Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

551.

Find `gof` if `f(x)=8x^(3) and g(x)=x^(1/3)`A. xB. `2x`C. `(x)/(2)`D. `3x^(2)`

Answer» Correct Answer - B
`(g o f)(x)=g [f(x)] =g(8x^(3))=(8x^(3))^(1/3) =2x`
552.

Let f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)). Write down g o f.

Answer»

To find: g o f

Formula used: g o f = g(f(x))

Given: (i) f = {(1, 2), (3, 5), (4, 1)}

(ii) g = {(1, 3), (2, 3), (5, 1)}

We have,

gof(1) = g(f(1)) = g(2) = 3

gof(3) = g(f(3)) = g(5) = 1

gof(4) = g(f(4)) = g(1) = 3

g o f = {(1, 3), (3, 1), (4, 3)}

553.

f, g and h are three functions defined from R to R as following: (i) f(x) = x2 (ii) g(x) = x2 + 1 (iii) h(x) = sin x That, find the range of each function.

Answer»

(i) f: R → R such that f(x) = x2 

Since the value of x is squared, f(x) will always be equal or greater than 0. 

∴ the range is [0, ∞) 

(ii) g: R → R such that g(x) = x2 + 1 

Since, the value of x is squared and also adding with 1, g(x) will always be equal or greater than 1. 

∴ Range of g(x) = [1, ∞) 

(iii) h: R → R such that h(x) = sin x 

We know that, sin (x) always lies between -1 to 1 

∴ Range of h(x) = (-1, 1)

554.

Let A = {1, 2, 3, 4} and f = {(1, 4), (2, 1) (3, 3), (4, 2)}. Write down (f o f).

Answer»

To find: f o f

Formula used: f o f = f(f(x))

Given: (i) f = {(1, 4), (2, 1) (3, 3), (4, 2)}

We have,

fof(1) = f(f(1)) = f(4) = 2

fof(2) = f(f(2)) = f(1) = 4

fof(3) = f(f(3)) = f(3) = 3

fof(4) = f(f(4)) = f(2) = 1

f o f = {(1, 2), (2, 4), (3, 3), (4, 1)}

555.

Let f : R → R : f(x) = x2 and g : C → C: g(x) = x2 , where C is the set of all complex numbers. Show that f ≠ g.

Answer»

It is given that f : R → R and g : C → C 

Thus, Domain (f) = R and Domain (g) = C 

We know that, Real numbers ≠ Complex Number 

∵, Domain (f) ≠ Domain (g) 

∴ f(x) and g(x) are not equal functions 

∴ f ≠ g

556.

If f : (0, ∞) → (0, ∞) and f (x) = \(\frac{x}{1+x}\) ,  then the function f is(a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto.

Answer»

Answer: (b) = one - one but not onto 

 ∀  (x, y) ∈ (0, ∞) 

f (x) = f (y) ⇒ \(\frac{x}{1+x}\) = \(\frac{y}{1+y}\) 

⇒ x + xy = y + xy 

⇒ x = y 

⇒ f is one-one 

Let z = f (x) = \(\frac{x}{1+x}\) 

⇒ z + zx = x

⇒ z = x (1 – z) ⇒ x = \(\frac{z}{1-z}\) 

⇒ x is not defined for z = 1 and 1 ∈ (0, ∞) 

∴  1 ∈ (0, ∞) has no pre-image in (0, ∞) 

⇒ f is not onto

557.

Let f : R → R : f(x) = 3x + 2, find f{f(x)}.

Answer»

To find: f{f(x)}

Formula used: (i) f o f = f(f(x))

Given: (i) f : R → R : f(x) = 3x + 2

We have,

f{f(x)} = f(f(x)) = f(3x + 2)

f o f =3(3x + 2) + 2

= 9x + 6 + 2

= 9x + 8

f{f(x)} = 9x + 8

558.

Let f : {3, 9, 12} → {1, 3, 4} and g : {1, 3, 4, 5}→ {3, 9} bedefined as f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3), (4, 9), (5, 9)}. Find (i) (g o f) (ii) (f o g).

Answer»

(i) g o f

To find: g o f

Formula used: g o f = g(f(x))

Given: f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3),(4, 9), (5, 9)}

Solution: We have,

gof(3) = g(f(3)) = g(1) = 3

gof(9) = g(f(9)) = g(3) = 3

gof(12) = g(f(12)) = g(4) = 9

g o f = {(3, 3), (9, 3), (12, 9)}

(ii) f o g

To find: f o g

Formula used: f o g = f(g(x))

Given: f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3),(4, 9), (5, 9)}

Solution: We have,

fog(1) = f(g(1)) = f(3) = 1

fog(3) = f(g(3)) = f(3) = 1

fog(4) = f(g(4)) = f(9) = 3

fog(5) = f(g(5)) = f(9) = 3

f o g = {(1, 1), (3, 1), (4, 3), (5, 3)}

559.

Let f: R → R be a function defined by f (x) = \(\frac{x-m}{x-n}\) , when m ≠ n, then(a) f is one-one onto (b) f is many-one onto (c) f is one-one into (d) f is many-one into

Answer»

Answer: (c) = f is one - one into 

 ∀ (x, y) ∈ R, f (x) = f (y) 

⇒ \(\frac{x-m}{x-n}\) = \(\frac{y-m}{y-n}\) 

⇒ (x – m) (y – n) = (y – m) (x – n) 

⇒ xy – my – nx + mn = yx – mx – ny + mn 

⇒ mx – nx = my – ny 

⇒ (m – n) x = (m – n) y 

⇒ x = y 

⇒ f is one-one.

Let z = f (x) = \(\frac{x-m}{x-n}\)  

⇒ zx – zn = x – m 

⇒ zx – x = zn – m 

⇒ x (z – 1) = zn – m

⇒ x = \(\frac{zn-m}{z-1} = \frac{m-zn}{1-z}\)  

x is not defined for z = 1 

⇒ for z = 1, there exists no pre-image in R 

⇒ f is not onto. 

∴  f is one-one, into function.

560.

Let f : R → R : f(x) = (3 - x3)1/3. Find f o f.

Answer»

To find: f o f

Formula used: (i) f o f = f(f(x))

Given: (i) f : R → R : f(x) = (3 - x3)1/3

We have,

f o f = f(f(x)) =(3 - x3)1/3

f o f ={3 -{(3 - x3)1/3}]1/3

= [3 - (3 - x3)]1/3

= [3 - 3 + x3]1/3

= [x3]1/3

= x

f o f (x) = x

561.

Let f : R → R : f(x) = |x|, prove that f o f = f.

Answer»

To prove: f o f = f 

Formula used: f o f = f(f(x)) 

Given: (i) f : R → R : f(x) = |x| 

Solution: We have, 

f o f = f(f(x)) = f(|x|) =||x||= |x| = f(x) 

Clearly f o f = f. 

Hence Proved.

562.

Let f : R → R : f(x) = x2 and g : R → R : g(x) = (x + 1). Show that (g o f) ≠ (f o g).

Answer»

To prove: (g o f) ≠ (f o g)

Formula used: (i) g o f = g(f(x))

(ii) f o g = f(g(x))

Given: (i) f : R → R : f(x) = x2

(ii) g : R → R : g(x) = (x + 1)

Proof: We have,

g o f = g(f(x)) = g(x2) = ( x2 + 1 )

f o g = f(g(x)) = g(x+1) = [ (x+1)2 + 1 ] = x2 + 2x + 2

From the above two equation we can say that (g o f) ≠ (f o g)

Hence Proved

563.

Let f : R → R and g : R → R defined by f(x) = x2 and g(x) = (x + 1). Show that g o f ≠ f o g.

Answer»

To prove: g o f ≠ f o g

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f : R → R : f(x) = x2

(ii)g : R → R g(x) = (x + 1)

We have,

f o g = f(g(x)) = f(x + 7)

f o g = (x + 7)2 = x 2 + 14x + 49

g o f = g(f(x)) = g(x2)

g o f = (x2 + 1) = x2 + 1

Clearly g o f ≠ f o g

Hence Proved

564.

Consider f : {4, 5, 6} → {p, q, r} given by f (4) = p, f (5) = q, f (6) = r. Find the inverse of f i.e., f –1 and show that (f –1) –1 = f.

Answer»

Given, 

f : {4, 5, 6} → {p, q, r} such that 

f(4) = p, f (5) = q, f (6) = r 

⇒ f = {4, p), (5, q), (6, r)} (f defined by ordered pairs)

⇒ f is one-one and onto 

⇒ f –1 exists 

⇒ f –1 = {(p, 4), (q, 5), (r, 6)} 

(∵ components of ordered pains are interchanged in case of inverse functions) 

⇒ (f –1) –1 = {(4, p), (5, q), (6, r)} 

= f

565.

Let f : R → R : f(x) = (x2 + 3x + 1) and g: R → R : g(x) = (2x - 3). Write down the formulae for (i) g o f (ii) f o g (iii) g o g

Answer»

(i) g o f 

To find: g o f 

Formula used: g o f = g(f(x)) 

Given: (i) f : R → R : f(x) = (x2 + 3x + 1) 

(ii) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

g o f = g(f(x)) = g(x2 + 3x + 1) = [ 2(x2 + 3x + 1) – 3 ] 

⇒ 2x2 + 6x + 2 – 3 

⇒ 2x2 + 6x – 1 

g o f (x) = 2x2 + 6x – 1 

(ii) f o g 

To find: f o g 

Formula used: f o g = f(g(x)) 

Given: (i) f : R → R : f(x) = (x2 + 3x + 1) 

(ii) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

f o g = f(g(x)) = f(2x - 3) = [ (2x - 3)2 + 3(2x – 3) + 1 ] 

⇒ 4x2 - 12x + 9 + 6x – 9 + 1 

⇒ 4x2 - 6x + 1 

f o g (x) = 4x2 - 6x + 1 

(iii) g o g 

To find: g o g 

Formula used: g o g = g(g(x)) 

Given: (i) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

g o g = g(g(x)) = g(2x - 3) = [ 2(2x – 3) - 3 ] 

⇒ 4x – 6 - 3 

⇒ 4x - 9 

g o g (x) = 4x – 9

566.

Prove that the function f: R → R : f(x)= 2x is one-one and onto.

Answer»

To prove: function is one-one and onto

Given: f: R → R : f(x)= 2x

We have,

f(x) = 2x

For, f(x1) = f(x2)

⇒ 2x1 = 2x2

⇒ x1 = x2

When, f(x1) = f(x2) then x1 = x2

∴ f(x) is one-one

f(x) = 2x

Let f(x) = y such that \(y\in R\)

⇒ y = 2x

\(\Rightarrow x=\frac{y}{2}\)

Since \(y\in R\)

\(\Rightarrow \frac{y}{2}\in R\)

⇒ x will also be a real number, which means that every value of y is associated with some x

∴ f(x) is onto

Hence Proved

567.

Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer»

Given function f: R → R given by f(x) = 4x + 3

Let us show that the given function is invertible.

Consider injection of f:

Let x and y be any two elements of domain (R),

Such that f(x) = f(y)

⇒ 4x + 3 = 4y + 3

⇒ 4x = 4y

⇒ x = y

Therefore, f is one-one.

Now surjection of f:                 

Let y be in the co-domain (R),

Such that f(x) = y.

⇒ 4x + 3 = y 

⇒ 4x = y - 3

⇒ x = (y - 3)/4 in R (domain)

⇒ f is onto.

Therefore, f is a bijection and, hence, is invertible.

Let us find f -1

Let f-1(x) = y ...(1)

⇒ x = f(y)

⇒ x = 4y + 3

⇒ x − 3 = 4y

⇒ y = (x - 3)/4

Now put these values in 1 we get

Therefore, f-1(x) = (x - 3)/4 

568.

Let f : R → R : f(x) = (2x + 1) and g : R → R : g(x) = (x2 - 2). Write down the formulae for (i) (g o f) (ii) (f o g) (iii) (f o f) (iv) (g o g)

Answer»

(i) g o f

To find: g o f

Formula used: g o f = g(f(x))

Given: (i) f : R → R : f(x) = (2x + 1)

(ii) g : R → R : g(x) = (x2 - 2)

Solution: We have,

g o f = g(f(x)) = g(2x + 1) = [ (2x + 1)2 – 2 ]

⇒ 4x2 + 4x + 1 – 2

⇒ 4x2 + 4x – 1

g o f (x) = 4x2 + 4x – 1

(ii) f o g

To find: f o g

Formula used: f o g = f(g(x))

Given: (i) f : R → R : f(x) = (2x + 1)

(ii) g : R → R : g(x) = (x2 - 2)

Solution: We have,

f o g = f(g(x)) = f(x2 - 2) = [ 2(x2 - 2) + 1 ]

⇒ 2x2 - 4 + 1

⇒ 2x2 – 3

f o g (x) = 2x2 – 3

(iii) f o f

To find: f o f

Formula used: f o f = f(f(x))

Given: (i) f : R → R : f(x) = (2x + 1)

Solution: We have,

f o f = f(f(x)) = f(2x + 1) = [ 2(2x + 1) + 1 ]

⇒ 4x + 2 + 1

⇒ 4x + 3

f o f (x) = 4x+ 3

(iv) g o g

To find: g o g

Formula used: g o g = g(g(x))

Given: (i) g : R → R : g(x) = (x2 - 2)

Solution: We have,

g o g = g(g(x)) = g(x2 - 2) = [ (x2 - 2)2 – 2]

⇒ x4 -4x2 + 4 - 2

⇒ x 4 -4x2 + 2

g o g (x) = x4 -4x2 + 2

569.

Let f : N → N : f(x) = 2x, g : N → N : g(y) = 3y + 4 and h : N → N : h(z) = sin z. Show that h o (g o f ) = (h o g) o f.

Answer»

To show: h o (g o f ) = (h o g) o f

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f : N → N : f(x) = 2x

(ii) g : N → N : g(y) = 3y + 4

(iii) h : N → N : h(z) = sin z

Solution: We have,

LHS = h o (g o f )

⇒ h o (g(f(x))

⇒ h(g(2x))

⇒ h(3(2x) + 4)

⇒ h(6x +4)

⇒ sin(6x + 4)

RHS = (h o g) o f

⇒ (h(g(x))) o f

⇒ (h(3x + 4)) o f

⇒ sin(3x+4) o f

Now let sin(3x+4) be a function u

RHS = u o f

⇒ u(f(x))

⇒ u(2x)

⇒ sin(3(2x) + 4)

⇒ sin(6x + 4) = LHS

Hence Proved

570.

Let f : R → R : f(x) = x2 + 2 and \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\)find f o g and g o f and hence find (f o g) (2) and (g o f) (-3).

Answer»

To find: f o g, g o f ,(f o g) (2) and (g o f) (-3)

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f : R → R : f(x) = x2 + 2

(ii) \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\)

f o g = f(g(x))

\(\Rightarrow f(\frac{x}{x-1})\)

\(\Rightarrow (\frac{x}{x-1})^2+2\)

\(\Rightarrow\frac{(x)^2}{(x-1)^2}+2\)

\(fog(2)=\frac{(2)^2}{(2-1)^2}+2\)

\(=\frac{4}{1}+2\)

= 6

g o f = g(f(x))

⇒ g(x2+2)

\(\Rightarrow \frac{x^2+2}{x^2+2-1}\)

\(\Rightarrow \frac{x^2+2}{x^2+1}\)

\((gof)(-3)=\frac{-3^2+2}{-3^2+1}\)

\(=\frac{9+2}{9+1}\)

\(=\frac{11}{10}\)

571.

If `f` be a greatest integer function and `g` be an absolute value function, find the value of `([email protected])(- 3/2)+([email protected])(4/3).`

Answer» Correct Answer - 2
`( f o g) ((-3)/(2)) = f {g ((-3)/(2))}= f (|(-3)/(2)|) = f((3)/92)) =[(3)/(2)] =1 `
`(g o f) ((4)/(3)) =g {f ((4)/(3))} =g [(4)/(3)] =g(1) =|1|=1`
572.

If f be a greatest integer function and g be an absolute value function, find the value of(f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\).

Answer»

To find: (f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\).

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) f is a greatest integer function

(ii) g is an absolute value function

f(x) = [x] (greatest integer function)

g(x) = (absolute value function)

\(f(\frac{4}{3})=[\frac{4}{3}]=1.....(i)\)

\(g(\frac{-3}{2})=[\frac{-3}{2}]=1.5......(ii)\)

Now, for (f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\).

Substituting values from (i) and (ii)

\(\Rightarrow f(1.5)+g(1)\)

⇒ [1.5] +[1]

⇒ 1 + 1 = 2

573.

If `f` be a greatest integer function and `g` be an absolute value function, find the value of `([email protected])(- 3/2)+([email protected])(4/3).`

Answer» Correct Answer - 2
`( f o g) ((-3)/(2)) = f {g ((-3)/(2))}= f (|(-3)/(2)|) = f((3)/92)) =[(3)/(2)] =1 `
`(g o f) ((4)/(3)) =g {f ((4)/(3))} =g [(4)/(3)] =g(1) =|1|=1`
574.

Let `f : R to R : f(x) =(2x-7)/(4)` be an invertible function . Find `f^(-1)`

Answer» Correct Answer - `f^(-1) (y)=(1)/(2) (4y+7) " for all " y in R`
`y=(2x-7)/( 4) rArr x=(1)/(2) (4y+7)`
`rArr f^(-1) (y) = (4y+7)/(2) " for all " y in R`
575.

If `f:R to R` is defined by `f(x) = x^(2)-3x+2,` write `f{f(x)}`.

Answer» We have
`(f o f) (x) = f{f(x)}= f(x^(2) -3x +2) =f(y)` where `y=(x^(2)-3x+2)`
`=(y^(2) -3y +2)`
` =(x^(2) -3x +2)^(2) -3 (x^(2) -3x +2)+2`
` -=(x^(4) -6x^(3)+ 10x^(2) -3x).`
576.

(Associativity ) Let `f: A to B , g : B to C " and " h: C to `. Then prove that ( h o g) o f = h o ( g o f )`

Answer» Let ` x in A` .Then
`{( h o g ) o f } (x) = (h o g) { f (x)}`
`=h [g {f (x) }]`
`=h [( g o f ) (x) ]`
`={h o (g o f )}(x)]`
`:. ( h o g ) o f = h o ( g o f)`
577.

Let `A = R - {(3)/(5)} " and " B =R -{(7)/(5)}` Let `f: A to B : f (x) =(7x +4)/(5x-3) " and " g: B to A : g (y)= (3y+4)/(5y-7)` Show that `(g o f) I_(A) " and " ( f o g) = I_(B)`

Answer» Let `x in A. `Then
(g o f) (x) = g [f (x)]
`=g ((7x+4)/(5x-3))`
`=g(y) " where " y =(7x+4)/(5x-3)`
`=(3y+4)/(5y-7) =(3((7x+4)/(5x-3))+4)/(5((7x+4)/(5x-3))-7) " " "[using (i)]"`
`=((21 x+12 +20x-12))/((5x-3)) xx ((5x-3))/((35 x+20 -35 x+21))`
`=(41x)/(41) =x= I_(A) (x)`
`:. (g o f) =I_(A)`
Again let `y in B .` Then
( f o g) (y) = f[g (y)]
`=f((3y+4)/(5y-7))`
`=f(z) " where " z= (3y+4)/(5y-7)`
`=(7z+4)/(5z-3) =(7((3y+4)/(5y-7))+4)/(5((3y+4)/(5y-7))-3)`
`=((21 y+28 +20y-28))/((5y-7)) xx ((5y-7))/((15y+20 -15y+21))`
`=(41y)/(41) =y= I_(B) (y)`
`:. (f o g) =I_(B)`
hence (f o g ) `=I_(A) " and " (f o g) =I_(B)`
578.

Let `R^(+) ` be the set of all positive real numbers. Let `f : R^(+) to R^(+) : f(x) =e^(x) ` for all `x in R^(+)` . Show that f is invertible and hence find `f^(-1)`

Answer» f is one-one since
`f(x_(1)) =f(x_(2)) rArr e^(x) 1 rArr =e^(x)2 rArr x_(1)= x_(2)`
Now for each `y in R^(+)` there exists a positive real number namely log y such that
`f(log y) =e^(log y) =y`
`:. ` f is onto .
Thus , f is one-one onto and hence invertible .
we define :
`f^(-1) : R^(+) to R^(+) : f^(-1) (y) = " log y for all " y in R^(+)`
579.

Let `f: [-1 ,1] to Y : f(x) =.(x)/((x+2)), x ne -2 " and " Y=` range (`f`). Show that `f` is invertible and find `f^(-1)`

Answer» we have
`f(x_(1)) =f(x_(2)) rArr .(x_(1))/(x_(1)=2) =(x_(2))/(x_(2)+2)`
`rArr x_(1)x_(2) +2x_(1) =x_(1)x_(2) +2x_(2)`
`rArr 2(x_(1)-x_(2)) =0`
`rArr x_(1) - x_(2)=0`
`rArr x_(1) =x_(2)`
`:.` f is one-one
Since range `( f) =Y ` so f is onto
Thus f is one-one onto and therefore invertible .
Let `y in Y.` Then there exists `x in [ -1,1]` such that f(x) =y.
Now ` y = f(x) rArr y= (x)/((x+2)) `
` rArr x= (2y)/((1-y))`
`rArr f^(-1) (y) = (2y)/((1-y))`
Thus we define :
`f^(-1) : [ -1,1] to Y : f^(-1) (y) = (2y)/((1-y)) , y ne 1`
580.

Let `f : R to R : f (x) =10x +7.` Find the function `g : R to R : g o f = f o g =I_(g)`

Answer» Clearly `g = f^(-1)`
Now `f(x_(1)) =f(x_(2)) rArr 10x_(1) +7 =10x_(2) +7`
`rArr x_(1) =x_(2)`
`:. ` f is one-one
Now `y =f(x) rArr y = 10x +7`
`rArr x= ((y-7))/(10)`
Clearly for each `y in R` (codomain of f) there exists `x in R` such that
`f(x) =f ((y-7)/(10)) ={ 10.((y-7)/(10))+7 } =y`
` :.` f is onto.
Thus f is one-one onto and therefore `f^(-1)` exists
we define `f^(-1) : R to R : f^(-1) (y) = (y-7)/(10)`
Hence `g : R to R : g (y) = (y-7)/(10) ` [using (i)]
581.

Let `f : R to R : f (x) =10x +3` .Find `f^(-1)`

Answer» Correct Answer - `f^(-1) (y) =(1)/(10) (y-3) " for all " y in R`
`y=10x+3 rArr x=(y-3)/(10)` ,
`rArr f^(-1) (y)= ((y-3))/(10)`
582.

Let ` f(x) : R to R b " and " g (x) =x-7 , x in R ". Find "(f o g) (7)`

Answer» Correct Answer - 7
(f o g )(7) =f{g(7)}=f(7-7) =f(0) =(0+7)=7
583.

Let `A ={1,2,3,4}. ` Let ` f : A to A " and " g : A to A` defined by `f : ={(1,4),(2,1),(3,3),(4,2)}` and `g = {(1,3),(2,1),(3,2),(4,4)}` Find (i) g o f (ii) f o g (iii) f o f .

Answer» Correct Answer - (i) ( g o f) ={(1,4),(2,3),(3,2) ,(4,1}
(ii) (f o g) ={(1,3),(2,4),(3,1),(4,2)}
(iii) (f o f) = {(1,2) ,(2,4) ,(3,3) ,(4,1)}
584.

Let `f : R to R : f (x) =(3-x^(3))^(1//3).`Find f o f

Answer» Correct Answer - `( f o f) (x) =x`
`(f o g) (x) =f{f(x)}=f{(3-x^(3))^(1//3)} =f(y)" where " y=(3-x^(3))^(1//3)`
` =(3-y^(3))^(1//3) ={3 -(3 -x^(3))}^(1//3)= (x^(3))^(1//3)=x`
`:.` (f o f) (x) =x
585.

Let `f={(3,1),(9,3),(12 ,4)}`and `g={(1,3),(3,3),(4,9),(5,9)}dot`Show that `gofa n dfog`are bothdefined. Also, find `foga n dgofdot`

Answer» Correct Answer - (i) (g o f) ={(3,3) ,(9,3) ,(12,9)}
(ii) (f o g) +[(1,1),(3,1) ,(4,3) ,(5,3)}
586.

Let `f : R to R : f(x) =x^(2) , g : R to R : g (x) =tan x` , and ` h : R to R: h (x) = ` log x find a formula for ho(gof) Show that `[ho(gof)] sqrt(π/(4)) = 0

Answer» Correct Answer - `[h o (g o f) ](x) = ` log `"(tan "x^(2)")"`
587.

If `f: R->R`is defined by `f(x)=3x+2`, find `f(f(x))`.

Answer» Correct Answer - `f{f(x)}= (9x +8)`
f{f(x)} =f(3x+2) =3(3x+2)+2 =(9x+8)
588.

Let `f : R to R : f (x) =(2x +1) " and " g : R to R : g (x) =(x^(2) -2)` Write down the formulae for (i) ` ( g o f) (ii) ( f o g) (iii) ( f o f) (iv) ( g o f)`

Answer» Correct Answer - `(i) (g o f) (x) = (4x^(2) +4x -1) " "(ii) ( f o g) (x ) = (2x^(2) -3)`
`(iii) (f o f) (x) =(4x +3) " " (iv) ( g o g) (x ) = (x^(4) _4x^(2) + 2)`
589.

Let ` f : R to R : f (x) = (x^(2) +3x +1) " and " g : R to R : g (x) = (2x-3).` Write down the formulae for (i) g o f (ii) f o g (iii) g o g

Answer» Correct Answer - (i) `(g o f) (x) =(2x^(2) +6x -1) " " (ii) ( f o g ) (x) =(4x^(2) -6x +1)`
` (iii) (g o g ) (x ) = (4x -9)`
590.

If `f: Z to Z` be given by `f(x)=x^(2)+ax+b`, Then,A. `a in Z and b in Q-Z`B. `a,b, in Z`C. `b in Z and a in Q-Z`D. `a,b in Q-Z`

Answer» Correct Answer - B
Since `f: Z to Z`. Therefore,
f(x) assumes integral values for all `x in Z`.
`Rightarrow f(0)` and (1) are integers
`Rightarrow` b and a+b+1 are integers
`Rightarrow` b and a integers i.e. ` b in Z`
591.

Prove that the function f: R → R: f(x) = 2x is one-one and onto.

Answer»

We know that

f (x1) = f (x2)

So we get

2x1 = 2x2 => x1 = x2

Here, f is one-one

Consider y = 2x where x = ½ y

Each y in co domain R there exists ½ y where

f (1/2 y) = (2 × ½ y) = y

Hence, f is onto.

592.

Let `f:{1, 3,4 }->{1, 2, 5}`and `g:{1, 2, 5}->{1, 3}`be given by `f={(1, 2), (3, 5), (4, 1)}`and `g={(1, 3), (2, 3), (5, 1)}`. Write down `gofdot`

Answer» Correct Answer - `(g o f) ={(1,3),(3,1),(4,3)}`
Dom (g o f) =Dom (f ) ={1,2,4}
(g o f)(1)=g{f(1)} =g(2)=3
(g o f) (3)=g{f(3)} =g(5)=1
(g o f)(4)= g{(f(4)}=g(1) =3
`:.` g o f ={(1,3),(3,1),(4,3)}
593.

Given `A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+ x )`. Find ` f (A)`.A. `[pi//6,pi//3]`B. `[-pi//3,pi-6]`C. `[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt3)/(2)-(pi)/(6)(1+(pi)/(6))]`D. `[(1)/(2)+(pi)/(3)(1-(pi)/(3)),(sqrt3)/(2)+(pi)/(6)(1-(pi)/(6))]`

Answer» Correct Answer - C
Since f(x) is a continous decreasing functions on `[pi//6, pi//3]`. Therefore, f(x) attains every value between its minimum and maximum values
`"f"(pi)/(3)=(1)/(2)-(pi)/(3)(1+(pi)/(3))`
`and f((pi)/(6))=(sqrt3)/(2)-(pi)/(6)(1+(pi)/(6))"respectively"`
`"Hence" f(A)="Range of f(x) "=[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt(3))/(2)-(pi)/(6)(1+(pi)/(3))]`
594.

Let `a,b,c` be rational numbers and `f:Z->Z` be a function given by `f(x)=a x^2+b x+c.` Then, `a+b` isA. a negative integerB. an integerC. non-integral rational numberD. none of these

Answer» Correct Answer - B
Since `f(x) Z to Z` is given by
`f(x)=ax^(2)+bx+c" for all x "inZ.`
`therefore f(x)=ax^(2)+bc+c` takes integral values for all `x in Z`.
`therefore f(x)` is an integer for all `x in Z`.
`therefore f(0)` and f(1) are integers
`therefore f(1)-f(0)` is an integer.
`therefore (a+b+c)-c` is an integer `[therefore f(0)=c and f(1)=a+b+c]`
`therefore` a+b is an integer.
595.

Let f: R → R: f(x) = |x|, prove that f o f = f.

Answer»

It is given that

f(x) = |x|

We can write it as

f o f = f{f(x)} = f(|x|) = |x| …….. (1)

Same way

f = |x| …….. (2)

From both the equations we know that fof = f.

596.

If `f(x)=cos (logx)`, then `f(x)f(y)-1/2[f(x/y)+f(xy)]=`

Answer» Correct Answer - A
We have, `f(x)=cos (log _(e) x)`
`therefore f(x) f(y)-(1)/(2){f((x)/(y))+f(xy)}"`
`=cos (log x) cos (log y)-(1)/(2){cos log((x)/(y))+cos (log (x y))}`
`=cos (log x) cos (log y)-(1)/(2){cos (log-x log-y)+cos (log x+log y)}`
`=cos (log x) cos (log y)-(1)/(2){2cos (log x) cos(log y)}`
=0
597.

Let ` A = {1,2,3,4) " and " f ={(1,4),(2,1),(3,3) ,(4,2)}. ` Write down (f o f)

Answer» Correct Answer - f o f `={(1,2),(2,4),(3,3),(4,1)}`
(f o f) (1)=f{f(1)}=f(4)=2
(f o f)(2)= f{f(2)} =f(1) =4.
(f o f) (3)= f{f(3)}=f(3) =3
(f o f)(4)= f{f(4)} =f(2)=1
`:.` f o f ={(1,2),(2,4),(3,3),(4,1)}
598.

Let f: R → R: f(x) = (x2 + 3x + 1) and g: R → R: g(x) = (2x – 3). Write down the formulae for(i) g o f (ii) f o g (iii) g o g.

Answer»

It is given that

f(x) = (x2 + 3x + 1) and g(x) = (2x – 3)

(i) g o f = g o f (x) = g{f(x)} = g(x2 + 3x + 1)

So we get

= 2 (x2 + 3x + 1) – 3

It can be written as

= 2x2 + 6x + 2 – 3

On further calculation

= 2x2 + 6x – 1

(ii) f o g = f o g (x) = f{g(x)} = f {2x – 3}

So we get

= (2x – 3)2 + 3 (2x – 3) + 1

It can be written as

= 4x2 – 12x + 9 + 6x – 9 + 1

On further calculation

= 4x2 – 6x + 1

(iii) g o g = g o g (x) = g {g(x)} = g{2x – 3}

So we get

= 2 (2x – 3) – 3

It can be written as

= 4x – 6 – 3

On further calculation

= 4x – 9

599.

Find the domain of the following real functions: (i) `f(x)=(3x+5)/(x^(2)-9)` (ii) `f(x)=(2x-3)/(x^(2)+x-2)` (iii) `f(x)=(x^(2)-2x+1)/(x^(2)-8x+12)` (iv) `f(x)=(x^(3)-8)/(x^(2)-1)`

Answer» Correct Answer - (i) `R-{3,-3}` (ii) `R-{-1,-2}` (iii) `R-{2,6}` (iv) `R-{-1,-1}`
600.

Find `gof`and `gof`when `f: R->R`and `g: R->R`is defined by `f(x)=8x^3`and `g(x)=x^(1//3)`

Answer» Correct Answer - (g o f) (x) =2x and (f o g) (x) = 8x
`(g o f) (x)=g[f(x)] =g (8x^(3))= g(y) "where " y=8x^(3)`
`=y^(1//3) =(8x^(3))^(1/3) =2x`
`(f o f) (x)= f[g (x)] =f(x^(1/3))^(3)=8x^(((1)/(3)xx3))=8x`