Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

If a2 + b2 = 7ab, show thatlog(\(\frac{a+b}3\)) = 1/2 log a + 1/2 log b

Answer»

a2 + b2 = 7ab

a2 + 2ab + b2 = 7ab + 2ab

(a + b)2 = 9ab

\(\frac{(a+b)^2}9\) = ab

\((\frac{a+b}3)^2 = ab\) 

Taking log on both sides, we get

log\((\frac{a+b}3)^2=log (ab)\) 

2 log\((\frac{a+b}3)\)  = log a + log b

Dividing throughout by 2, we get

log\((\frac{a+b}3)=\frac12log\,a+\frac12 log\,b\)

602.

Find gof and fog when f: R → R and g: R → R is defined by f(x) = x and g(x) = |x|

Answer»

Since, f:R → R and g:R → R

fog:R → R and gof:R → R

f (x) = x and g (x) = |x|

Now, gof(x)=g(f(x) =g(x)

⇒ gof(x) =|x|

and, fog(x) = f(g(x)) = f (|x|)
⇒ fog(x)=|x|

Hence, gof(x) = fog(x) = |x|

603.

Find gof and fog when f: R → R and g: R → R is defined by f(x) = x2 + 8 and g(x) = 3x3 + 1

Answer»

Since, f:R → R and g:R → R

fog:R → R and gof:R → R

f(x)=x2 + 8 and g(x)=3x3 + 1

So, gof(x)= g(f(x))

gof(x)= g(x2 + 8)

gof(x)= 3(x2 + 8)3 + 1

⇒ gof(x)= 3(x6 + 512 + 24x4 + 192x2) + 1

⇒ gof(x)= 3x6 + 72x4 + 576x2 + 1537

Similarly, fog(x)=f(g(x))

⇒ fog(x)= f(3x3 + 1)

⇒ fog(x)=(3x3 + 1)2 + 8

⇒ fog(x)=(9x6 + 1 + 6x3) + 8

⇒ fog(x)=9x6 + 6x3 + 9

So, gof(x) = 3x6 + 72x4 + 576x2 + 1537 and fog(x) = 9x6 + 6x3 + 9

604.

Find gof and fog when f: R → R and g: R → R is defined by f(x) = x2 + 2x – 3 and g(x) = 3x – 4

Answer»

Since, f:R → R and g:R → R

fog:R → R and gof:R → R

f(x) = x2 + 2x – 3 and g(x) = 3x – 4

Now, gof(x)=g(f(x))= g(x2 + 2x – 3)

gof(x) = 3(x2 + 2x–3) – 4

⇒ gof(x)= 3x2 + 6x – 9 – 4

⇒ gof(x) = 3x2 + 6x – 13

and, fog= f(g(x)) = f(3x – 4)

fog(x) = (3x – 4)2 + 2(3x – 4) – 3

= 9x2 + 16 – 24x + 6x – 8 – 3

∴ fog(x) = 9x2 – 18x + 5

Thus, gof(x) = 3x2 + 6x – 13 and fog(x) = 9x2 – 18x + 5

605.

Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3), (4, 9), (5, 9)}. Show that gof and fog are both defined, Also, find fog and gof.

Answer»

Let f = {(3,1), (9,3), (12,4)} and

g = {(1,3), (3,3), (4,9), (5,9)}

Now,

range of f = (1, 3, 4}

domain of f = {3, 9, 12}

range of g = {3,9}

domain of g = (1, 3, 4, 5}

since, range of f ⊂ domain of g

∴ gof is well defined.

Again, the range of g ⊆ domain of f

∴ fog in well defined.

Finally, gof = {(3,3), (9 ,3), (12,9)}

fog = {(1,1) , (3,1), (4,3), (5,3)}

606.

Let f = {(1, – 1), (4, – 2), (9, – 3), (16, 4)} and g = {(– 1, – 2), (– 2, – 4), (– 3, – 6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.

Answer»

We have,

f = {(1, – 1), (4, – 2) , (9, – 3), (16,4)} and

g = {(– 1, – 2), (– 2, – 4), (– 3, – 6), (4,8)}

Now,

Domain of f = {1,4,9,16}

Range of f = {– 1, – 2, – 3, 4}

Domain of g = (– 1, – 2, – 3,4}

Range of g = (– 2, – 4, – 6, 8}

Clearly range of f = domain of g

∴ gof is defined.

but, range of g ≠ domain of f
So, fog is not defined.

Now,

gof(1) = g(– 1)= – 2

gof(4) = g(– 2) = – 4

gof(9) = g (– 3) = – 6

gof(16) = g(4)= 8

So, gof = {(1, – 2), (4, – 4), (9 , – 6), (16,8)}

607.

Mark (√) against the correct answer in the following:If \(f(x)=\frac{1}{(1-x)}\) then (f o f o f) (x) = ?\(A.\frac{1}{1-3x}\) \(B.\frac{x}{1+3x}\)C. xD. None of these

Answer»

Correct Answer is (C) x

\(f(x)=\frac{1}{1-x}\)

\(\Rightarrow (fofof)(x)=f(f(f(x)))\)

\(\Rightarrow f(f(x))=\frac{1}{1-f(x)}\)\(=\frac{1}{1-\frac{1}{1-x}}\)\(=\frac{1-x}{1-x-1}\)\(=\frac{x-1}{x}\)\(=1-\frac{1}{x}\)

\(\Rightarrow f(f(f(x)))=\frac{1}{1-f(f(x))}\)\(=\frac{1}{1-(1-\frac{1}{x})}\)\(=\frac{1}{\frac{1}{x}}\)= x

608.

Find the domain and range of the following function.f(x) = \(\sqrt[3]{x+1}\) 3√(x + 1)

Answer»

f(x) = \(\sqrt[3]{x+1}\) 

f is defined for all real x and the values of f(x) ∈ R

∴ Domain of f = R, Range of f = R

609.

For any base show that log(1 + 2 + 3) = log 1 + log 2 + log 3

Answer»

L.H.S. = log(1 + 2 + 3) = log 6

R.H.S. = log 1 + log 2 + log 3

= 0 + log (2 × 3)

= log 6

∴ L.H.S. = R.H.S.

610.

Show that, log |\(\sqrt{x^2+1}+x\)| + log|\(\sqrt{x^2+1}-x\)| = 0

Answer»

L.H.S. = log \(|\sqrt{x^2+1}+x|+log|\sqrt{x^2+1}-x|\) 

= log|(\(\sqrt{x^2+1}+x\))(\(\sqrt{x^2+1}-x\))|

 = log|x2 + 1 - x2|

 = log 1

 = 0

= R.H.S.

611.

Check if the following function have an inverse function. If yes, find the inverse function.f(x) = \(\sqrt{4x+5}\) √(4x + 5)

Answer»

f(x) = \(\sqrt{4x+5},x\geq\frac{-5}4\)

Let f(x1) = f(x2)

\(\therefore\) \(\sqrt{4x_1+5}=\sqrt{4x_2+5}\)

\(\therefore\) x1 = x2

∴ f is a one-one function.

f(x) = \(\sqrt{4x+5}=y, \) say(y) \(\geq0\)

Squaring on both sides, we get

y2 = 4x + 5

∴ x = \(\frac{y^2-5}4\) 

∴ For every y we can get x.

∴ f is an onto function.

∴ x = \(\frac{y^2-5}4=f^{-1}(y)\) 

Replacing y by x, we get

f-1(x) = \(\frac{x^2-5}4\) 

612.

If `f(x)=cos[pi^2]x ,`where `[x]`stands for the greatest integer function, then`f(pi/2)=-1`(b) `f(pi)=1``f(-pi)=0`(d) `f(pi/4)=1`A. `f(pi//2)= -1`B. `f(pi) =1`C. `f(-pi)=0`D. `f(pi//4)=1`

Answer» Correct Answer - A::C
Since, `f(x) =cos[pi^(2)]x+cos [-pi^(2)]x`
`rArr f(x)=cos(9)x+cos(-10)x`
` " "["using " [pi^(2)]=9 and [-pi^(2)]= -10]`
` therefore f((pi)/(2))="cos" (9pi)/(2) + cos 5pi = -1`
`f(pi)=cos 9pi +cos 10pi= -1+1=0`
`f(-pi)=cos 9pi+cos 10pi= -1+1=0`
`f((pi)/(4))="cos"(9pi)/(4)+"cos"(10pi)/(4)=(1)/(sqrt(2))+0=(1)/(sqrt(2))`
Hence, (a) and (c) are correct options.
613.

Let `f(theta)=sin theta(sin theta +sin 3 theta). " Then " f(theta)`A. ` ge 0," only when " theta ge 0`B. `le 0," for all real " theta`C. `ge 0," for all real " theta`D. `le 0," only when " theta le 0`

Answer» Correct Answer - C
It is given,
`f(theta)=sin theta(sin theta + sin 3 theta )`
`=(sin theta +3 sin theta -4 sin^(3) theta) sin theta`
`= (4 sin theta -4 sin^(3) theta) sin theta=sin^(2) theta (4-4 sin^(2) theta )`
` =4sin^(2) theta cos^(2) theta =(2 sin theta cos theta )^(2)`
`=(sin 2 theta)^(2) ge 0`
which is true for all `theta`.
614.

The domain of definition of the function `y=(1)/(log_(10)(1-x))+sqrt(x+2)` isA. (-3, -2) excluding -2, 5B. [0, 1] excluding 0.5C. (-2, 1) excluding 0D. None of these

Answer» Correct Answer - C
For domain of y,
`1-x gt 0, 1-x ne 1 and x+2 gt 0`
`rArr x lt 1, x ne 0 and x gt -2`
`rArr -2 lt x lt 1` excluding 0
`rArr x in (-2,1) -{0}`
615.

Check if the following function have an inverse function. If yes, find the inverse function.f(x) = \(\frac{6x-7}3\)

Answer»

f(x) = \(\frac{6x-7}3\)

Let f(x1 ) = f(x2)

\(\therefore\) \(\frac{6x_1-7}3=\frac{6x_2-7}3\)

\(\therefore\) x1 = x2

∴ f is a one-one function.

f(x) = \(\frac{6x-7}3\) = y (say)

\(\therefore\) For every y, we can get x

\(\therefore\) f is an onto function.

\(\therefore\) x = \(\frac{3y+7}6\) = f-1(y)

Replacing y by x, we get

f-1(x) = \(\frac{3x+7}6\)

616.

Let `f(x)=x^(2), x in R. " for any " A subseteq R,` define `g(A)={x in R: f(x) in A}`. If ` S=[0,4],` then which one of the following statements is not ture?(A) `f(g(S))=S`(B) `g(f(S)) ne S`(C) `g(f(S)) =g(S)`(D) `f(g(S))ne f(S)`A. `f(g(S))=S`B. `g(f(S)) ne S`C. `g(f(S)) =g(S)`D. `f(g(S))ne f(S)`

Answer» Correct Answer - C
Given, Function `f(x)=x^(2), x in R`
` and g(A)={x in R: f(x) in A}: A subseteq R`
Now, for `S=[0,4]`
`g(S)={x in R: f(x) in S=[0,4]}`
`={x in R: x^(2) in [0,4]}`
`={x in R: x in [-2,2]}`
`rArr g(S)=[-2,2]`
So, `f(g(S))=[0,4]=S`
Now, `f(S)={x^(2): x in S =[0,14]} =[0,16]`
`and g(f(S))={x in R: f(x) in f(S)=[0,16]}`
`={x in R: f(x) in [0,16]}`
`={x in R: x^(2) in [0,16]}`
`={ x in R: x in [-4,4]}=[-4,4]`
From above, it is clear that `g(f(S))=g(S).`
617.

Find the domain and range of the range of each of the following real functions: `f(x)=(1)/(sqrt(x^(2)-1))`

Answer» Correct Answer - dom `(f)=(-oo,-1)uu(1,oo)," range "(f)=R-{0}`
`f(x)=(1)/(sqrt(x^(2)-1))` is defined only when `x^(2)-1gt0`.
Now, `x^(2)-xgt0implies(x+1)(x-1)gt0implies(xlt-1)or(xgt1)`
`impliesx""in(-oo,-1)orx""in(1,oo)`.
`:."dom "(f)=(-oo,-1)uu(1,oo)`.
Let y=f(x). Then,
`y=(1)/(sqrt(x^(2)-1))impliesy^(2)=(1)/((x^(2)-1))impliesx^(2)-1=(1)/(y^(2))impliesx=sqrt((1)/(y^(2))+1)=sqrt((1+y^(2))/(y^(2)))`
Clearly, x is not defined when y=0.
`:."range "(f)=R-{0}`.
618.

Write the domain and the range of the function, `f(x)=-|x|`.

Answer» Correct Answer - dom `(f)=R",range "(f)=(-oo,0]`
619.

`f : R to R : f (x) =x^(2) ` isA. one-one and ontoB. one-one and intoC. many -one and ontoD. many -one and into

Answer» Correct Answer - D
620.

Show that the function `f: R to R: f(x) =x^(3)` is one -one and onto.A. one-one and ontoB. one-one and intoC. many - one and ontoD. many -one and into

Answer» Correct Answer - A
621.

`f: [(-pi)/(2),(pi)/(2)] to [-1,1] : f(x) = sin x` isA. one-one and intoB. one-one and ontoC. many-one and intoD. many-one and onto

Answer» Correct Answer - B
622.

Let `A`and `B`be two sets. Show that `f: AxxB->BxxA`defined by `f(a , b)=(b , a)`isA. one-one and ontoB. one-one and intoC. many-one and ontoD. many -one and onto

Answer» Correct Answer - A
623.

Distinguish between get() and put() functions.

Answer»

1. get() function: 

get() is an input function. It is used to read a single character and it does not ignore the white spaces and newline character.

Syntax is cin.get(variable); 

Eg. char ch; 

cin.get(ch);

2. put() function:

put() is an output function. It is used to print a character. 

Syntax is cout.put(variable); 

Eg. char ch; 

cin.get(ch); 

cout.put(ch);

The main difference between gets and puts in C Language is that gets is a function that reads a string from standard input while puts is a function that prints a string to the standard output.
624.

What will happen when you run the following program: import sys try: t = sys.arg[1] a = sys.arg[2] except: print ‘You must provide TWO command-line arguments!!!’ sys.exit(1) s = 0.5*a*t**2 print s

Answer»

The program will always respond with, “You must provide TWO command-line 

arguments!!!”, regardless of what you write on the command line

625.

Explain fabs(x) in python?

Answer»

It returns the absolute value of x.

626.

Name the function used for string input.

Answer»

The function getline() is used to read a string.

627.

Give one example of string initialization.

Answer»

char name[50]=” Bharath”;

628.

How is a string declared?

Answer»

The declaration of string is char array name[size];

629.

What is null in string?

Answer»

The null in a string is the control character ‘\0’ that indicates the end of the string.

630.

Find x, if 2 log2 x = 4 (A) 4, -4(B) 4(C) -4(D) not defined

Answer»

(B) 4

2 log2 x = 4, x > 0

∴ log2 (x2) = 4

∴ x2 = 16

∴ x = ±4

∴ x = 4

631.

The equation logx2 16 + log2x64 = 3 has,(A) one irrational solution(B) no prime solution(C) two real solutions(D) one integral solution

Answer»

(A), (B), (C), (D)

log x 16 + log2x64 = 3

\(\therefore\frac{log16}{logx^2}+\frac{log64}{log2x}=3\)

∴ 4 log 2 [log x + log 2] + (6 log 2) (2 log x)

= 3 (2 log x) (log 2 + log x)

Let log 2 = a, log x = t. Then

∴ 4at + 4a2 + 12at = 6at + 6t2

∴ 6t2– 10at – 4a2 = 0

∴ 3t2 – 5at – 2a2 = 0

∴ (3t + a) (t – 2a) = 0

∴ t = \(-\frac13\)a, 2a

∴ log x = log(2)-1/3, log(22)

∴ x = 2-1/3, 4

∴ x = \(\frac{1}{\sqrt[3]2},4\)

632.

If f : R → R be a function defined as f (x) = x4, then(a) f is one-one onto (b) f is many-one onto (c) f is one-one but not onto (d) f is neither one-one nor onto

Answer»

Answer : (d) = f is neither one -one nor onto

For all x, y ∈ R, 

f (x) = f (y) 

⇒ x4 = y4 ⇒ x4 – y4 = 0 

⇒ (x2 – y2) (x2 + y2) = 0 ⇒ (x – y) (x + y) (x2 + y2) = 0

∴   (x – y) = 0 or (x + y) = 0 or (x2 + y2) = 0 

⇒ x = y or x = – y or x = ± y 

∴   x = – y 

⇒ f is a many-one function 

Also let z = f (x) = x4 ⇒ x = (z)1/4 

Now z = – 1 ∈ R has no pre-image in R as (–1)1/4 ∉ R. 

∴  f : R → R is not an onto function.

633.

if  \(\ f(x) =\begin {cases}x\,, &\quad \text{if } x \text{ is rational}\\0\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) and  \(\ g(x) =\begin {cases}0\,, &\quad \text{if } x \text{ is rational}\\x\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) then f - g  is (a) neither one-one nor onto (b) one-one and onto (c) one-one and into (d) many-one and onto

Answer»

Answer : (b) = one - one and onto 

. (f – g) (x) = \(\ f(x) - g(x) =\begin {cases}x\,, &\quad \text{if } x \text{ is rational}\\-x\,, &\quad \text{if } x \text{ is irrational}\end{cases}\) 

Distinct elements of R have distinct images in (f – g). 

Hence (f – g) is one-one. 

Also Range of (f – g) = R 

⇒ f is onto. 

⇒ (f – g) R → R is a one-one onto function

634.

Let f : R → R : f(x) = 10x + 3. Find f-1.

Answer»

To find: f-1

Given: f : R → R : f(x) = 10x + 3

We have,

f(x) = 10x + 3

Let f(x) = y such that \(y\in R\)

⇒ y = 10x + 3

⇒ y – 3 = 10x

\(\Rightarrow x=\frac{y-3}{10}\)

\(\Rightarrow f^{-1}=\frac{y-3}{10}\)

\(f^{-1}=\frac{y-3}{10}\) for all \(y\in R\)

635.

Let f (x) = x + 7 and g(x) = x -7, x∈ R. Find (f o g) (7).

Answer»

To find: (f o g) (7)

Formula used: f o g = f(g(x))

Given: (i) f (x) = x + 7

(ii) g (x) = x – 7

We have,

f o g = f(g(x)) = f(x – 7) = [ (x – 7) + 7 ]

⇒ x

(f o g) (x) = x

(f o g) (7) = 7

636.

Show that the function\(f:R→R : f(x)= \begin{cases}1,\text{ if x is rational }\\ -1,\text{ if x is irrational}\end{cases}\)is many - one into.Find(i) \(f(\frac{1}{2})\)(ii) \(f(\sqrt{2})\)(iii) \(f(\pi)\)(iv) \(f(2+\sqrt{3}).\)

Answer»

Answer is (i) 1 (ii) - 1 (iii) - 1 (iv) - 1

 (i) \(f(\frac{1}{2})\)

Here, x = 1/2,which is rational

∴f(1/2) = 1

 (ii) \(f(\sqrt{2})\)

Here, x = √2,which is irrational

∴f(√2) = - 1

 (iii) \(f(\pi)\)

Here, x = ∏, which is irrational

\(f(\pi)\)= -1

 (iv) \(f(2+\sqrt{3}).\)

Here, x = 2 + √3, which is irrational

∴f(2 + √3) = - 1

637.

Show that the function `f : R to R : f (x) = {[-1 if x is irrational ], [1 if x is rational ]}` is many-one into. Find `(i) f ((1)/(2)) (ii) f (sqrt(2)) (iii) f (pi) (iv) f (2 +sqrt(3))`

Answer» Correct Answer - (i) 1 (ii) -1 (iii) -1 (iv) -1
638.

Let A = {1, 2, 3, 4}. Let f : A → A and g : A → A,defined by f = {(1, 4), (2, 1), (3,3),(4, 2)} and g = {(1, 3), (2, 1), (3, 2), (4, 4)}.Find (i) gof (ii) fog (iii) fof.

Answer»

(i) gof 

To find: gof 

Formula used: g o f = g(f(x)) 

Given: f = {(1, 4), (2, 1), (3, 3), (4, 2)} and g = {(1, 3), (2, 1), (3, 2), (4, 4)} 

Solution: We have, 

gof(1) = g(f(1)) = g(4) = 4 

gof(2) = g(f(2)) = g(1) = 3 

gof(3) = g(f(3)) = g(3) = 2 

gof(4) = g(f(4)) = g(2) = 1 

g o f = {(1, 4), (2, 3), (3, 2), (4, 1)} 

(ii) fog 

To find: fog 

Formula used: fog = f(g(x)) 

Given: f = {(1, 4), (2, 1), (3, 3), (4, 2)} and g = {(1, 3), (2, 1), (3, 2), (4, 4)} 

Solution: We have, 

fog(1) = f(g(1)) = f(3) = 3 

fog(2) = f(g(2)) = f(1) = 4 

fog(3) = f(g(3)) = f(2) = 1 

fog(4) = f(g(4)) = f(4) = 2 

f o g = {(1, 3), (2, 4), (3, 1), (4, 2)} 

(iii) fof 

To find: fof 

Formula used: f o f = f(f(x)) 

Given: f = {(1, 4), (2, 1), (3, 3), (4, 2)} 

Solution: We have, 

fof(1) = f(f(1)) = f(4) = 2 

fof(2) = f(f(2)) = f(1) = 4 

fof(3) = f(f(3)) = f(3) = 3 

fof(4) = f(f(4)) = f(2) = 1 

fof = {(1, 2), (2, 4), (3, 3), (4, 1)}

639.

\(f:R→R :f(x)=\begin{cases}1,\text{ if x is rational}\\ -1,\text{ if x is irrational}\end{cases}\)Show that f is many-one and into.

Answer»

To prove: function is many-one and into

Given: \(f:R→R :f(x)=\begin{cases}1,\text{ if x is rational}\\ -1,\text{ if x is irrational}\end{cases}\)

We have,

f(x) = 1 when x is rational

It means that all rational numbers will have same image i.e. 1

⇒ f(2) = 1 = f (3) , As 2 and 3 are rational numbers

Therefore f(x) is many-one

The range of function is [{-1},{1}] but codomain is set of real numbers.

Therefore f(x) is into

640.

The function `f: R -> R` is defined by `f(x) = cos^2x + sin^4x` for `x in R`. Then `f(R)` isA. `[3//4,1]`B. `(3//4,1]`C. `[3//4,1]`D. `(3//4,1)`

Answer» Correct Answer - C
641.

If `f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R`, then f(2010)A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
642.

If the function `f: R -{1,-1} to A` definded by `f(x)=(x^(2))/(1-x^(2))`, is surjective, then A is equal to(A) `R-{-1}`(B) `[0,oo)`(C) `R-[-1,0)`(D) `R-(-1,0)`A. `R-{-1}`B. `[0,oo)`C. `R-[-1,0)`D. `R-(-1,0)`

Answer» Correct Answer - C
Given, function `f: R -{1,-1} to A` defined as
`f(x)=(x^(2))/(1-x^(2))=y" " `(let)
`rArr x^(2)=y(1-x^(2)) " " [ because x^(2) ne 1]`
`rArr x^(2)(1+y)=y`
`implies x^(2)=(y)/(1+y) " "["provided "y ne -1]`
` because x^(2) ge 0`
`rArr (y)/(1+y) ge 0 rArr y in (-oo,-1)cup [0,oo)`
Since for surjective function, range of f = codomain
`therefore` Set A should be `R-[-1,0).`
643.

Let `f:R->[1,oo)` be defined as `f(x)=log_10(sqrt(3x^2-4x+k+1)+10)` If f(x) is surjective then k =A. `k=(1)/(3)`B. `klt(1)/(3)`C. `lgt(1)/(3)`D. `k=1`

Answer» Correct Answer - A
If f(x) is surjective then range of f(x) must be `[1,oo)`.
`therefore" Range of "sqrt(3x^(2)-4x+k+1)+10 in [0,oo)`
`rArr" Range of "3x^(2)-4x+k+1 in [0,oo)`
`rArr" "D=0`
`rArr" "16-12 (k+1)=0`
`rArr" "4-3k-3=0`
`rArr" "k=(1)/(3)`
644.

Let `f: R-{n}->R` be a function defined by `f(x)=(x-m)/(x-n)` such that `m!=n` 1) f is one one into function2) f is one one onto function3) f is many one into funciton4) f is many one onto funcionn thenA. f is one-one ontoB. f is one-one intoC. f is many one ontoD. f is many one into

Answer» Correct Answer - B
645.

Let`f:[-oo,0]->[1,oo)` be defined as `f(x) = (1+sqrt(-x))-(sqrt(-x) -x)`, thenA. injective but not surjectiveB. injective as well as surjectiveC. neither injective nor surjectiveD. surjective but injective

Answer» Correct Answer - B
`f(x)=(1+sqrt(-x))-(-sqrt(-x)-x)`
`=1-x, x le0`
Then `1-x ge 1`.
Hence function is injective and surjective.
646.

Find the domain and range of the real function defined by `f(x) =(1)/((1-x^(2)).`

Answer» Clearly `(1)/((1-x^(2))` is not defined when `1-x^(2) =0`
i.e., when `x= +- 1`
`:.` dom `(f) =R - {-1 ,1}`
Also `y=(1)/((1-x^(2)) rArr (1-x^(2) =(1)/(y) rArr sqrt(1-(1)/(y))`
clearly x is not defined when `(1-(1)/(y)) lt 0 " or " 1 lt (1)/(y) " or " y lt 1`
`:.` range `(f ) =R- { y in R : y lt 1}={ y in R : y ge 1}`
647.

If `f(x)=log((1+x)/(1-x))`, `"then f "((2x)/(1+x^(2)))` is equal toA. `{f(x)}^(2)`B. `{f(x)}^(4)`C. `2f(x)`D. `3f(x)`

Answer» Correct Answer - C
648.

The inverse of the function `f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2` is given byA. `log((x-1)/(x+1))^(-2)`B. `log((x-2)/(x-1))^(1//2)`C. `log((x)/(2-x))^(1//2)`D. `log((x-1)/(3-x))^(1//2)`

Answer» Correct Answer - D
649.

Find the inverse of the function :`y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+1`A. `(1)/(2)log_(10)((x)/(2-))`B. `log_(10)((x)/(2-x))`C. `(1)/(2)log_(10)((x)/(1-x))`D. none of these

Answer» Correct Answer - A
650.

If `f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x)))`, thenA. `alpha gt 2`B. `alpha lt -2`C. `|alpha| gt 2`D. `alpha=2`

Answer» Correct Answer - C