InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 401. |
Find x, if g(x) = 0 whereg(x) = (5x - 6)/7 |
|
Answer» g(x) = \(\frac{5x -6}7\) g(x) = 0 \(\therefore\) \(\frac{5x -6}7\) = 0 \(\therefore\) x = 6/5 |
|
| 402. |
If f : R → R is defined by f (x) = (1 – x)1/3, the f –1 (x) equals(a) (1 – x) –1/3 (b) (1 – x) 3 (c) 1 – x3 (d) 1 – x1/3 |
|
Answer» Answer : (c) 1 – x3 Let y = f (x) = (1 – x) 1/3 ⇒ y3 = 1 – x ⇒ x = 1 – y3 ⇒ f –1(x) = 1 – x3 |
|
| 403. |
If f(m) = m2 – 3m + 1, find\((\frac{f(2+h)-f(2)}h), h\neq 0\) |
|
Answer» \(\left(\frac{f(2+h)-f(2)}h\right)\) \(=\frac{(2+h)^2-3(2+h)+1-(2^2-3(2)+1)}h\) = \(\frac{h^2+h}h\) = h + 1 |
|
| 404. |
If f(x) = x2 – 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1). |
|
Answer» Given as f(x) = x2 – 3x + 4. Let us find the x satisfying f (x) = f (2x + 1). Here, we have, f(2x + 1) = (2x + 1)2 – 3(2x + 1) + 4 = (2x) 2 + 2(2x) (1) + 12 – 6x – 3 + 4 = 4x2 + 4x + 1 – 6x + 1 = 4x2 – 2x + 2 Then, f (x) = f (2x + 1) x2 – 3x + 4 = 4x2 – 2x + 2 4x2 – 2x + 2 – x2 + 3x – 4 = 0 3x2 + 3x – 2x – 2 = 0 3x(x + 1) – 2(x + 1) = 0 (x + 1)(3x – 2) = 0 x + 1 = 0 or 3x – 2 = 0 x = –1 or 3x = 2 x = –1 or 2/3 Thus, the values of x are –1 and 2/3. |
|
| 405. |
Write the range of the function f(x) = ex – [x], X ∈ R. |
|
Answer» f(x) = ex – [x] 0 ≤x-[x]<1 e0 ≤ ex-[x] <e1 1 ≤ ex-[x] < e Therefore, R(f) = [1, e) |
|
| 406. |
Let f: R → R: f(x) = (2x- 7)/ 4 be an invertible function. Find f-1. |
|
Answer» It is given that f(x) = (2x- 7)/ 4 We know that y = (2x- 7)/ 4 It can be written as 4y = 2x – 7 So we get 4y + 7 = 2x Where x = (4y + 7)/2 So, f -1 = (4y + 7)/2 for all y ∈ R. |
|
| 407. |
Let f: R → R: f(x) = 10x + 3. Find f-1. |
|
Answer» It is given that f(x) = 10x + 3 Consider y = 10x + 3 It can be written as y – 3 = 10x On further calculation x = (y – 3)/ 10 So we get f -1 (y) = (y – 3)/ 10 |
|
| 408. |
If `f(x)=x^n , n in Nandgof(x)=ng(x)` then g(x) can beA. `n|x|`B. `3x^(1//3)`C. `e^(x)`D. `log|x|` |
| Answer» Correct Answer - D | |
| 409. |
Let `f:R to R` be defined by f(x)=3x-4. Then, `f^(-1)`(x) isA. `(x+4)/(3)`B. `(x)/(3)-4`C. `3x+4`D. none of these |
| Answer» Correct Answer - A | |
| 410. |
Let `A={x in R: xA` be defined as `f(x)=x(2-x)`. Then , `f^(-1)(x)` isA. `1+sqrt(1-x)`B. `1-sqrt(1-x)`C. `sqrt(1-x)`D. `1pmsqrt(1-x)` |
| Answer» Correct Answer - B | |
| 411. |
Give the usage of get(). |
|
Answer» char c; c = cin.get(); |
|
| 412. |
Let f: Q → Q: f(x) = 3x – 4. Show that f is invertible and find f -1. |
|
Answer» We know that f(x1) = f(x2) It can be written as 3x1 – 4 = 3x2 – 4 So we get 3x1 = 3x2 Where x1 = x2 f is one-one. Take y = 3x – 4 It can be written as y + 4 = 3x So we get x = (y + 4)/ 3 If y ∈ R there exists x = (y + 4)/ 3 ∈ R We know that f (x) = f([y + 4]/ 3) = 3 ([y + 4]/ 3) – 4 = y f is onto Here, f is one-one onto and invertible. Take y = f(x) So we get y = 4x – 3 It can be written as x = (y + 4)/ 3 So f -1 (y) = (y + 4)/ 3 Hence, we define f -1: R → R: f -1(y) = (y + 4)/ 3 for all y ∈ R |
|
| 413. |
`f:R to R` is a function defined by f(x)=`10x -7, if g=f^(-1)` then g(x)=A. `(1)/(10x-7)`B. `(1)/(10x+7)`C. `(x+7)/(10)`D. `(x-7)/(10)` |
| Answer» Correct Answer - C | |
| 414. |
Let f: R → R: f(x) = ½ (3x + 1). Show that f is invertible and find f -1. |
|
Answer» We know that f(x1) = f(x2) It can be written as ½ (3x1 + 1) = ½ (3x2 + 1) So we get 3x1 + 1 = 3x2 + 1 On further calculation 3x1 = 3x2 where x1 = x2 f is one-one. Take y = ½ (3x + 1) It can be written as 2y = 3x + 1 We get 2y – 1 = 3x So x = (2y – 1)/3 If y ∈ R there exists x = (2y – 1)/3 ∈ R We know that f(x) = f([2y – 1]/ 3) = ½ (3([2y – 1]/ 3) + 1) = y f is onto Here, f is one-one and invertible. Take y = f(x) So y = (3x + 1)/2 It can be written as x = (2y – 1)/ 3 Hence, we define f -1: R → R: f -1(y) = (2y – 1)/ 3 for all y ∈ R |
|
| 415. |
Let `f:A to B and g:B to C` be bijection, then `(fog)^(-1)`=A. `f^(-1)og^(-1)`B. fogC. `g^(-1)of^(-1)`D. gof |
| Answer» Correct Answer - C | |
| 416. |
Write the domain and range of the function f(x) = (x-2)/(2-x).f(x) = \(\frac{x-2}{2-x}\). |
|
Answer» Given, f(x) = (x-2)/(2-x) For function to be defined, 2 - x ≠ 0 x ≠ 2 Therefore, D(f) = R-{2}. Let y = \(\frac{x-2}{2-x}\) y = -1 Therefore, R(f) = {-1}. |
|
| 417. |
Give the function of put()? |
|
Answer» It writes a single character into the stream. |
|
| 418. |
Give the function of get()? |
|
Answer» It reads a single character from the stream. |
|
| 419. |
Let A = [– 2, 2] – {0}. Define f : A → R and g : A → R byf(x) = \(\frac{1}{x^3+2x|x|}\) and g(x) = \(\sqrt{x^4 +\frac{3}{x^2}}\) then,(a) f and g are odd (b) f is odd, g is even (c) f is even, g is odd (d) f and g are even |
|
Answer» Answer: (b) f is odd g is even \(f(x) = \frac{1}{x^3+2x|x|}\) ∴ f(-x) = \(f(x) = \frac{1}{(-x)^3+2(-x)|-x|}\) = \(f(x) = \frac{1}{-x^3-2x|x|}\) (∴ | – x | = | x |) = \(f(x) =- \frac{1}{x^3+2x|x|}\) = - f(x) ⇒ f is odd. g(x) = \(\sqrt{x^4+\frac{3}{x^2}}\) ∴ g(- x) = \(\sqrt{(-x)^4+\frac{3}{(-x)^2}} = \sqrt{x^4+\frac{3}{x^2}}\) = g(x) ⇒ g is even. |
|
| 420. |
What is the function of strrev()? |
|
Answer» The strrev() function is used to reverse the string. |
|
| 421. |
The range of f(x) = cos [x], for -π/2< x <π/2 isA. {-1,1,0} B. {cos 1, cos 2,1} C. {cos 1, -cos 1,1} D. [-1,1] |
|
Answer» Option : (B) Given, f(x) = cos [x], for -π/2< x <π/2 For -π/2< x <-1, [x]= -2 f(x)= cos[x]= cos(-2) = cos2 Because, cos(-x) = cos(x) For-1 ≤x<0 [x] = -1 f(x) = cos[x] =cos(-1) = cos1 For 0 ≤x< 1, [x] = 0 f(x) = cos 0 = 1 For 1≤ x <π/2, [x] = 1 f(x) = cos 1 Therefore, R(f) = {1, cos 1,cos 2} Option B is correct. |
|
| 422. |
Let f : R → r be defined by f(x) = 2x + |x|. Then f(2x) + f(-x) – f(x) = A. 2x B. 2|x| C. -2x D. -2|x| |
|
Answer» Option : (B) f(x) = 2x + |x| f(2x) = 2(2x)+|2x| = 4x+2|x| f(-x) = 2(-x)+|-x| f(2x)+f(-x )- f(x) = 4x+2|x|-2x+|-x|-(2x+|x|) = 4x+2|x|-2x+|x|-2x-|x| = 2|x| |
|
| 423. |
The function f (x) = \(sin\big[\,log\,\big(x+\sqrt{x^2+1}\big)\big]\) is(a) an odd function (b) an even function (c) neither even nor odd (d) None of these. |
|
Answer» Answer : (a) an odd function f(x) = sin \(\big[\,log\,\big(x+\sqrt {x^2+1}\big)\big]\) ∴ f(- x) = sin \(\big[\,log\,\big(-x+\sqrt {(-x)^2+1}\big)\big]\) = \(sin\big[\,log\,(\sqrt{1+x^2}-x)\big]\) = \(sin\big[\,log\,(\sqrt{1+x^2}-x)\frac{(\sqrt{1+x^2}+x)}{(\sqrt{1+x^2}+x)}\big]\) = \(sin\big[\log\,\big(\frac{(1+x^2)-x^2}{\sqrt{1+x^2}+x}\big)\big]\) = \(sin \big[\,log\,(\sqrt{1+x^2}+x)^{-1}\big]\) = \(sin\big[\,-log\,(\sqrt{1+x^2}+x)\big]\) (∴ log a –1 = – log a) = \(-sin[\,log\,(\sqrt{1+x^2}+x)]\) (∴ sin (– x) = – sin x) = – f (x) ⇒ f is an odd function. |
|
| 424. |
The range of the function f(x) = \(\frac{x^2-x}{x^2+2x}\) isA. R B. R –{1} C. R – {-1/2, 1} D. None of these |
|
Answer» Option : (C) Let y = (x2-x)/(x2+2x) y(x2+2x) = x2-x yx(x+2) = x(x-1) y(x+2) = x-1 x(y-1) = -(1+2y) x = \(-\frac{(1+2y)}{y-1}\) Value of x can’t be zero or it cannot be not defined.. y≠1, -1/2 So, Range = R-{-1/2, 1} |
|
| 425. |
Let f(x) = |x – 1|. Then, A. f(x2) = [f(x)]2 B. f(x + y) = f(x) f(y) C. f(|x|) = |f(x)| D. None of these |
|
Answer» Option : (D) f(x) = |x-1| f(x2) = |x2-1| f(x)2 = (x-1)2 = x2+1-2x So, f(x2) ≠ [f(x)]2 f(x + y) = |x+y-1| f(x)f(y) = (x-1)(y-1) So, f(x + y) ≠ f(x)f(y) f(|x|) = ||x|-1| Therefore, Option D is correct. |
|
| 426. |
If f (x) = x2 + kx + 1 for all x and f is an even function, find k where k ∈ R(a) 1 (b) – 2 (c) 0 (d) – 1 |
|
Answer» Answer: (c) = 0 f (x) = x2 + kx + 1 Given, f (x) is an even function ⇒ f (x) = f (– x) ⇒ x2 + kx + 1 = (– x) 2 + k (– x) + 1 ⇒ x2 + kx + 1 = x2 – kx + 1 ⇒ 2kx = 0 ⇒ k = 0. |
|
| 427. |
Let F(x) = \(\big[\frac{g(x)-g(-x)}{f(x)+f(-x)}\big]^m\) such that m = 2n, n ∈ N and f (– x) ≠ – f (x). Then, F (x) is(a) an odd function (b) an even function (c) constant function (d) None of these |
|
Answer» Answer : (b) an even function F(x) = \(\big[\frac{g(x)-g(-x)}{f(x)+f(-x)}\big]^m\) ∴ F(-x) = \(\big[\frac{g(-x)-g(x)}{f(-x)+f(x)}\big]^m =\big[\frac{-g(x)-g(-x)}{f(-x)+f(x)}\big]^m\) = \(\big[-\big(\frac{g(x)-g(-x)}{f(-x)+f(x)}\big)\big]^{2n}\) = \(\big[\frac{g(x)-g(-x)}{f(-x)+f(x)}\big]\) (∴ 2n ⇒ even power) = F (x) ⇒ F is an even function. |
|
| 428. |
The range of the function f(x) = x/|x| isA. R – {0} B. R – {-1, 1} C. {-1, 1} D. None of these |
|
Answer» Option : (C) Given, f(x) = x/|x| We know that, |x| = -x in (-∞, 0) and |x| = x in [0, ∞) So, f(x) = \(\frac{x}{-x}\) = -1 in (-∞, 0) And f(x) = \(\frac{x}{-x}\) in (0, ∞) As clearly shown above f(x) has only two values 1 and -1 So, Range of f(x) = {-1, 1} |
|
| 429. |
Name the function used to compare two strings. |
|
Answer» The function strcmp() is used to compare two strings. |
|
| 430. |
Give the function of strcpy(). |
|
Answer» The strcpy() is used to copy a string into another string. |
|
| 431. |
The range of the function f(x) = |x – 1| is A. (-∞, 0) B. [0, ∞) C. (0, ∞) D. R |
|
Answer» Option : (B) Given, f(x) = |x – 1| A modulus function always gives a positive value.. R(f) = [0,∞) |
|
| 432. |
The range of the function f(x) = \(\frac{x+2}{|x+2|}\),x ≠ -2 isA. {-1, 1} B. {-1, 0, 1} C. {1} D. (0, ∞) |
|
Answer» Option : (A) f(x) = (x+2)/|x+2| When x>-2, We have, f(x) = \(\frac{x+2}{x+2}\) = 1 When x<-2, We have, f(x) = \(\frac{x+2}{-(x+2)}\) = -1 R(f) = {-1, 1} |
|
| 433. |
Let f : R → R be defined as f (x) = x2 + 1. Then find f –1(– 5)(a) {0} (b) ϕ (c) {5} (d) {– 5, 5} |
|
Answer» Answer: (b) = ϕ f (x) = x2 + 1 Let y = f (x) = x2 + 1 ⇒ y – 1 = x2 ⇒ x = ± \(\sqrt{y-1}\) ⇒ f –1(x) = ± \(\sqrt{x-1}\) ∴ f –1(– 5) = ± \(\sqrt{-5-1}\) ± \(\sqrt{-6}\) ∉ R ∴ f –1(– 5) is the null set. |
|
| 434. |
Name the function used to combine the two strings. |
|
Answer» The strcat() function is used to combine the two strings. |
|
| 435. |
The function f (x) = sin x + cos x will be(a) an even function (b) an odd function (c) a constant function (d) none of these |
|
Answer» Answer: (d) = none of these f (x) = sin x + cos x f (– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ f (x) or – f (x) ∴ f (x) is neither even nor odd nor constant. |
|
| 436. |
If `f:R to R` be a mapping defined by `f(x)=x^(3)+5`, then `f^(-1)`(x) is equal toA. `(x+5)^(1//3)`B. `(x-5)^(1//3)`C. `(5-x)^(1//3)`D. 5-x |
| Answer» Correct Answer - B | |
| 437. |
If f (x) = x – x2 + x3 – x4 + .... ∞ for | x | < 1, then f –1(x) is equal to(a) \(\frac{1+x}{x}\)(b) \(\frac{x}{1+x}\)(c) \(\frac{1-x}{x}\)(d) \(\frac{x}{1-x}\) |
|
Answer» Answer: (d) = \(\frac{x}{1-x}\) f (x) = x – x2 + x3 – x4 + ..... ∞, | x | < 1 This is an infinite G.P. with a = x, r = – x. ∴ f (x) = S∞ = \(\frac{a}{1-r}\) = \(\frac{x}{1+x}\) Let y = f(x) = \(\frac{x}{1+x}\) ⇒ y (1 + x) = x ⇒ y + xy = x ⇒ y = x (1 – y) ⇒ y = \(\frac{y}{1-y}\) ⇒ \(f^{-1}(x) = \frac{x}{1-x}\) |
|
| 438. |
Name the function used to find the length of a string. |
|
Answer» The strlen() function is used to find the length of a string. |
|
| 439. |
If f (x) = \(\frac{4^x}{4^x+2}\) , then f (x) + f (1 – x) is equal to (a) – 1 (b) 0 (c) 1 (d) None of these |
|
Answer» Answer: (c) = 1 Given, f (x) = \(\frac{4^x}{4^x+2}\) f (1 – x) = \(\frac{4^{1-x}}{4^{1-x}+2}\) = \(\frac{4.4^{-x}}{4^1.4^{-x}+2}\) = \(\frac{4.\frac{1}{4^x}}{4.\frac{1}{4^x}+2}\) = \(\frac{\frac{4}{4^x}}{\frac{4+2.4^x}{4^x}}\) = \(\frac{4}{4+2.4^x}=\frac{2}{2+4^x}\) Now f (x) + f (1 – x) = \(\frac{4^x}{4^x+2}\) + \(\frac{2}{2+4^x}\) = \(\frac{4^x+2}{4^x+2}\) = 1 |
|
| 440. |
If f (x) = cos (log x), then f (x2) . f (y2) - \(\frac{1}{2}\big[f(x^2.y^2)+f\big(\frac{x^2}{y^2}\big)\big]\) equals(a) – 2 (b) – 1 (c) \(\frac{1}{2}\)(d) 0 |
|
Answer» Answer : (d) = 0 Given, f (x) = cos (log x) ⇒ f (x2) = cos (log x2) = cos (2 log x) f (y2) = cos (log y2) = cos (2 log y) \(f\big(\frac{x^2}{y^2}\big)\) = \(cos\big(log\frac{x^2}{y^2}\big)\) = cos (log x2 - log y2 ) = cos (2 log x – 2 log y) f (x2y2) = cos (log x2y2) = cos (log x2 + log y2) = cos (2 log x + 2 log y) Now, f(x2). f(y2) - \(\frac{1}{2}\) \(\big[f\big(\frac{x^2}{y^2}\big) +f (x^2y^2)\big]\) = cos (2 log x) . cos (2 log y) – \(\frac{1}{2}\) [cos (2 log x – 2 log y) + cos (2 log x + 2 log y)] = cos (2 log x) . cos (2 log y) - \(\frac{1}{2}\) \(\big[ 2\,cos\big(\frac{2\,log\,x-2\,log\,y+2\,log\,x+2\,log\,y}{2}\big) cos \big( \frac{2\,log\,x+2\,log\,y-2\,log\,x+2\,log\,y}{2}\big)\big]\) \(\big(\because cos\,C + cos\,D = 2 \,cos\big(\frac{C+D}{2}\big)cos\,\big(\frac{D-C}{2}\big)\big)\) = cos (2 log x) . cos (2 log y) – \(\frac{1}{2}\)[2 cos (2 log x) . cos (2 log y)] = 0. |
|
| 441. |
Name the function used for string output. |
|
Answer» The function write() is used for string output. |
|
| 442. |
If f(x) = 4x – x2, x ∈ R, then write the value of f(a + 1) – f(a – 1). |
|
Answer» f(x) = 4x – x2 f(a+1)-f(a-1) = [4(a+1) -(a+1)2] - [4(a-1)-(a-1)2] = 4[(a+1) -(a-1)]- [ (a+1)2 -(a+1)2] = 4(2)-[(a+1+a-1) (a+1-a+1)] Using : a2 - b2= (a + b)(a-b) f(a+1)-f(a-1)=4(2)-2a(2) = 4(2-a) |
|
| 443. |
If f(x) = \(\frac{1}{1+\frac{1}{x}}\) ; g(x) = \(\frac{1}{1+ \frac{1}{f(x)}}\) , then g(2) equals(a) \(\frac{1}{5}\) (b) \(\frac{1}{25}\) (c) \(\frac{2}{5}\)(d) \(\frac{1}{16}\) |
|
Answer» Answer: (c) = \(\frac{2}{5}\) Given, f (x) = \(\frac{1}{1+\frac{1}{x}}\) and g(x) = \(\frac{1}{1+\frac{1}{f(x)}}\) ∴ f(x) = \(\frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}\) ⇒ g(x) = \(\frac{1}{1+ \frac{1}{\frac{x}{x+1}}}\) = \(\frac{1}{1+ \frac{x+1}{x}}\) = \(\frac{x}{2x+1}\) ⇒ g(2) = \(\frac{2}{2\times 2+1}\) = \(\frac{2}{5}\) |
|
| 444. |
Let f : Q → Q : f(x) = 3x - 4. Show that f is invertible and find f-1. |
|
Answer» To Show: that f is invertible To Find: Inverse of f [NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)] one-one function: A function f : A B is said to be a one-one function or injective mapping if different elements of A have different images in B. Thus for x1, x2 ∈ A & f(x1), f(x2) ∈ B, f(x1) = f(x2) ↔ x1= x2 or x1 ≠ x2 ↔ f(x1) ≠ f(x2) onto function: If range = co-domain then f(x) is onto functions. So, We need to prove that the given function is one-one and onto. Let x1, x2 ∈ Q and f(x) = 3x-4.So f(x1) = f(x2) → 3x1 - 4 = 3x2 - 4 → x1=x2 So f(x1) = f(x2) ↔ x1= x2, f(x) is one-one Given co-domain of f(x) is Q. Let y = f(x) = 3x- 4 , So x = [Range of f(x) = Domain of y] So Domain of y is Q = Range of f(x) Hence, Range of f(x) = co-domain of f(x) = Q So, f(x) is onto function As it is bijective function. So it is invertible Invers of f(x) is f -1(y) =\(\frac{y+4}{3}\) |
|
| 445. |
What is a null string? |
|
Answer» When the length of the string is 0 it is called a null string. |
|
| 446. |
Let ϕ (x) =\(\frac{b(x-a)}{b-a} + \frac{a(x-b)}{a-b}\) , where x ∈ R and a and b are fixed numbers with a ≠ b. Then ϕ (a + b) is equal to(a) ϕ (0) (b) ϕ (a – b) (c) ϕ (ab) (d) ϕ (a) + ϕ (b) |
|
Answer» Answer : (d) = ϕ (a) + ϕ (b) ϕ (x) = \(\frac{b(x-a)}{b-a} + \frac{a(x-b)}{a-b}\) Then, ϕ (a + b) = \(\frac{b(a+b-a)}{b-a} + \frac{a(a+b-b)}{a-b}\) = \(\frac{b^2}{b-a} +\frac{a^2}{a-b} = \frac{b^2-a^2}{b-a} =b+a\) ...(i) Now ϕ (a) = \(\frac{b\times 0}{b-a}\) + \(\frac{a(a-b)}{a-b}\) = a ...(ii) ϕ (b) = \(\frac{b(b-a)}{b-a}\) + \(\frac{a\times 0}{a-b}\) ...(iii) (i), (ii) and (iii) ⇒ ϕ a + b) = ϕ(a) + ϕ(b). |
|
| 447. |
If `f(x)=x(x-1)`is a function from `[1/2,oo)to[-1/4,oo),`then `{x in r :f^(-1)(x)=f(x)}`isa. null setb. `{0,2}`c. `{2}`d. a set containing 3 elementsA. null setB. `{0,2}`C. `{2}`D. a set containing 3 elements |
|
Answer» Correct Answer - C `{x in R:f^(-1)(x)=f(x)}` `={x in R:(f(x))=x}` `f(f(x))=f(x(x-1))=[x(x-1)][x(x-1)-1]` `=x(x-1)[x^(2)-x-1]` Now, `f(f(x))=x` `rArr" "x(x-1)(x^(2)-x-1)=x` `rArr" "x(x^(3)-2x^(2))=0` `rArr" "x=2 (because x in [(1)/(2),oo))` |
|
| 448. |
If `f :R ->R` , `f(x)=x^3 +3`,and `g:R->R`,`g(x)=2x + 1`, then `f^(-1)og^(-1)(23)` equalsA. 2B. 3C. `(14)^(1//3)`D. `(15)^(1//3)` |
|
Answer» Correct Answer - A `f^(-1)og^(-1)(23)=(gof)^(-1)(23)` `"Now "gof(x)=2(x^(3)+3)+1` `"For "2(x^(3)+3)+1=23` `rArr" "x=2` `therefore" "gof^(-1)(23)=2` |
|
| 449. |
Let f(x) = x, g(x) = 1/x and h(x) = f(x) g(x). Then, h(x) = 1 for A. x ∈ R B. x ∈ Q C. x ∈ R – Q D. x ∈ R, x ≠ 0 |
|
Answer» Option : (D) f(x) = x, g(x) = 1/x; h(x) = f(x) g(x) h(x) = 1 f(x)g(x) = 1 = x(\(\frac{1}{x}\)) x ≠ 0 |
|
| 450. |
Let X = {-1, 0, 3, 7, 9} and f : X → R : f(x) x3 + 1. Express the function f as set of ordered pairs. |
|
Answer» Given: f: X → R, f(x) = x3 + 1 Here, X = {-1, 0, 3, 7, 9} For x = -1 f(-1) = (-1)3 + 1 = -1 + 1 = 0 For x = 0 f(0) = (0)3 + 1 = 0 + 1 = 1 For x = 3 f(3) = (3)3 + 1 = 27 + 1 = 28 For x = 7 f(7) = (7)3 + 1 = 343 + 1 = 344 For x = 9 f(9) = (9)3 + 1 = 729 + 1 = 730 ∴ the ordered pairs are (-1, 0), (0, 1), (3, 28), (7, 344), (9, 730) |
|