Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

401.

Find x, if g(x) = 0 whereg(x) = (5x - 6)/7

Answer»

g(x) = \(\frac{5x -6}7\)

g(x) = 0

\(\therefore\) \(\frac{5x -6}7\) = 0

\(\therefore\) x = 6/5

402.

If f : R → R is defined by f (x) = (1 – x)1/3, the f –1 (x) equals(a) (1 – x) –1/3 (b) (1 – x) 3 (c) 1 – x3 (d) 1 – x1/3

Answer»

Answer : (c) 1 – x3 

Let y = f (x) = (1 – x) 1/3 

⇒ y3 = 1 – x 

⇒ x = 1 – y3 

⇒ f –1(x) = 1 – x3

403.

If f(m) = m2 – 3m + 1, find\((\frac{f(2+h)-f(2)}h), h\neq 0\)

Answer»

\(\left(\frac{f(2+h)-f(2)}h\right)\)

\(=\frac{(2+h)^2-3(2+h)+1-(2^2-3(2)+1)}h\) 

 = \(\frac{h^2+h}h\) 

 = h + 1

404.

If f(x) = x2 – 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

Answer»

Given as

f(x) = x2 – 3x + 4.

Let us find the x satisfying f (x) = f (2x + 1).

Here, we have,

f(2x + 1) = (2x + 1)2 – 3(2x + 1) + 4

= (2x) 2 + 2(2x) (1) + 12 – 6x – 3 + 4

= 4x2 + 4x + 1 – 6x + 1

= 4x2 – 2x + 2

Then, f (x) = f (2x + 1)

x2 – 3x + 4 = 4x2 – 2x + 2

4x2 – 2x + 2 – x2 + 3x – 4 = 0
3x2 + x – 2 = 0

3x2 + 3x – 2x – 2 = 0

3x(x + 1) – 2(x + 1) = 0

(x + 1)(3x – 2) = 0

x + 1 = 0 or 3x – 2 = 0

x = –1 or 3x = 2

x = –1 or 2/3

Thus, the values of x are –1 and 2/3.

405.

Write the range of the function f(x) = ex – [x], X ∈ R.

Answer»

f(x) = ex – [x]

0 ≤x-[x]<1 

e0 ≤ ex-[x] <e

1 ≤ ex-[x] < e

Therefore, 

R(f) = [1, e)

406.

Let f: R → R: f(x) = (2x- 7)/ 4 be an invertible function. Find f-1.

Answer»

It is given that

f(x) = (2x- 7)/ 4

We know that

y = (2x- 7)/ 4

It can be written as

4y = 2x – 7

So we get

4y + 7 = 2x

Where x = (4y + 7)/2

So, f -1 = (4y + 7)/2 for all y ∈ R.

407.

Let f: R → R: f(x) = 10x + 3. Find f-1.

Answer»

It is given that

f(x) = 10x + 3

Consider y = 10x + 3

It can be written as

y – 3 = 10x

On further calculation

x = (y – 3)/ 10

So we get

-1 (y) = (y – 3)/ 10

408.

If `f(x)=x^n , n in Nandgof(x)=ng(x)` then g(x) can beA. `n|x|`B. `3x^(1//3)`C. `e^(x)`D. `log|x|`

Answer» Correct Answer - D
409.

Let `f:R to R` be defined by f(x)=3x-4. Then, `f^(-1)`(x) isA. `(x+4)/(3)`B. `(x)/(3)-4`C. `3x+4`D. none of these

Answer» Correct Answer - A
410.

Let `A={x in R: xA` be defined as `f(x)=x(2-x)`. Then , `f^(-1)(x)` isA. `1+sqrt(1-x)`B. `1-sqrt(1-x)`C. `sqrt(1-x)`D. `1pmsqrt(1-x)`

Answer» Correct Answer - B
411.

Give the usage of get().

Answer»

char c; c = cin.get();

412.

Let f: Q → Q: f(x) = 3x – 4. Show that f is invertible and find f -1.

Answer»

We know that

f(x1) = f(x2)

It can be written as

3x1 – 4 = 3x2 – 4

So we get

3x1 = 3x2

Where x1 = x2

f is one-one.

Take y = 3x – 4

It can be written as

y + 4 = 3x

So we get

x = (y + 4)/ 3

If y ∈ R there exists x = (y + 4)/ 3 ∈ R

We know that f (x) = f([y + 4]/ 3) = 3 ([y + 4]/ 3) – 4 = y

f is onto

Here, f is one-one onto and invertible.

Take y = f(x)

So we get

y = 4x – 3

It can be written as

x = (y + 4)/ 3

So f -1 (y) = (y + 4)/ 3

Hence, we define f -1: R → R: f -1(y) = (y + 4)/ 3 for all y ∈ R

413.

`f:R to R` is a function defined by f(x)=`10x -7, if g=f^(-1)` then g(x)=A. `(1)/(10x-7)`B. `(1)/(10x+7)`C. `(x+7)/(10)`D. `(x-7)/(10)`

Answer» Correct Answer - C
414.

Let f: R → R: f(x) = ½ (3x + 1). Show that f is invertible and find f -1.

Answer»

We know that

f(x1) = f(x2)

It can be written as

½ (3x1 + 1) = ½ (3x2 + 1)

So we get

3x1 + 1 = 3x2 + 1

On further calculation

3x1 = 3x2 where x1 = x2

f is one-one.

Take y = ½ (3x + 1)

It can be written as

2y = 3x + 1

We get

2y – 1 = 3x

So x = (2y – 1)/3

If y ∈ R there exists x = (2y – 1)/3 ∈ R

We know that

f(x) = f([2y – 1]/ 3) = ½ (3([2y – 1]/ 3) + 1) = y

f is onto

Here, f is one-one and invertible.

Take y = f(x)

So y = (3x + 1)/2

It can be written as

x = (2y – 1)/ 3

Hence, we define f -1: R → R: f -1(y) = (2y – 1)/ 3 for all y ∈ R

415.

Let `f:A to B and g:B to C` be bijection, then `(fog)^(-1)`=A. `f^(-1)og^(-1)`B. fogC. `g^(-1)of^(-1)`D. gof

Answer» Correct Answer - C
416.

Write the domain and range of the function f(x) = (x-2)/(2-x).f(x) = \(\frac{x-2}{2-x}\).

Answer»

Given,

f(x) = (x-2)/(2-x)

For function to be defined,

2 - x ≠ 0 

x ≠ 2 

Therefore,

D(f) = R-{2}.

Let y = \(\frac{x-2}{2-x}\)

y = -1 

Therefore, 

R(f) = {-1}.

417.

Give the function of put()?

Answer»

It writes a single character into the stream.

418.

Give the function of get()?

Answer»

It reads a single character from the stream.

419.

Let A = [– 2, 2] – {0}. Define f : A → R and g : A → R byf(x) = \(\frac{1}{x^3+2x|x|}\) and g(x) = \(\sqrt{x^4 +\frac{3}{x^2}}\) then,(a) f and g are odd (b) f is odd, g is even (c) f is even, g is odd (d) f and g are even

Answer»

Answer: (b) f is odd g is even

\(f(x) = \frac{1}{x^3+2x|x|}\) 

∴  f(-x) = \(f(x) = \frac{1}{(-x)^3+2(-x)|-x|}\) 

\(f(x) = \frac{1}{-x^3-2x|x|}\) (∴  | – x | = | x |)

\(f(x) =- \frac{1}{x^3+2x|x|}\)  = - f(x) ⇒ f is odd.

g(x) = \(\sqrt{x^4+\frac{3}{x^2}}\) 

∴  g(- x) = \(\sqrt{(-x)^4+\frac{3}{(-x)^2}} = \sqrt{x^4+\frac{3}{x^2}}\) 

= g(x) 

g is even.

420.

What is the function of strrev()?

Answer»

The strrev() function is used to reverse the string.

421.

The range of f(x) = cos [x], for -π/2&lt; x &lt;π/2 isA. {-1,1,0} B. {cos 1, cos 2,1} C. {cos 1, -cos 1,1} D. [-1,1]

Answer»

Option : (B)

Given,

f(x) = cos [x], for -π/2< x <π/2

For -π/2< x <-1,

[x]= -2 

f(x)= cos[x]= cos(-2) 

= cos2 

Because,

cos(-x) = cos(x) 

For-1 ≤x<0 

[x] = -1 

f(x) = cos[x] 

=cos(-1) 

= cos1 

For 0 ≤x< 1,

[x] = 0 

f(x) = cos 0 

= 1

For 1≤ x <π/2,

[x] = 1 

f(x) = cos 1 

Therefore, 

R(f) = {1, cos 1,cos 2} 

Option B is correct.

422.

Let f : R → r be defined by f(x) = 2x + |x|. Then f(2x) + f(-x) – f(x) = A. 2x B. 2|x| C. -2x D. -2|x|

Answer»

Option : (B)

f(x) = 2x + |x|

f(2x) = 2(2x)+|2x| = 4x+2|x| 

f(-x) = 2(-x)+|-x| 

f(2x)+f(-x )- f(x) 

= 4x+2|x|-2x+|-x|-(2x+|x|) 

= 4x+2|x|-2x+|x|-2x-|x|

= 2|x|

423.

The function f (x) = \(sin\big[\,log\,\big(x+\sqrt{x^2+1}\big)\big]\) is(a) an odd function (b) an even function (c) neither even nor odd (d) None of these.

Answer»

Answer : (a) an odd function

f(x) = sin \(\big[\,log\,\big(x+\sqrt {x^2+1}\big)\big]\) 

∴  f(- x) = sin \(\big[\,log\,\big(-x+\sqrt {(-x)^2+1}\big)\big]\)

\(sin\big[\,log\,(\sqrt{1+x^2}-x)\big]\) 

\(sin\big[\,log\,(\sqrt{1+x^2}-x)\frac{(\sqrt{1+x^2}+x)}{(\sqrt{1+x^2}+x)}\big]\) 

\(sin\big[\log\,\big(\frac{(1+x^2)-x^2}{\sqrt{1+x^2}+x}\big)\big]\) 

\(sin \big[\,log\,(\sqrt{1+x^2}+x)^{-1}\big]\)

\(sin\big[\,-log\,(\sqrt{1+x^2}+x)\big]\)   (∴  log a –1 = – log a)

\(-sin[\,log\,(\sqrt{1+x^2}+x)]\)  (∴  sin (– x) = – sin x)

= – f (x) 

⇒ f is an odd function.

424.

The range of the function f(x) = \(\frac{x^2-x}{x^2+2x}\) isA. R B. R –{1} C. R – {-1/2, 1} D. None of these

Answer»

Option : (C)

Let y = (x2-x)/(x2+2x)

y(x2+2x) = x2-x 

yx(x+2) = x(x-1) 

y(x+2) = x-1

x(y-1) = -(1+2y)

x = \(-\frac{(1+2y)}{y-1}\) 

Value of x can’t be zero or it cannot be not defined.. 

y≠1, -1/2 

So, 

Range = R-{-1/2, 1}

425.

Let f(x) = |x – 1|. Then, A. f(x2) = [f(x)]2 B. f(x + y) = f(x) f(y) C. f(|x|) = |f(x)| D. None of these

Answer»

Option : (D)

f(x) = |x-1| 

f(x2) = |x2-1| 

f(x)= (x-1)2 

= x2+1-2x 

So, 

f(x2) ≠ [f(x)]2 

f(x + y) = |x+y-1| 

f(x)f(y) = (x-1)(y-1) 

So, 

f(x + y) ≠ f(x)f(y) 

f(|x|) = ||x|-1| 

Therefore, 

Option D is correct.

426.

If f (x) = x2 + kx + 1 for all x and f is an even function, find k where k ∈ R(a)  1 (b) – 2 (c)  0 (d) – 1

Answer»

Answer: (c) = 0

f (x) = x2 + kx + 1 

Given, f (x) is an even function 

⇒ f (x) = f (– x) 

⇒ x2 + kx + 1 = (– x) 2 + k (– x) + 1 

⇒ x2 + kx + 1 = x2 – kx + 1 

⇒ 2kx = 0 

⇒ k = 0.

427.

Let F(x) = \(\big[\frac{g(x)-g(-x)}{f(x)+f(-x)}\big]^m\) such that m = 2n, n ∈ N and f (– x) ≠ – f (x). Then, F (x) is(a) an odd function (b) an even function (c) constant function (d) None of these

Answer»

Answer : (b) an even function

F(x) = \(\big[\frac{g(x)-g(-x)}{f(x)+f(-x)}\big]^m\) 

∴  F(-x) = \(\big[\frac{g(-x)-g(x)}{f(-x)+f(x)}\big]^m =\big[\frac{-g(x)-g(-x)}{f(-x)+f(x)}\big]^m\)

\(\big[-\big(\frac{g(x)-g(-x)}{f(-x)+f(x)}\big)\big]^{2n}\)

\(\big[\frac{g(x)-g(-x)}{f(-x)+f(x)}\big]\) (∴ 2n ⇒ even power)

= F (x) 

F is an even function.

428.

The range of the function f(x) = x/|x| isA. R – {0} B. R – {-1, 1} C. {-1, 1} D. None of these

Answer»

Option : (C)

Given,

f(x) = x/|x|

We know that,

|x| = -x in (-∞, 0) and 

|x| = x in [0, ∞)

So, 

f(x) = \(\frac{x}{-x}\)

= -1 in (-∞, 0) 

And f(x) = \(\frac{x}{-x}\) in (0, ∞) 

As clearly shown above f(x) has only two values 1 and -1

So, 

Range of f(x) = {-1, 1}

429.

Name the function used to compare two strings.

Answer»

The function strcmp() is used to compare two strings.

430.

Give the function of strcpy().

Answer»

The strcpy() is used to copy a string into another string.

431.

The range of the function f(x) = |x – 1| is A. (-∞, 0) B. [0, ∞) C. (0, ∞) D. R

Answer»

Option : (B)

Given,

f(x) = |x – 1|

A modulus function always gives a positive value..

R(f) = [0,∞)

432.

The range of the function f(x) = \(\frac{x+2}{|x+2|}\),x ≠ -2 isA. {-1, 1} B. {-1, 0, 1} C. {1} D. (0, ∞)

Answer»

Option : (A)

f(x) = (x+2)/|x+2|

When x>-2,

We have,

f(x) = \(\frac{x+2}{x+2}\) 

= 1 

When x<-2, 

We have,

f(x) = \(\frac{x+2}{-(x+2)}\) 

= -1 

R(f) = {-1, 1}

433.

Let f : R → R be defined as f (x) = x2 + 1. Then find f –1(– 5)(a) {0} (b)  ϕ   (c) {5} (d) {– 5, 5} 

Answer»

Answer: (b) =  ϕ  

f (x) = x2 + 1 

Let y = f (x) = x2 + 1 

⇒ y – 1 = x

⇒ x = ± \(\sqrt{y-1}\) 

⇒ f –1(x) = ± \(\sqrt{x-1}\)

∴  f –1(– 5) = ±  \(\sqrt{-5-1}\)  ± \(\sqrt{-6}\) ∉  R 

∴  f –1(– 5) is the null set.

434.

Name the function used to combine the two strings.

Answer»

The strcat() function is used to combine the two strings.

435.

The function f (x) = sin x + cos x will be(a) an even function (b) an odd function (c) a constant function (d) none of these 

Answer»

Answer: (d) = none of these 

f (x) = sin x + cos x 

f (– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ f (x) or – f (x) 

∴  f (x) is neither even nor odd nor constant.

436.

If `f:R to R` be a mapping defined by `f(x)=x^(3)+5`, then `f^(-1)`(x) is equal toA. `(x+5)^(1//3)`B. `(x-5)^(1//3)`C. `(5-x)^(1//3)`D. 5-x

Answer» Correct Answer - B
437.

If f (x) = x – x2 + x3 – x4 + .... ∞ for | x | &lt; 1, then f –1(x) is equal to(a) \(\frac{1+x}{x}\)(b) \(\frac{x}{1+x}\)(c) \(\frac{1-x}{x}\)(d) \(\frac{x}{1-x}\)

Answer»

Answer: (d) = \(\frac{x}{1-x}\)

f (x) = x – x2 + x3 – x4 + ..... ∞, | x | < 1 

This is an infinite G.P. with a = x, r = – x. 

∴  f (x) = S\(\frac{a}{1-r}\) = \(\frac{x}{1+x}\) 

Let y = f(x) = \(\frac{x}{1+x}\)

⇒ y (1 + x) = x 

⇒ y + xy = x 

⇒ y = x (1 – y) 

⇒ y = \(\frac{y}{1-y}\) 

⇒ \(f^{-1}(x) = \frac{x}{1-x}\)

438.

Name the function used to find the length of a string.

Answer»

The strlen() function is used to find the length of a string.

439.

If  f (x) = \(\frac{4^x}{4^x+2}\) , then f (x) + f (1 – x) is equal to (a) – 1 (b) 0 (c) 1 (d) None of these

Answer»

Answer: (c) = 1

Given,

f (x) = \(\frac{4^x}{4^x+2}\)

f (1 – x) = \(\frac{4^{1-x}}{4^{1-x}+2}\) = \(\frac{4.4^{-x}}{4^1.4^{-x}+2}\) 

\(\frac{4.\frac{1}{4^x}}{4.\frac{1}{4^x}+2}\) 

\(\frac{\frac{4}{4^x}}{\frac{4+2.4^x}{4^x}}\) = \(\frac{4}{4+2.4^x}=\frac{2}{2+4^x}\) 

Now f (x) + f (1 – x) = \(\frac{4^x}{4^x+2}\) + \(\frac{2}{2+4^x}\) 

\(\frac{4^x+2}{4^x+2}\) 

= 1 

440.

If f (x) = cos (log x), then f (x2) . f (y2) - \(\frac{1}{2}\big[f(x^2.y^2)+f\big(\frac{x^2}{y^2}\big)\big]\) equals(a) – 2 (b) – 1 (c)  \(\frac{1}{2}\)(d)  0

Answer»

Answer : (d) = 0 

Given, f (x) = cos (log x) 

⇒ f (x2) = cos (log x2) = cos (2 log x) 

f (y2) = cos (log y2) = cos (2 log y)

\(f\big(\frac{x^2}{y^2}\big)\) = \(cos\big(log\frac{x^2}{y^2}\big)\) = cos (log x2 - log y2 )

= cos (2 log x – 2 log y) 

f (x2y2) = cos (log x2y2) = cos (log x2 + log y2) = cos (2 log x + 2 log y)

Now, f(x2). f(y2) - \(\frac{1}{2}\) \(\big[f\big(\frac{x^2}{y^2}\big) +f (x^2y^2)\big]\) 

= cos (2 log x) . cos (2 log y) – \(\frac{1}{2}\) [cos (2 log x – 2 log y) + cos (2 log x + 2 log y)]

= cos (2 log x) . cos (2 log y) - 

\(\frac{1}{2}\) \(\big[ 2\,cos\big(\frac{2\,log\,x-2\,log\,y+2\,log\,x+2\,log\,y}{2}\big) cos \big( \frac{2\,log\,x+2\,log\,y-2\,log\,x+2\,log\,y}{2}\big)\big]\)

\(\big(\because cos\,C + cos\,D = 2 \,cos\big(\frac{C+D}{2}\big)cos\,\big(\frac{D-C}{2}\big)\big)\) 

= cos (2 log x) . cos (2 log y) – \(\frac{1}{2}\)[2 cos (2 log x) . cos (2 log y)] = 0.

441.

Name the function used for string output.

Answer»

The function write() is used for string output.

442.

If f(x) = 4x – x2, x ∈ R, then write the value of f(a + 1) – f(a – 1).

Answer»

f(x) = 4x – x2

f(a+1)-f(a-1) = [4(a+1) -(a+1)2] - [4(a-1)-(a-1)2

= 4[(a+1) -(a-1)]- [ (a+1)2 -(a+1)2

= 4(2)-[(a+1+a-1) (a+1-a+1)] 

Using : a2 - b2= (a + b)(a-b) 

f(a+1)-f(a-1)=4(2)-2a(2) 

= 4(2-a)

443.

If f(x) = \(\frac{1}{1+\frac{1}{x}}\) ; g(x) = \(\frac{1}{1+ \frac{1}{f(x)}}\) , then g(2) equals(a) \(\frac{1}{5}\) (b) \(\frac{1}{25}\) (c) \(\frac{2}{5}\)(d) \(\frac{1}{16}\)

Answer»

Answer: (c) = \(\frac{2}{5}\) 

Given, f (x) = \(\frac{1}{1+\frac{1}{x}}\) and g(x) = \(\frac{1}{1+\frac{1}{f(x)}}\)

∴  f(x) = \(\frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}\) 

⇒ g(x) = \(\frac{1}{1+ \frac{1}{\frac{x}{x+1}}}\) 

\(\frac{1}{1+ \frac{x+1}{x}}\) = \(\frac{x}{2x+1}\) 

⇒ g(2) = \(\frac{2}{2\times 2+1}\) 

\(\frac{2}{5}\)

444.

Let f : Q → Q : f(x) = 3x - 4. Show that f is invertible and find f-1.

Answer»

To Show: that f is invertible

To Find: Inverse of f

[NOTE: Any functions is invertible if and only if it is bijective functions (i.e. one-one and onto)]

one-one function: A function f : A B is said to be a one-one function or injective mapping if different

elements of A have different images in B. Thus for x1, x2 ∈ A & f(x1), f(x2) ∈ B, f(x1) = f(x2) ↔ x1= x2 or x1 ≠ x2 ↔ f(x1) ≠  f(x2)

onto function: If range = co-domain then f(x) is onto functions.

So, We need to prove that the given function is one-one and onto.

Let x1, x2 ∈ Q and f(x) = 3x-4.So f(x1) = f(x2) → 3x1 - 4 = 3x2 - 4 → x1=x2

So f(x1) = f(x2) ↔ x1= x2, f(x) is one-one

Given co-domain of f(x) is Q.

Let y = f(x) = 3x- 4 , So x = [Range of f(x) = Domain of y]

So Domain of y is Q = Range of f(x)

Hence, Range of f(x) = co-domain of f(x) = Q

So, f(x) is onto function

As it is bijective function. So it is invertible

Invers of f(x) is f -1(y) =\(\frac{y+4}{3}\)

445.

What is a null string?

Answer»

When the length of the string is 0 it is called a null string.

446.

Let ϕ (x) =\(\frac{b(x-a)}{b-a} + \frac{a(x-b)}{a-b}\) , where x ∈ R and a and b are fixed numbers with a ≠ b. Then ϕ (a + b) is equal to(a) ϕ (0) (b) ϕ (a – b) (c) ϕ (ab) (d) ϕ (a) + ϕ (b)

Answer»

Answer : (d) = ϕ (a) + ϕ (b)

ϕ (x) = \(\frac{b(x-a)}{b-a} + \frac{a(x-b)}{a-b}\) 

Then, ϕ (a + b) = \(\frac{b(a+b-a)}{b-a} + \frac{a(a+b-b)}{a-b}\) 

\(\frac{b^2}{b-a} +\frac{a^2}{a-b} = \frac{b^2-a^2}{b-a} =b+a\) ...(i)

Now ϕ (a) = \(\frac{b\times 0}{b-a}\) + \(\frac{a(a-b)}{a-b}\) = a ...(ii)

ϕ (b) = \(\frac{b(b-a)}{b-a}\) + \(\frac{a\times 0}{a-b}\)  ...(iii)

(i), (ii) and (iii) ⇒ ϕ a + b) = ϕ(a) + ϕ(b).

447.

If `f(x)=x(x-1)`is a function from `[1/2,oo)to[-1/4,oo),`then `{x in r :f^(-1)(x)=f(x)}`isa. null setb. `{0,2}`c. `{2}`d. a set containing 3 elementsA. null setB. `{0,2}`C. `{2}`D. a set containing 3 elements

Answer» Correct Answer - C
`{x in R:f^(-1)(x)=f(x)}`
`={x in R:(f(x))=x}`
`f(f(x))=f(x(x-1))=[x(x-1)][x(x-1)-1]`
`=x(x-1)[x^(2)-x-1]`
Now, `f(f(x))=x`
`rArr" "x(x-1)(x^(2)-x-1)=x`
`rArr" "x(x^(3)-2x^(2))=0`
`rArr" "x=2 (because x in [(1)/(2),oo))`
448.

If `f :R ->R` , `f(x)=x^3 +3`,and `g:R->R`,`g(x)=2x + 1`, then `f^(-1)og^(-1)(23)` equalsA. 2B. 3C. `(14)^(1//3)`D. `(15)^(1//3)`

Answer» Correct Answer - A
`f^(-1)og^(-1)(23)=(gof)^(-1)(23)`
`"Now "gof(x)=2(x^(3)+3)+1`
`"For "2(x^(3)+3)+1=23`
`rArr" "x=2`
`therefore" "gof^(-1)(23)=2`
449.

Let f(x) = x, g(x) = 1/x and h(x) = f(x) g(x). Then, h(x) = 1 for A. x ∈ R B. x ∈ Q C. x ∈ R – Q D. x ∈ R, x ≠ 0

Answer»

Option : (D)

f(x) = x, g(x) = 1/x; 

h(x) = f(x) g(x)

h(x) = 1 

f(x)g(x) = 1

= x(\(\frac{1}{x}\))

x ≠ 0

450.

Let X = {-1, 0, 3, 7, 9} and f : X → R : f(x) x3 + 1. Express the function f as set of ordered pairs.

Answer»

Given: f: X → R, f(x) = x3 + 1 

Here, X = {-1, 0, 3, 7, 9} 

For x = -1 

f(-1) = (-1)3 + 1 = -1 + 1 = 0 

For x = 0 

f(0) = (0)3 + 1 = 0 + 1 = 1 

For x = 3 

f(3) = (3)3 + 1 = 27 + 1 = 28 

For x = 7 

f(7) = (7)3 + 1 = 343 + 1 = 344 

For x = 9 

f(9) = (9)3 + 1 = 729 + 1 = 730 

∴ the ordered pairs are (-1, 0), (0, 1), (3, 28), (7, 344), (9, 730)