3)

Answer» Correct Answer - `(f o g) (x) = (x^(2))/((x-1)) + 2 (g o f) (x) =(x^(2)+2)/(x^(2)+1)`
`(f o g ) (2) =6 , (g o f) (-3) =(11)/(10)`
655.

A function f is defined as f(x) = 5 – x for 0 ≤ x ≤ 4. Find the values of x such that(i) f(x) = 3(ii) f(x) = 5

Answer»

(i) f(x) = 3

∴ 5 – x = 3

∴ x = 5 – 3 = 2

(ii) f(x) = 5

∴ 5 – x = 5

∴ x = 0

656.

Let A = {6, 10, 11, 15, 12} and let f : A → N : f(n) is the highest prime factor of n. Find range (f).

Answer»

Given, 

A = {6, 10, 11, 15, 12} 

f : A → N : f(n) is the highest prime factor of n 

(1) When n = 6, the highest prime factor of 6 is 3. 

Hence, f(6) = 3. 

(2) When n = 10, the highest prime factor of 10 is 5. 

Hence, f(10) = 5. 

(3) When n = 11, the highest prime factor of 11 is 11 as 11 itself is a prime number. Hence, f(11) = 11. 

(4) When n = 15, the highest prime factor of 15 is 5. 

Hence, f(15) = 5. 

(5) When n = 12, the highest prime factor of 12 is 3. 

Hence, f(12) = 3. 

Hence range of f is { 3,5,11}

657.

Let `A={6,10,11,15,21}" and Let "f:AtoN:f(n)` is the highest prime factor of n. Find range (f).

Answer» Correct Answer - `{3,5,7,11}`
`f(6)=3,f(x)=5,f(11)=11,f(15)=5,f(21)=7`.
`:."range "(f)={3,5,7,11}`.
658.

Let `A={12 ,13 ,14 ,15 ,16 ,17}a n df: AvecZ`be function given by`f(x)=`highest prime factor of `x`. Find range of `fdot`

Answer» Correct Answer - range `(f)={3,13,7,5,2,17}`
Highest prime factors of 12, 13, 14, 15, 16, 17 are 3, 13, 7, 5, 2, 17 respectively.
659.

If f : R → R be defined by f(x) = x2 + 1, then find f-1{17} and f-1{–3}.

Answer»

Given,

f : R → R and 

f(x) = x2 + 1. 

We need to find,

f-1{17} and f-1{–3}. 

Let f-1{17} = x 

⇒ f(x) = 17

⇒ x2 + 1 = 17 

⇒ x2 – 16 = 0 

⇒ (x – 4)(x + 4) = 0 

∴ x = ±4 

Clearly, 

Both –4 and 4 are elements of the domain R. 

Thus, 

f-1{17} = {–4, 4} 

Now, 

Let f-1{–3} = x 

⇒ f(x) = –3 

⇒ x2 + 1 = –3 

⇒ x2 = –4 

However, 

The domain of f is R and for every real number x, 

The value of x2 is non-negative. 

Hence, 

There exists no real x for which x2 = –4. 

Thus, 

f-1{–3} = ∅

660.

Which of the following relations are functions? Give reasons. In case of a function, find its domain and range. (i) f = {( - 1, 2), (1, 8), (2, 11), (3, 14)} (ii) g = {(1, 1), (1, - 1), (4, 2), (9, 3),(16, 4)} (iii) h = {(a, b), (b, c), (c, b), (d, c)}

Answer»

For a relation to be a function each element of 1st set should have different image in the second set(Range) i) 

(i) f = {( - 1, 2), (1, 8), (2, 11), (3, 14)} 

Here, each of the first set element has different image in second set. 

∴f is a function whose domain = { - 1, 1, 2, 3} and range (f) = {2, 8, 11, 14} 

(ii) g = {(1, 1), (1, - 1), (4, 2), (9, 3),(16, 4)} 

Here, some of the first set element has same image in second set. 

∴ g is not a function. 

(iii) h = {(a, b), (b, c), (c, b), (d, c)} 

Here, each of the first set element has different image in second set. 

∴h is a function whose domain = {a, b, c, d} and range (h) = {b, c} 

(range is the intersection set of the elements of the second set elements.)

661.

Which of the following relations are functions ? Give reasons . In case of a functions find its domain and range . (i) ` f = {(-1,2) , (1,8) (2,11) , (3,14)}` (ii)` g = { (1,1) , (1,-1) , (4,2) , (9,3) , (16,4)}` (iii) `h={(a,b) , (b,c) , (c, d),(d,c)}`

Answer» Correct Answer - (i) f is a function dom (f) ={-1 ,1,2,3} and range (f ) ={2,8, 11, 14}
(ii) g is not a function
(iii) h is a function dom (h) ={a, b , c , d} and range (h) = { b, c }
g is not a function since 1 has two image under g
662.

Which of the following relations are functions? Give reasons. In case of a function, find its domain and range. (i) `f={(1 ,3),(1,5),(2,3),(2,5)}` (ii) `g={(2,1),(5,1),(8,1),(11,1)}` (iii) `h={(2,1),(4,2),(6,3),(8,4),(10,5),(12,6)}`

Answer» (i) `f={(1,3),(1,5),(2,3),(2,5)}`
Here, one element, namely 1 has two images 3 and 5 under f.
`:.` f is not a function.
(ii) `g={(2,1),(5,1),(8,1),(11,1)}`.
Clearly, no two distinct ordered pairs in g have the same first coordinate. So, g is a function.
`:.` dom (g)=[2,5,8,11] and range `g={1}`.
(iii) `h={(2,1),(4,2),(6,3),(8,4),(10,5),(12,6)}`.
Cleardinate, no two distinct ordered pairs in h have the same first coordinate. So, h is a function.
`:.` dom `(h)={2,4,6,8,10,12}` and range `(h)={1,2,3,4,5,6}`.
663.

For `x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)` be three given functions. If a function, J(x) satisfies `(f_(2) @[email protected]_(1))(x)=f_(3)(x), " then " J(x)` is equal toA. `f_(2)(x)`B. `f_(3)(x)`C. `f_(1)(x)`D. `(1)/(x)f_(3)(x)`

Answer» Correct Answer - B
We have,
`f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)`
Also, we have `(f_(2)@ J @f_(1))(x)=f_(3)(x)`
`rArr f_(2)(([email protected]_(1)(x))=f_(3)(x)`
`rArr f_(2)(J(f_(1)(x))=f_(3)(x)`
`rArr 1-J(f_(1)(x))=(1)/(1-x)`
` " "[ because f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)]`
`rArr 1-J((1)/(x))=(1)/(1-x) " [ because f_(1)(x)=(1)/(x)]`
`rArr J((1)/(x))=1-(1)/(1-x)`
`=(1-x-1)/(1-x)= (-x)/(1-x)`
Now, put `(1)/(x)=X,` then
`J(X)=((1)/(X))/(1-(1)/(X)) " "[ because x=(1)/(X)]`
`=(-1)/(X-1)=(1)/(1-X)`
` rArr J(X)=f_(3)(X) or J(x)=f_(3)(x)`
664.

Find the domain and the range of the real function f defined by `f(x)=sqrt((x-1))`.

Answer» Correct Answer - dom `(f)={1,oo)",range "(f)=R`
665.

Find the domain of the function, `f(x)=log|x|`.

Answer» Correct Answer - `R-{0}`
666.

Find the domain and range of each of the following real valuedfunction: `f(x)=(a x+b)/(b x-a)`.

Answer» Correct Answer - `(f)=R-{(a)/(b)},"range "(f)=R-{(a)/(b)}`
667.

Find the domain and range of each of the following real valuedfunction: `f(x)=(a x-b)/(c x-d)`.

Answer» Correct Answer - dom `(f)=R-{(d)/(c)}," range "(f)=R-{(a)/(c)}`
`f(x)=(ax-b)/(cx-d)` si not defined when `cx-d=0impliesx=(d)/(c)`
`:."dom "(f)=R-{(d)/(c)}`.
Let y=f(x). Then,
`y=(ax-b)/(cx-b)impliescxy-dy=ax-bimpliescxy=ax=dy-b`
`impliesx(cy-a)=dy-bimpliesx=(dy-b)/(cy-a)`.
Clearly, x is not defined when `cy-a=0impliesy=(a)/(c)`.
`:."dom "(f)=R-{(a)/(c)}`.
668.

For `x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)` be three given functions. If a function, J(x) satisfies `(f_(2) @[email protected]_(1))(x)=f_(3)(x), " then " J(x)` is equal toA. `f_(2)(x)`B. `f_(3)(x)`C. `f_(1)(x)`D. `(1)/(x)f_(3)(x)`

Answer» Correct Answer - B
We have,
`f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)`
Also, we have `(f_(2)@ J @f_(1))(x)=f_(3)(x)`
`rArr f_(2)(([email protected]_(1)(x))=f_(3)(x)`
`rArr f_(2)(J(f_(1)(x))=f_(3)(x)`
`rArr 1-J(f_(1)(x))=(1)/(1-x)`
` " "[ because f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)]`
`rArr 1-J((1)/(x))=(1)/(1-x) " [ because f_(1)(x)=(1)/(x)]`
`rArr J((1)/(x))=1-(1)/(1-x)`
`=(1-x-1)/(1-x)= (-x)/(1-x)`
Now, put `(1)/(x)=X,` then
`J(X)=((1)/(X))/(1-(1)/(X)) " "[ because x=(1)/(X)]`
`=(-1)/(X-1)=(1)/(1-X)`
` rArr J(X)=f_(3)(X) or J(x)=f_(3)(x)`
669.

Let `f: R to R ` be defined by ` f(x) = {[3x -1 when x gt 3], [x^(2) -2 when -2 le x le 3], [2x+3 when x lt -2]}` Find (i) `f(2)` (ii) `f(4)` (iii) `f (-1)` (iv) `f(-3)`

Answer» Correct Answer - (i) 2 (ii) 11 (iii) -1 (iv) -3
670.

The inverse of the function of `f:R to R` given by `f(x)=log_(a) (x+sqrt(x^(2)+1)(a gt 0, a ne 1)` isA. `(1)/(2)(a^(x)+a^(-x))`B. `(1)/(2)(a^(x)-a^(-x))`C. `(1)/(2)((a^(x)+a(-x))/(a^(x)-a^(-x)))`D. not defined

Answer» Correct Answer - B
671.

If `f(x)=(x-1)/(x+1)` then `f(2x)` is equal toA. `(f(x)+1)/(f(x)+3)`B. `(3f(x)+1)/(f(x)+3)`C. `(f(x)+3)/(f(x)+1)`D. `(f(x)+3)/(3f(x)+1)`

Answer» Correct Answer - B
672.

Find the domain of each of the following real valued functions of real variable:(i) f (x) = 1/x(ii) f (x) = 1/(x - 7)(iii) f (x) = (3x - 2)/(x + 1)(iv) f (x) = (2x + 1)/(x2 - 9)(v) f (x) = (x2 + 2x + 1)/(x2 - 8x + 12)

Answer»

(i) f(x) = 1/x

As we know that, f(x) is defined for all real values of x, except for the case when x = 0.

∴ Domain of f = R – {0}

(ii) f(x) = 1/(x - 7)

As we know that, f (x) is defined for all real values of x, except for the case when x – 7 = 0 or x = 7.

∴ Domain of f = R – {7}

(iii) f(x) = (3x - 2)/(x + 1)

As we know that, f(x) is defined for all real values of x, except for the case when x + 1 = 0 or x = –1.

∴ Domain of f = R – {–1}

(iv) f(x) = (2x + 1)/(x- 9)

As we know that, f (x) is defined for all real values of x, except for the case when x2 – 9 = 0.

x2 – 9 = 0

x2 – 32 = 0

(x + 3)(x – 3) = 0

x + 3 = 0 or x – 3 = 0

x = ± 3

∴ Domain of f = R – {–3, 3}

(v) f(x) = (x+ 2x + 1)/(x- 8x + 12)

As we know that, f(x) is defined for all real values of x, except for the case when x2 – 8x + 12 = 0.

x2 – 8x + 12 = 0

x2 – 2x – 6x + 12 = 0

x(x – 2) – 6(x – 2) = 0

(x – 2)(x – 6) = 0

x – 2 = 0 or x – 6 = 0

x = 2 or 6

∴ Domain of f = R – {2, 6}

673.

Find the domain and range of the function `f(x)=1/(2-sin3x)`.

Answer» `f(x) = 1/(2-sin3x)`
Here, `2-sin3x` can never be zero as `sin3x` will always less than `2`.
`:.` Domain of `f(x)` will be `x in R.`
Now, `f(x)` will be maximum when `2-sin3x` is minimum.
`2-sin3x` will be minimum when `sin3x = 1.`
`:. f(x)_max = 1/(2-1) = 1`
`f(x)` will be minimum when `2-sin3x` is maximum.
`2-sin3x` will be maximum when `sin3x = -1`.
`:. f(x)_min = 1/(2-(-1) = 1/3`
So, range of `f(x)` will be `[1/3,1].`
674.

If `2f(x)-3f(1/x)=x^2(x!=0),`then `f(2)`is equal to(a)`-7/4("b")""5/2`(c) -1 (d) noneof these

Answer» `2f(x) - 3f(1/x) = x^2`
When `x = 2`,
`2f(2)-3f(1/2) = 4 ->(1)`
When `x = 1/2`,
`2f(1/2) - 3f(2) = 1/4->(2)`
Nw, multiplying (1) with `2` and (2) with `3` and then adding (1) and (2),
`4f(2)-6f(1/2)+6f(1/2)-9f(2) = 8+3/4`
`=>-5f(2) = 35/4`
`=>f(2) = -7/4`
So, option `(a)` is the correct ooption.
675.

If `f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2))`, then `f(g(x))`is equal to`f(3x)`(b) `{f(x)}^3`(c) `3f(x)`(d) `-f(x)`A. `-f(x)`B. `3f(x)`C. `[f(x)]^(3)`D. none of these

Answer» Correct Answer - B
676.

Let `f(x) = (x^(2))/((1+x^(2))` .Then range (f ) =?A. `[1,oo)`B. `[0,1)`C. `[-1,1]`D. `(0,1]`

Answer» Correct Answer - B
`y =(x^(2))/((1+x^(2)) rArr x= sqrt((y)/(1-y))`
Clearly x is defined only when `(u)/((1-y)) ge 0 " and " (1-y) ne 0 i.e., " when " 0 le y lt 1`
so range (f) = [0,1)
677.

The domain of definition of f(x) =`(log_2(x+3))/(x^2+3x+2)`A. `R//{-1,-2}`B. `(-2,infty)`C. `R//{-1,-2,-3}`D. `(-3,infty)//{-1,-2}`

Answer» Correct Answer - D
Given, `f(x)=(log_(2)(x+3))/((x^(2)+3x+2))=(log_(2)(x+3))/((x+1)(x+2))`
For numerator, `x+3 gt 0`
`rArr x gt -3 " ...(i) " `
and for denominator, `(x+1)(x+2) ne 0`
` rArr x ne -1, -2 " ...(ii)" `
From Eqs. (i) and (ii) ,
Domain is `(-3,oo)//{-1,-2}`
678.

Let `f(x)=(1+b^(2))x^(2)+2bx+1` and let m(b) be the minimum value of f (x). As b varies, the range of m (b) isA. `[0,1]`B. `[0,(1)/(2)]`C. `[(1)/(2),1]`D. `(0,1]`

Answer» Correct Answer - D
Given, `f(x)=(1+b^(2))x^(2)+2bx+1`
`=(1+b^(2))(x+(b)/(1+b^(2)))^(2)+1-(b^(2))/(1+b^(2))`
m(b) = minimum value of `f(x)=(1)/(1+b^(2))` is positive and m(b) varies from 1 to 0, so range = (0, 1]
679.

Show that `f: N to N ` defined by ` f(n) = {[(n)/(2) if n is even ], [(n+1)/(2) if n is odd ]}` is a many -one onto function

Answer» We have
`f(1) =((1 +1) )/(2) = (2)/(2) =1 " and " f(2) =(2)/(2) =1`
Thus `f(1) =f(2) " while " 1 ne 2`
`:.` f is many -one
In order to show that f is onto, consider an arbitrary element `n in N`
If n is odd then `(2n-1)` is odd and
`f( 2n-1) =((2n-1+1))/(2) =(2n)/(2) =n`
If n is even then 2n is even and
` f(2n) =(2n)/(2) =n`
Thus for each `n in N` (whether even or odd ) there exists its pre-image in N.
`:. ` f is onto.
Hence f is many -one onto.
680.

Show that the signum function `f: R to R` defined by `f(x) ={ [-1 if x lt 0], [0 if x=0], [1 if x gt 0]}` is neither one-one nor onto.

Answer» Clearly `f(2) =1 "and " f(3) =1`
Thus `f(2) =f(3) " while " 2 ne 3`
`:. ` f is not one-one
Range `(f) ={1 ,0, -1} sub R.`
So f is onto.
Hence f is neither one-one nor onto.
681.

Show that the function `f : R ->R`, defined as `f(x)=x^2`, is neither one-one nor onto.

Answer» We have `f(-1) =(-1)^(2)=1 " and " f(1) =1^(2) =1`
Thus two diffierent elements in R have the same image
`:.` f is not one-one
If we consider -1 in the codomain R then it is clear that there is no elements in R whose image is -1
`:. ` f is not onto.
Hence f is neither one-one nor onto.
682.

Let `A=R-{3}`and `B=R-[1]dot`Consider the function `f: AvecB`defined by `f(x)=((x-2)/(x-3))dot`Show that `f`is one-one and onto and hence find`f^(-1)`

Answer» f is one-one since
`f(x_(1)) =f(x_(2)) rArr (x_(1) -2)/(x_(1) -3) =(x_(2)-2)/(x_(2)-3)`
`rArr (x_(1)-2) (x_(2) -3) =(x_(1) -3) (x_(2)-2)`
`rArr x_(1)x_(2) -3x_(1) -2x_(2)+6 =x_(1)x_(2)-2x_(1)-3x_(2) +6`
`rArr x_(1)=x_(2)`
Let `y inB` such that `y= (x-2)/(x-3)`
Then `(x-3) y= (x-2) rArr x=((3y-2))/((y-1))`
Clearly x is defined when `y ne `
Also x=3 will give us 1 = 0 which is false
`:. x ne 3`
And `f(x) = (((3y-2)/(y-1)-2))/(((3y-2)/(y-1)-3))=y`
Thus for each `y in B` there exists `x in A` such that `f(x) =y`
`:. ` f is into.
Hence if is one-one onto.
683.

Show that the modulusfunction `f: R->R`, given by `f(x)=|x|`is neither one-one noronto.

Answer» We have `f(-1) =|-1| =1 " and " f(1) =|1| =1`
Thus two different elements in R have the same image
`:.` f is not one-one
If we consider -1 in the codomain R then it is clear that there is no real number x whose modulus is -1
Thus -1 `in R ` has no pre- image in R
`:. ` f is not onto.
Hence f is neither one-one nor onto.
684.

The range of `f(x) =x+ (1)/(x) ` isA. `[-2,2]`B. `[2,oo)`C. `(-oo,-2]`D. none of these

Answer» Correct Answer - D
`y = (x^(2)+1)/(x) rArr x^(2) -xy +1=0rArr x= (y+- sqrt(y^(2) -4))/(2)`
x is defined when `(y^(2) -4) ge 0 rArr y^(2) ge 4 rArr y ge 2 " or " le -2`
`:. " range " (f) =(-oo, -2] uu [2,oo)`
685.

If `f: AvecBa n dg: BvecC`are one-onefunctions, show that `gof`is one-onefunction.A. f is ontoB. g is ontoC. f and g both are ontoD. none of these

Answer» Correct Answer - B
686.

Find f + g, f – g, cf (c ∈ R, c ≠ 0), fg, 1/f and f/g in each of the following:(i) f (x) = x3 + 1 and g (x) = x + 1(ii) f (x) = √(x - 1) and g (x) = √(x + 1)

Answer»

(i) Here, we have f(x): R → R and g(x): R → R

(a) f + g

As we know, (f + g)(x) = f(x) + g(x)

(f + g)(x) = x3 + 1 + x + 1

= x3 + x + 2

Therefore, (f + g) (x): R → R

∴ f + g: R → R is given by (f + g) (x) = x3 + x + 2

(b) f – g

As we know, (f – g) (x) = f(x) – g(x)

(f – g) (x) = x3 + 1 – (x + 1)

= x3 + 1 – x – 1

= x3 – x

Therefore, (f – g) (x): R → R

∴ f – g: R → R is given by (f – g) (x) = x3 – x

(c) cf (c ∈ R, c ≠ 0)

As we know, (cf) (x) = c × f(x)

(cf)(x) = c(x3 + 1)

= cx3 + c

Therefore, (cf) (x) : R → R

∴ cf: R → R is given by (cf) (x) = cx3 + c

(d) fg

As we know, (fg) (x) = f(x) g(x)

(fg) (x) = (x3 + 1) (x + 1)

= (x + 1) (x2 – x + 1) (x + 1)

= (x + 1)(x2 – x + 1)

Therefore, (fg) (x): R → R

∴ fg: R → R is given by (fg) (x) = (x + 1)2(x2 – x + 1)

(e) 1/f

As we know, (1/f) (x) = 1/f (x) 

1/f (x) = 1 / (x3 + 1)
Observe that 1/f(x) is undefined when f(x) = 0 or when x = – 1.

Therefore, 1/f: R – {–1} → R is given by 1/f (x) = 1 / (x3 + 1) 

(f) f/g

As we know, (f/g) (x) = f(x)/g(x) 

(f/g) (x) = (x3 + 1) / (x + 1)
Observe that (x3 + 1) / (x + 1) is undefined when g(x) = 0 or when x = –1.

By using x3 + 1 = (x + 1) (x2 – x + 1), we have

(f/g) (x) = [(x + 1) (x–  x + 1)/(x + 1)]

= x2 – x + 1

∴ f/g: R – {–1} → R is given by (f/g) (x) = x2 – x + 1

(ii) Now, we have f(x): [1, ∞) → R+ and g(x): [–1, ∞) → R+ as real square root is defined only for non-negative numbers.

(a) f + g

As we know, (f + g) (x) = f(x) + g(x)

(f + g) (x) = √(x - 1) + √(x + 1)

Domain of (f + g) = Domain of f ∩ Domain of g

Domain of (f + g) = [1, ∞) ∩ [–1, ∞)

Domain of (f + g) = [1, ∞)

∴ f + g: [1, ∞) → R is given by (f + g) (x) = √(x - 1) + √(x + 1)

(b) f – g

As we know, (f – g) (x) = f(x) – g(x)

(f - g) (x) = √(x - 1) – √(x + 1)

Domain of (f – g) = Domain of f ∩ Domain of g

Domain of (f – g) = [1, ∞) ∩ [–1, ∞)

Domain of (f – g) = [1, ∞)

∴ f – g: [1, ∞) → R is given by (f - g) (x) = √(x - 1) – √(x + 1)

(c) cf (c ∈ R, c ≠ 0)

As we know, (cf) (x) = c × f(x)

(cf) (x) = c√(x - 1)

Domain of (cf) = Domain of f

Domain of (cf) = [1, ∞)

∴ cf: [1, ∞) → R is given by (cf) (x) = c√(x - 1)

(d) fg

As we know, (fg) (x) = f(x) g(x)

(fg) (x) = √(x - 1) √(x + 1)

= √(x2 - 1)

Domain of (fg) = Domain of f ∩ Domain of g

Domain of (fg) = [1, ∞) ∩ [–1, ∞)

Domain of (fg) = [1, ∞)

∴ fg: [1, ∞) → R is given by (fg) (x) = √(x2 - 1)

(e) 1/f

As we know, (1/f) (x) = 1/f(x) 

(1/f) (x) = 1/√(x - 1)
Domain of (1/f) = Domain of f

Domain of (1/f) = [1, ∞)

Observe that 1/√(x - 1) is also undefined when x – 1 = 0 or x = 1.

∴ 1/f: (1, ∞) → R is given by (1/f) (x) = 1/√(x - 1)

(f) f/g

As we know, (f/g) (x) = f(x)/g(x) 

(f/g) (x) = √(x - 1)/√(x + 1)

(f/g) (x) = √[(x - 1)/(x + 1)]

Domain of (f/g) = Domain of f ∩ Domain of g

Domain of (f/g) = [1, ∞) ∩ [–1, ∞)

Domain of (f/g) = [1, ∞)

Thus, f/g: [1, ∞) → R is given by (f/g) (x) = √[(x - 1)/(x + 1)]

687.

If `f: AvecBa n dg: BvecC`are one-onefunctions, show that `gof`is one-onefunction.A. one-oneB. ontoC. one-one and ontoD. none of these

Answer» Correct Answer - A
688.

Which of the following are functions? A. {(x, y) : y2 = x, x, y ∈ R} B. {(x, y) : y = |x|, x, y, ∈ R} C. {(x, y) : x2 + y2 = 1, x, y ∈ R} D. {(x, y) : x2 – y2 = 1, x, y ∈ R}

Answer»

Option : (B) 

A function is said to exist when we get a unique value of y for any value of x.. 

If we get 2 values of y for any value of x, then it is not a function.. 

Therefore,

Option B is correct . 

NOTE : To check if a given curve is a function or not, draw the curve and then draw a line parallel to y-axis.. If it intersects the curve at only one point, then it is a function, else not..

689.

If A = {1, 2, 3}, B = {x, y}, then the number of functions that can be defined from A into B is A. 12 B. 8 C. 6 D. 3

Answer»

Option : (B)

Since A has 3 elements and B has 2..

then number of functions from A to B

= 2\(\times\)2\(\times\)2

= 23

= 8

690.

If `P(S)` denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set `S= {1,2,3}` to the set `P(S)` isA. 8B. 320C. 336D. 24

Answer» Correct Answer - C
Number of elements in P(S) is `2^(3)=8`
`therefore` Number of one-to-one functions from S to P (S) is
`.^(8)C_(3)xx3! =336`
691.

In the above example `(gof)^(-1)((1)/(4))` is equa toA. 16B. `(1)/(4)`C. 4D. `(1)/(16)`

Answer» Correct Answer - C
`(gof)^(-1)((1)/(4))=(f^(-1)og^(-1)) ((1)/(4))=f^(-1)=4`
692.

`f: { 1, 2, 3, 4} -> {1, 4, 9, 16} and g: {1, 4. 9, 16) ->{1,1/2,1/3,1/4}` are two bijective functions such that `x_1 gt x_2 => f(x_1) lt f(x_2),g(x_1) gt g(x_2)` then `f^-1(g^-1(1/2))` is equal toA. 1B. 4C. 16D. 2

Answer» Correct Answer - D
Clearly, f is decreasing and g is increasing
`therefore f(1)=16, f(2)=9, f(3)=4 and f(4)=1`
`and, g(1)=(1)/(4), g(4)=(1)/(3),g(9)=(1)/(2) and g(16)=1`
`therefore f^(-1)(g^(-1)((1)/(2)))=f^(-1)(9)=2`
693.

Find the domain and the range of each of the following real function: f(x) = \(\sqrt{\frac{x-5}{3-x}}\)

Answer»

Given: f(x) = \(\sqrt{\frac{x-5}{3-x}}\)

Need to find: Where the functions are defined. 

The condition for the function to be defined,

3 - x > 0

⇒ x < 3

So, the domain of the function is the set of all the real numbers lesser than 3. 

The domain of the function, Df(x) = (-∞, 3). 

The condition for the range of the function to be defined,

x - 5 ≥ 0 & 3 - x > 0

⇒ x ≥ 5 & x < 3

Both the conditions can’t be satisfied simultaneously. That means there is no range for the function f(x).

694.

Suppose `f`is a real function satisfying `f(x+f(x))=4f(x)a n df(1)=4.`Then the value of `f(21)`is`16``21``64``105`A. 16B. 64C. 4D. 44

Answer» Correct Answer - B
`f(x+f(x))=4f(x) and f(1)=4`
Put x = 1, then
`f(1+f(1))=4f(1)`
`rArr" "f(5)=16`
Put x = 5, then
`f(5+f(5))=4f(5)`
`rArr" "f(21)=64`
695.

Let `f(x)`be real valued and differentiable function on `R`such that `f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y))``f(0)`is equalsa. b. c. d. none of theseA. 1B. 0C. `-1`D. none of these

Answer» Correct Answer - B
Putting x = y= 0, we get
`f(0)=(f(0)+f(0))/(1-[f(0)]^(2))`
`rArr" "f(0)[f^(2)(0)+1]=0rArr f(0)=0( "since "f^(2)(0) ne-1).`
Now putting `y=-x`, we get
`f(0)=(f(x)+f(-x))/(1-f(x).f(-x))`
`rArr" "f(x)+f(-x)=0`
`rArr" "f(-x)=-f(x)rArr f(x)` is an odd function.
696.

Find the range of the function, `f(x)=(x)/(|x|)`

Answer» Correct Answer - `{1,-1}`
697.

Let `G(x)=(1/(a^x-1)+1/2)F(x),`where a is a positive real number not equal to 1 and `f(x)`is an odd function. Which of the following statements is true?`G(x)`is an odd function`G(x)i s`an even function`G(x)`isneither even nor odd function.Whether `G(x)`is an odd or even functiondepends on the value of aA. G(x) is an odd functionB. G(x) is an even functionC. G(x) is neither even function nor odd functionD. Whether G(x) is an odd function or an even function, it depends on the value of a

Answer» Correct Answer - B
`G(x)=((1)/(a^(x)-1)+(1)/(2))F(x)`
`thereforeG(-x)=((1)/(a^(-x)-1)+(1)/(2))F(-x)`
`=-((a^(x))/(1-a^(x))+(1)/(2))F(x)`
`=((a^(x))/(a^(x)-1)-(1)/(2))F(x)`
`=((a^(x)-1+1)/(a^(x)-1)-(1)/(2))F(x)`
`=(1+(1)/(a^(x)-1)-(1)/(2))F(x)`
`=((1)/(a^(x)-1)+(1)/(2))F(x)=G(x)`
`thereforeG(x)` is an even function.
698.

Which of the following functions is/are bounded?A. `f(x)=(2x)/(1+x^(2)),[-2,2]`B. `f(x)=(x^(2))/(1-x),x in [0,2]-[1]`C. `f(x)=(x^(3)-8x+6)/(4x+1),[0,5]`D. none of these

Answer» Correct Answer - A::C
`f(x)=(2x)/(1+x^(2)),[-2,2]" has range "[-1,1]," hence bounded."`
`f(x)=(x^(2))/(1-x),x in [0,2]-{1}" is unbounded as"f(x)rarroo," when "xrarr1^(-)`
`f(x)=(x^(3)-8x+6)/(4x+1),[0,5]" is bounded because domain does not contain"-1//4.`
699.

Which of the following functions are defined for all x ?A. `sin[x]+cos[x] ([x]"denotes the greatest integer " lex)`B. `sec^(-1)(1+sin^(2)x)`C. `tan(logx)`D. `sqrt((9)/(8)+cosx+cos2x)`

Answer» Correct Answer - A::B::D
(a) Clearly, `sin[x]+cos[x]` is defined for all x.
(b) sin x always defined and `1+sin^(2) x ge 1`
`rArr sec^(-1)(1+sin^(2)x)` is defined for all x, as `1+sin^(2)xge1`
(c) `tan(logx)` is not defined if `logx=(2k+1)(pi)/(2)`
(d) `(9)/(8)+cos x +cos 2x`
`=2cos^(2)x+cosx+(1)/(8)gt0, AAx in R" as "D lt0`
Hence, domain is R.
700.

Let `f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tanx)xsgnx`be an even function for all `x in Rdot`Then the sum of all possible values of `a`is (where `[dot]a n d{dot}`denote greatest integer function and fractional part function,respectively).`(17)/6`(b) `(53)/6`(c) `(31)/3`(d) `(35)/3`A. `(17)/(6)`B. `(53)/(6)`C. `(31)/(3)`D. `(35)/(3)`

Answer» Correct Answer - D
`f(x)=alphax^(3)-betax-(tanx)"sgn "x`
`"since "f(-x)=f(x)`
`rArr" "-alphax^(3)+betax-tanx"sgn "x=alphax^(2)-betax-(tanx)"sgn x"`
`rArr" "2(alphax^(2)-beta)x=0 AA x in R`
`rArr" "alpha=0 and beta=0`
`therefore" "[a]^(2)-5[a]+4=0 and 6{a}^(2)-5{a}+1=0`
`rArr" "([a]-1)([a]-4)=0 and (3{x}-1)(2{x}-1)=0`
`rArr" "[a]=1,4 and {a}=1//3,1//2`
`therefore" "a=1+(1)/(3),1+(1)/(4),4+(1)/(3),4+(1)/(2)`
Sum of values of `a=(35)/(3)`