Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

Prove that the function f: N → N: f(x) = 3x is one-one and into.

Answer»

We know that

f (x1) = f (x2)

So we get

3x1 = 3x2 => x1 = x2

Here, f is one-one

Consider the number 2 in co domain N which has no natural image as 2

Here, f is onto.

502.

Show that the function f: N → N: f(x) = x2 is one-one and into.

Answer»

We know that

f (x1) = f (x2)

So we get

x12 = x22

It can be written as

(x1 – x2) (x1 + x2) = 0

We get

x1 – x2 = 0 where x1 = x2

Hence, f is one one.

Consider 2 is the co-domain of N where √2 ∉ N

f (√2) = (√2)2 = 2

Hence, f is into.

503.

Show that the function f: R → R: f(x) = x2 is neither one-one nor onto.

Answer»

We know that

f (1) = 12 = 1

f (-1) = -12 = 1

Here, f is many one

Consider – 1 in the codomain R which has no elements in R with square as – 1

Hence, – 1 ∈ R which has no pre image in R

f is many one into.

504.

Let f = {(1, 6), (2, 5), (4, 3), (5, 2), (8, –1), (10, –3)} and g = {(2, 0), (3, 2), (5, 6), (7, 10), (8, 12), (10, 16)}.Find (i) dom (f + g) (ii) dom \((\frac{f}{g})\)

Answer»

Given, f = {(1, 6), (2, 5), (4, 3), (5, 2), (8, –1), (10, –3)} 

g = {(2, 0), (3, 2), (5, 6), (7, 10), (8, 12), (10, 16)} 

(1) Domain of f ={1,2,4,5,8,10} 

Domain of g ={2,3,5,7,8,10} 

Domain of (f + g) = {x : x ∈D f ∩ Dg } 

Where Df = Domain of function f, Dg = Domain of function g 

Domain of (f + g) = {2,5,8,10}.

(2) Domain of quotient function f/ g = {x : x ∈D f ∩ Dg and g (x) ≠ 0} 

Domain of (f/g) = {2,5,8,10}.

505.

If f(x) = \(\frac{x-1}x\), find the value of \(\left\{{f}\frac{1}{x}\right\}\)

Answer»

Given; f(x) = \(\frac{x-1}x\) 

F(x) = 1 – 1/x 

To find f(1/x) replacing x by 1/x 

F(1/x) = 1 – 1/(1/x) 

F(1/x) = 1 – x

506.

Let A = {a, b c}, B = {u, v, w} and let f and g be two functions from A to B and from B to A respectively defined as: f = {(a, v), (b, u), (c, w)}, g = {(u, b), (v, a), (w, c)}.Show that f and g both are bijections and find fog and gof.

Answer»

Given, A = {a, b, c}, B = {u, v, w} and

f = A → B and g: B → A defined by

f = {(a, v), (b, u), (c, w)} and

g = {(u, b), (v, a), (w, c)}

For both f and g, different elements of domain have different

images

∴ f and g are one – one

Again, for each element in co – domain of f and g, there is a pre – image in the domain

∴ f and g are onto

Thus, f and g are bijective.

Now,

gof = {(a, a), (b, b), (c, c.)} and

fog = {(u, u), (v, v), (w, w)}

507.

Let f, g : R `->`R be defined, respectively by `f(x) = x + 1`,`g(x) = 2x 3`. Find `f + g, f g`and `f/g`.

Answer» Correct Answer - `(i)" "3x-2 " "(ii)" " -x+4 " "(iii)" "2x^(2)-x-3" "(iv)" "(x+1)/(2x-3)`
(iv) dom `((f)/(g))="dom "(f)nn"dom "(g)-{x:g(x)=0}`
`=RnnR-{(3)/(2)}=R-{(3)/(2)}`.
508.

Let `f(x)=2x`+5 and `g(x)=x^2+xdot`Describe i. `f+g`ii. `f-g`iii. `fg`iv. `f//g`. Find the domain in each case.

Answer» Correct Answer - (i) `x^(2)+3x+5` (ii) `-x^(2)+x+5` (iii) `2x^(3)+7x^(2)+5x` (iv) `(2x+5)/(x^(2)+x)`
(iv) dom `((f)/(g))="dom "(f)nn"dom "(g)-{x:g(x)=0}`
`=RnnR-{0,-1}=R-{0,-1}`.
509.

Let `f:RtoR:f(x)=x^(3)+1andg:RtoR:g(x)=(x+1)`. Find (i) `(f+g)(x)` (ii)` (f-g)(x) `(iii) `((1)/(f))(x)` (iv) `((f)/(g))(x)`

Answer» Correct Answer - (i) `x^(3)+x+2`
(ii) `x^(3)-x` (iii) `(1)/(x^(3)+1)` (iv) `x^(2)+x+1`
(iii) dom `((f)/(g))="dom "(f)-{x:f(x)=0}=R-{-1}`.
dom `((f)/(g))="dom "(f)nn" dom "(g)-{x:g(x)=0}`
`=RnnR-{-1}=R-{-1}`.
510.

Fid the domain for which the functions `f(x)=2x^2-1a n dg(x)=1-3x`are equal.

Answer» Correct Answer - `{-2,(1)/(2)}`
`2x^(2)-1=1-3ximplies2x^(2)+3x-2=0implies(x+2)(2x-1)=0`.
511.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. [x]2 – 5 [x] + 6 = 0

Answer»

[x]2 – 5[x] + 6 = 0 

∴ ([x] – 3)([x] – 2) = 0 

∴ [x] = 3 or 2 

If [x] = 2, then 2 ≤ x < 3 

If [x] = 3, then 3 ≤ x < 4 

∴ Solution set = [2, 4)

512.

Find the values of `x` for which the functions `f(x)=3x^2-1` and `g(x)=3+x` are equal

Answer» Correct Answer - `{(4)/(3),-1}`
`3x^(2)-1=x+3implies3x^(2)-x-4=0implies(3x-4)(x+1)=0`
513.

If f(x) = 2 |x| + 3x, then find(i) f(2)(ii) f(-5)

Answer»

f(x) = 2 |x| + 3x

(i) f(2) = 2|2| + 3(2) = 2 (2) + 6 ….. [∵ |x| = x, x > 0]

= 10

(ii) f(-5) = 2 |-5| + 3(-5)

= 2(5) – 15 …..[∵ |x| = -x, x < 0]

= 10 – 15

= -5

514.

Let `f:RtoR:f(x)=x^(2)`. Determine (i) range (f) (ii) `{x:f(x)=4}`

Answer» Correct Answer - (i) `[0,oo)` (ii) `{-2,2}`
(i) `f(x)=x^(2)ge0."So,range "(f)=[0,oo)`
(ii) `f(x)=4impliesx^(2)=4impliesx=pm2`.
515.

If f(x) = 4[x] – 3, where [x] is greatest integer function of x, then find(i) f(7.2)(ii) f(0.5)(iii)  f(-5/2)(iv) f(2π), where π = 3.14

Answer»

f(x) = 4[x] – 3

(i) f(7.2) = 4 [7.2] – 3

= 4(7) – 3 ………[∵ 7 ≤ 7.2 < 8, [7.2] = 7]

= 25

(ii) f(0.5) = 4[0.5] – 3 = 4(0) – 3 ………[∵ 0 ≤ 0.5 < 1, [0.5] = 0]

= -3

(iii) f(-5/2) = f(-2.5)

= 4[-2.5] – 3

= 4(-3) – 3 …….[∵-3 ≤ -2.5 ≤ -2, [-2.5] = -3]

= -15

(iv) f(2π) = 4[2π] – 3

= 4[6.28] – 3 …..[∵ π = 3.14]

= 4(6) – 3 …….[∵ 6 ≤ 6.28 < 7, [6.28] = 6]

= 21

516.

If f (x) = (x + 1)/(x – 1), show that f [f (x)] = x.

Answer»

Given as

f(x) = (x + 1)/(x – 1)

Let us prove that the f [f (x)] = x.

f [f (x)] = f [(x+1)/(x-1)]

= [(x+1)/(x-1) + 1]/[(x+1)/(x-1) – 1]

= [[(x+1) + (x-1)]/(x-1)]/[[(x+1) – (x-1)]/(x-1)]

= [(x+1) + (x-1)]/[(x+1) – (x-1)]

= (x+1+x-1)/(x+1-x+1)

= 2x/2

= x

∴ f [f (x)] = x

Thus proved.

517.

Let `f: R->R`be defined as `f(x)=x^2+1`. Find:

Answer» Correct Answer - `[-3,3}`
`f(x)=10impliesx^(2)+1=10impliesx^(2)=9impliesx=pm2`.
518.

If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find(i) f(-1)(ii) f(1/4 )(iii) f(-1.2)(iv) f(-6)

Answer»

f(x) = 2{x} + 5x

(i) {-1} = -1 – [-1] = -1 + 1 = 0

∴ f(-1) = 2 {-1} + 5(-1)

= 2(0) – 5

= -5

(ii) {1/4} = 1/4-0 = 1/4

f(1/4) = 2(1/4) + 5(1/4)

= 2(1/4) + 5/4

 = 7/4

= 1.75

(iii) {-1.2} = -1.2 – [-1.2] = -1.2 + 2 = 0.8

f(-1.2) = 2{-1.2} + 5(-1.2)

= 2(0.8) + (-6)

= -4.4

(iv) {-6} = -6 – [-6] = -6 + 6 = 0

f(-6) = 2{-6} + 5(-6)

= 2(0) – 30

= -30

519.

If `f(x)=sin log((sqrt(4-x^(2)))/(1-x))`, then the domain of f(x) is ….

Answer» Correct Answer - (-2, 1)
Given, `f(x)=sin log((sqrt(4-x^(2)))/(1-x))`
For domain, `(sqrt(4-x^(2)))/(1-x) gt 0,4-x^(2) gt 0 and 1-x ne 0`
`implies (1-x) gt 0 and 4-x^(2) gt 0`
`implies x lt 1 and |x| lt 2 implies -2 lt x lt 1`
Thus, domain `in (-2,1)`.
520.

Let `f:R^+ -> R` is a function defined as `f(x) = log x`. Find (i) Image of domain of `f`, (ii) `(x: f(x)=-2)` (iii) `f(xy) = f(x) + f(y)`

Answer» Correct Answer - (i) R (ii) `{e^(-2)}` (iii) Yes
(i) For every `x""inR^(+)`, we have `log_(e)x=R`. So, range (f)=R.
(ii) `f(x)=-2implieslog_(e)x=-2x=e^(-2)`. So, `{x:x""inR^(+)andf(x)=-2}={e^(-2)}`.
(iii) `f(xy)=log_(e)(xy)=log_(e)xy=f(x)+f(y)`.
521.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.(i) |x + 4| ≥ 5(ii) |x – 4| + |x – 2| = 3(iii) x2 + 7|x| + 12 = 0

Answer»

(i) |x + 4| ≥ 5

The solution of |x| ≥ a is x ≤ -a or x ≥ a

∴ |x + 4| ≥ 5 gives

∴ x + 4 ≤ -5 or x + 4 ≥ 5

∴ x ≤ -5 – 4 or x ≥ 5 – 4

∴ x ≤ -9 or x ≥ 1

∴ The solution set = (-∞, – 9] ∪ [1, ∞)

(ii) |x – 4| + |x – 2| = 3 …..(i)

Case I: x < 2 Equation (i) reduces to

4 – x + 2 – x = 3 …….[x < 2 < 4, x – 4 < 0, x – 2 < 0]

∴ 6 – 3 = 2x

∴ x = 3/2

Case II: 2 ≤ x < 4

Equation (i) reduces to

4 – x + x – 2 = 3

∴ 2 = 3 (absurd)

There is no solution in [2, 4)

Case III: x ≥ 4

Equation (i) reduces to

x – 4 + x – 2 = 3

∴ 2x = 6 + 3 = 9

∴ x = 9/2

∴ x = 3/2, 9/2 are solutions.

The solution set = {3/2, 9/2}

(iii) x2 + 7|x| + 12 = 0

∴ (|x|)2 + 7|x| + 12 = 0

∴ (|x| + 3) (|x| + 4) = 0

∴ There is no x that satisfies the equation.

The solution set = { } or Φ

522.

If f(x) =\(\begin{cases}x^2 &amp; \quad \text{when } x &lt; 0 \text{ }\\x&amp; \quad \text{when } 0 ≤ x &lt; 1\text{}\\ 1/x, &amp; \quad \text{when } x ≥ 1\text{}\end{cases}\)Find:(i) f (1/2)(ii) f (-2)(iii) f (1)(iv) f (√3)(v) f (√-3)

Answer»

(i) f(1/2)

If, 0 ≤ x ≤ 1, f(x) = x

∴ f (1/2) = 1/2

(ii) f(-2)

If, x < 0, f(x) = x2

f(–2) = (–2)2

= 4

∴ f (–2) = 4

(iii) f (1)

If, x ≥ 1, f (x) = 1/x 

f(1) = 1/1

∴ f(1) = 1

(iv) f (√3)

Now, we have √3 = 1.732 > 1 

If, x ≥ 1, f (x) = 1/x 

∴ f (√3) = 1/√3

(v) f (√-3)

As we know that √-3 is not a real number and the function f(x) is defined only when x ∈ R.

Hence, f(√-3) does not exist.

523.

The domain of the function `f(x)=sin^(-1)("log"_(2)(x^(2))/(2))` is given by…

Answer» Correct Answer - Domain ` in [-2, -1] cup [1,2]`
Given, `f(x)= sin^(-1)("log"_(2)(x^(2))/(2))`
For domain `-1 le "log"_(2)(x^(2))/(2) le 1`
`rArr (1)/(2) le (x^(2))/(2) le 2`
`rArr 1 le x^(2)le 4`
`implies 1 le |x| le 2 `
`implies "Domain " in [-2, -1] cup [1,2] `
524.

Let f (x) = (x + 2)2 – 2, x ≥ – 2, then f -1(x) is equal to(a) \(- \sqrt{2+x}\) - 2(b) \( \sqrt{2+x} +2\)(c) \( \sqrt{2+x} -2\)(d) \(- \sqrt{2+x}+2\)

Answer»

Answer : (c) \( \sqrt{2+x}-2\) 

Let y = f (x) = (x + 2)2 – 2 

⇒ y + 2 = (x + 2)

⇒ x + 2 = \(\sqrt{y+2}\) 

⇒ x = \(\sqrt{y+2}\) - 2 

f-1 (x) = \( \sqrt{2+x}-2\)

525.

The domain of the function log | x2 – 9 | is(a) R (b) R – [– 3, 3] (c) R – {– 3, 3} (d) None of these

Answer»

Answer : (c) R – {– 3, 3} 

The function log | x2 – 9 | is defined when | x2 – 9 | > 0

| x2 – 9 | is positive for all real values but 

log | x2 – 9 | is not defined when | x2 – 9 | = 0, 

i.e., function log | x2 – 9 | does not exist when x = –3, 3. 

∴  Domain of function is R – {– 3, 3}.

526.

Mark (√) against the correct answer in the following:Let \(f(x)=\frac{1}{(1-x^2)}\). Then, range (f) = ?A. ( - ∞, 1] B. [1, ∞) C. [ - 1, 1] D. none of these

Answer»

Correct Answer is (B) [1, ∞)

\(f(x)=\frac{1}{1-x^2}\)

\(\Rightarrow y= \frac{1}{1-x^2}\)

⇒ y - yx2 = 1

⇒ y - 1 = yx2

⇒ \(x=\sqrt{\frac{y-1}{y}}\)

⇒ \(\frac{y-1}{y}\geq 0\)

⇒ y ≥ 1

∴ range (f) = [1, ∞)

527.

Mark (√) against the correct answer in the following:Let \(f(x)=\frac{x^2}{(1+x^2)}\) Then, range (f) = ?A. [1, ∞) B. [0, 1) C. [ - 1, 1] D. (0, 1]

Answer»

Correct Answer is (B) = [0, 1)

\(f(x)=\frac{x^2}{1+x^2}\)

⇒ \(y=\frac{x^2}{1+x^2}\)

⇒ y + yx2 = x2

⇒ y = x2 (1 - y)

⇒ x = \(\sqrt{\frac{y}{1-y}}\)

\(\frac{y}{1-y}\geq 0\)

⇒ y ≥ 0

And

1 - y > 0

⇒ y < 1

Taking intersection we get

range (f) = [0, 1)

528.

Mark (√) against the correct answer in the following:The range of \(f(x)=x+\frac{1}{x}\) isA. [ - 2, 2] B. [2, ∞) C. ( - ∞, - 2] D. none of these

Answer»

Correct Answer is (A) [ - 2, 2] 

\(f(x)=x+\frac{1}{x}\)

For this type

Range is

\(-2\leq y\geq2\)

529.

Mark (√) against the correct answer in the following: The range of f(x) = ax , where a &gt; 0 is A. [ - ∞, 0] B. [ - ∞, 0) C. [0, ∞) D. (0, ∞)

Answer»

Correct Answer is (D) (0, ∞)

f(x) = ax 

when x < 0 

0 <  ax < 1

When x ≥ 0

a> 0

Therefore range of f(x) = ax = (0, ∞)

530.

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent toA. `f(a)=g(c )`B. `f(b)=g(b)`C. `f(d)=g(b)`D. `f(c )=g(a)`

Answer» Correct Answer - C
531.

Let R+ be the set of all non-negative real numbers. If f: R+ → R+ and g: R+ → R+ are defined as f(x) = x2 and g(x) = +√x, find fog and gof. Are they equal functions.

Answer»

Given that f: R+ → R+ and g: R+ → R+

Therefore, fog: R+ → R+ and gof: R+ → R+

Domains of fog and gof are the same.

Let us find fog and gof also we have to check whether they are equal or not,

Consider that (fog)(x) = f(g(x))

= f(√x)

= √x2

= x

Now consider that (gof)(x) = g(f(x))

= g(x2)

= √x2

= x

Therefore, (fog)(x) = (gof)(x), ∀ x ∈ R+

Hence, fog = gof 

532.

Find gof and fog when f: R → R and g : R → R is defined by (i) f (x) = x and g(x) = |x| (ii) f(x) = x2 + 2x − 3 and g(x) = 3x − 4 (iii) f(x) = 8x3 and g(x) = x1/3

Answer»

(i) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = x and g(x) = |x|

(gof)(x) = g(f(x))

= g(x)

= |x|

Now, (fog)(x) = f(g(x))

= f(|x|)

= |x|

(ii) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = x2 + 2x − 3 and g(x) = 3x − 4

(gof)(x) = g(f(x))

= g(x+ 2x − 3)

= 3(x+ 2x − 3) − 4

= 3x+ 6x − 9 − 4

= 3x+ 6x − 13

Now, (fog)(x) = f(g(x))

= f(3x − 4)

= (3x − 4)+ 2(3x − 4) − 3

= 9x+ 16 − 24x + 6x – 8 − 3

= 9x− 18x + 5

(iii) Given as, f: R → R and g: R → R

Therefore, gof: R → R and fog: R → R

f(x) = 8x3 and g(x) = x1/3

(gof)(x) = g(f(x))

= g(8x3)

= (8x3)1/3

= [(2x)3]1/3

= 2x

Now, (fog)(x) = f(g(x))

= f(x1/3)

= 8(x1/3)3

= 8x

533.

Find fog (2) and gof (1) when f: R → R; f(x) = x2 + 8 and g: R → R; g(x) = 3x3 + 1.

Answer»

Given as f: R → R; f(x) = x2 + 8 and g: R → R; g(x) = 3x3 + 1.

Consider that (fog)(2) = f(g(2)) 

= f(3 × 2+ 1) 

= f(3 × 8 + 1)

= f(25)

= 252 + 8

= 633

(gof)(1) = g(f(1)) 

= g(1+ 8) 

= g(9) 

= 3 × 9+ 1 

= 2188

534.

For which Domain, the functions `f(x) = 2x^2-1` and `g(x)=1-3x` are equal toA. `[2,-1//2]`B. `[-2,1//2]`C. `[1,2]`D. `[-2,-1//2]`

Answer» Correct Answer - B
We have
f(x)=g(x)
`Rightarrow 2x^(2)-1=1-3x`
`Rightarrow 2x^(2)+3x-2=0 Rightarrow (2x-1)(x+2)=0 Rightarrow x=-2,1//2`
Hence, `f(x)=g(x)"for all "x in {-2,1//2}`
535.

If function f and g given by `f (x)=log(x-1)-log(x-2)and g(x)=log((x-1)/(x-2))"are equal"` then x lies in the interval.A. [1,2]B. `[2,oo]`C. `[2,oo]`D. `[-oo, oo]`

Answer» Correct Answer - C
f(x) is defined for all x satisfying
`x-1 gt 0 and x-2 gt 0 i.e. xgt 2`
`therefore "Domain (f)"=(2,oo)......(i)`
g (x) is defined for all x satisfying
`(x-1)/(x-2) gt 0 Rightarrow x in (-oo, 1) uu(2,oo)`
`therefore "Domain (g)"=(-oo,1) uu (2,oo).....(ii)`
Thus, f(x) and g(x) are equal for all x belonging to their common domain i.e. `(2,oo)`
536.

If `A={1,2,3}, B={x , y}`, then the number of functions that can be defined from A into B is`12`b. `8`c. `6`d. 3A. 12B. 8C. 6D. 3

Answer» Correct Answer - B
Total number of functions from `A to B =2^(3)=8`
537.

Let A be a set containing 10 distinct elements,then the total number of distinct functions from A to A isA. `10!`B. `10^(10)`C. `2^(10)`D. `2^(10)-1`

Answer» Correct Answer - B
Total number of functions `=10^(10)`
538.

If `P=(a,b,c) and Q=(1,2)`, then the total number of relations P to Q are not functions isA. 56B. 8C. 9D. 55

Answer» Correct Answer - A
We have,
Total number of relations from A to B=`2^(3xx2)=64`
Total number of functions from A to B=`2^(3)=8`
Total number of relations which are not functions.
=64-8=56
539.

Let `f:R to R, g: R to R` be two functions given by `f(x)=2x-3,g(x)=x^(3)+5`. Then `(fog)^(-1)` is equal toA. `((x-7)/(2))^(1//3)`B. `((x+7)/(2))^(1//3)`C. `((x-(7)/(2)))^(1//3)`D. `((x-2)/(7))^(1//3)`

Answer» Correct Answer - A
540.

A mapping `f: X to Y `is one-one, ifA. `f(x_(1)) ne f(x_(2))"for all"x_(1),x_(2) in X`B. `f(x_(1)) = f(x_(2))Rightarrow x_(1)=x_(2)"for all"x_(1), x_(2) in X`C. `x_(1)=x_(2) Rightarrow f(x_(1))=f(x_(2))"for all "x_(1),x_(2) in X`D. none of these

Answer» Correct Answer - B
Clearly (b) is the correct options.
541.

Let `f:R to R, g: R to R` be two functions given by `f(x)=2x-3,g(x)=x^(3)+5`. Then `(fog)^(-1)` is equal toA. `((x+7)/(2))^(1//3)`B. `(x-(7)/(2))^(1//3)`C. `((x-2)/(7))^(1//3)`D. `((x-7)/(2))^(1//3)`

Answer» Correct Answer - D
542.

Let `f:R to R` be a function defined b f(x)=cos(5x+2). Then,f isA. injectiveB. surjectiveC. bijectiveD. none of these

Answer» Correct Answer - D
543.

Which of the following functions is one-one?A. `fR to R " is given by"f(x)=2x^(1)+1"For all " x in R`B. `g:Z to Z " given by"g(x)=x^(4)"For all " x in Z`C. `h:R to R " given h"(x)=x^(3)+4"For all " x in R`D. `phi:C to C " given by "phi(z)=z^(3)+4"For all " z in C`

Answer» Correct Answer - C
We observe that f(1)=3 and f(-1)=3
`therefore 1 ne -1 " but "f(1)=f(-1)`
So, f is not a one-one function.
Clearly, `1,-1 in Z " such that "g(1)=1 and g(-1) =(-1)^(4)=1`
`therefore 1 ne -1" but "g(1)=g(-1)`
So, g is not a one-one fourth
Let `x, y in R` be such that
`h(x)=h(y) Rightarrow x^(3)+4=y^(3)+4 Rightarrow x^(3)=y^(3) Rightarrow x=y`
`therefore h: R to R ` is one-one functions.
We observe that `w, w^(2) in C` (w is a cube root of unity) such that `w ne w^(2)" but " phi(w)=w^(3)+4=5 and phi(w^(2))=w^(6)+4=5`
`i.e. w ne w^(2)" but "ph(w)=phi(w^(2))`
So, `phi` is not a one-one functions.
544.

Which one of the following functions is one-one?A. `f:R to R" given by "f(x)|x-1|"for all "x in R`B. `g:[-pi//2,pi//2] in R` is given by: `g(x)=|sin x|"for all "x in[-pi//2,pi//2]`C. `h:[-pi//2,pi//2] in R` is given by `h=(x)=sin x" for all "x in [-pi//2, pi//2]`D. `phi: R to R "given by" f(x)=x^(2)-4"for all x " inR`

Answer» Correct Answer - C
The graphs of f,g,h and `phi` are as shown below: It is evident from these graphs that `h:[-pi//2,pi//2] to R` given by h(x)=sin x is the one-one and all other functions are many-one as it is possible to draw horizontal line cutting or interescting the curves represented by them at more than one point.
545.

Set A has three elements and set B has four elements. The number of injections that can be defined from A to B isA. 144B. 12C. 24D. 64

Answer» Correct Answer - C
The total number of injective mappings from a set A containing 3 elements to a set B containing 4 elements is equal to the total number of arrangements of 4 by taking 3 at a time. `^(4)C_(3) xx 3!=24`
546.

`"If" f(x)=(3x+2)/(5x-3),"then"`A. `f^(-1)(x)=f(x)`B. `f^(-1)(x)=-f(x)`C. `(fof)(x)=-x`D. `f^(-1)(x)=-(1)/(19)f(x)`

Answer» Correct Answer - A
547.

If `f(x)=2^(x),"then"f(0),f(1),f(2)..."are in"`A. APB. GPC. HPD. arbitrary

Answer» Correct Answer - B
548.

If the function `f: RvecA`given by `f(x)=(x^2)/(x^2+1)`is surjection, then find `Adot`A. RB. [0,1]C. [0,1]D. [0,1]

Answer» Correct Answer - D
549.

If `f, g, h`are real functions given by `f(x)=x^2,g (x)=tanx a n d h(x)=log, x , t h e n`write the value of `(hog of)(sqrt(pi/4))dot`

Answer» Correct Answer - A
`{h o(g o f)}(x) =(h o g){f(x)}=(h o g) (x^(2))`
`=h{g(x^(2))}= h (tan x^(2)) = " log (tan "x^(2)")"`
`:. {h o (g o f)} .sqrt((pi)/(4))= "log " (tan .(pi)/(4))= " log " 1=0`
550.

If `f(x) =x^(2) -3x +2 " then " (f o f) (x)=?`A. `x^(4)`B. `x^(4) -6x^(3)`C. `(x^(4) -6x^(3)+10x^(2)`D. none of these

Answer» Correct Answer - D
`(f o f) (x)= f{f(x)}=f(x^(2) -3x+2)=f(y) " where " y=(x^(2)-3x+2)`
`=y^(2) -3y +2= (x^(2) -3x+2)^(2) -3(x^(2) -3x+2)+2`
`=(x^(4)-6x^(3)+10x^(2) -3x)`