InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 551. |
Find `gof` if `f(x)=8x^(3) and g(x)=x^(1/3)`A. xB. `2x`C. `(x)/(2)`D. `3x^(2)` |
|
Answer» Correct Answer - B `(g o f)(x)=g [f(x)] =g(8x^(3))=(8x^(3))^(1/3) =2x` |
|
| 552. |
Let f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)). Write down g o f. |
|
Answer» To find: g o f Formula used: g o f = g(f(x)) Given: (i) f = {(1, 2), (3, 5), (4, 1)} (ii) g = {(1, 3), (2, 3), (5, 1)} We have, gof(1) = g(f(1)) = g(2) = 3 gof(3) = g(f(3)) = g(5) = 1 gof(4) = g(f(4)) = g(1) = 3 g o f = {(1, 3), (3, 1), (4, 3)} |
|
| 553. |
f, g and h are three functions defined from R to R as following: (i) f(x) = x2 (ii) g(x) = x2 + 1 (iii) h(x) = sin x That, find the range of each function. |
|
Answer» (i) f: R → R such that f(x) = x2 Since the value of x is squared, f(x) will always be equal or greater than 0. ∴ the range is [0, ∞) (ii) g: R → R such that g(x) = x2 + 1 Since, the value of x is squared and also adding with 1, g(x) will always be equal or greater than 1. ∴ Range of g(x) = [1, ∞) (iii) h: R → R such that h(x) = sin x We know that, sin (x) always lies between -1 to 1 ∴ Range of h(x) = (-1, 1) |
|
| 554. |
Let A = {1, 2, 3, 4} and f = {(1, 4), (2, 1) (3, 3), (4, 2)}. Write down (f o f). |
|
Answer» To find: f o f Formula used: f o f = f(f(x)) Given: (i) f = {(1, 4), (2, 1) (3, 3), (4, 2)} We have, fof(1) = f(f(1)) = f(4) = 2 fof(2) = f(f(2)) = f(1) = 4 fof(3) = f(f(3)) = f(3) = 3 fof(4) = f(f(4)) = f(2) = 1 f o f = {(1, 2), (2, 4), (3, 3), (4, 1)} |
|
| 555. |
Let f : R → R : f(x) = x2 and g : C → C: g(x) = x2 , where C is the set of all complex numbers. Show that f ≠ g. |
|
Answer» It is given that f : R → R and g : C → C Thus, Domain (f) = R and Domain (g) = C We know that, Real numbers ≠ Complex Number ∵, Domain (f) ≠ Domain (g) ∴ f(x) and g(x) are not equal functions ∴ f ≠ g |
|
| 556. |
If f : (0, ∞) → (0, ∞) and f (x) = \(\frac{x}{1+x}\) , then the function f is(a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto. |
|
Answer» Answer: (b) = one - one but not onto ∀ (x, y) ∈ (0, ∞) f (x) = f (y) ⇒ \(\frac{x}{1+x}\) = \(\frac{y}{1+y}\) ⇒ x + xy = y + xy ⇒ x = y ⇒ f is one-one Let z = f (x) = \(\frac{x}{1+x}\) ⇒ z + zx = x ⇒ z = x (1 – z) ⇒ x = \(\frac{z}{1-z}\) ⇒ x is not defined for z = 1 and 1 ∈ (0, ∞) ∴ 1 ∈ (0, ∞) has no pre-image in (0, ∞) ⇒ f is not onto |
|
| 557. |
Let f : R → R : f(x) = 3x + 2, find f{f(x)}. |
|
Answer» To find: f{f(x)} Formula used: (i) f o f = f(f(x)) Given: (i) f : R → R : f(x) = 3x + 2 We have, f{f(x)} = f(f(x)) = f(3x + 2) f o f =3(3x + 2) + 2 = 9x + 6 + 2 = 9x + 8 f{f(x)} = 9x + 8 |
|
| 558. |
Let f : {3, 9, 12} → {1, 3, 4} and g : {1, 3, 4, 5}→ {3, 9} bedefined as f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3), (4, 9), (5, 9)}. Find (i) (g o f) (ii) (f o g). |
|
Answer» (i) g o f To find: g o f Formula used: g o f = g(f(x)) Given: f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3),(4, 9), (5, 9)} Solution: We have, gof(3) = g(f(3)) = g(1) = 3 gof(9) = g(f(9)) = g(3) = 3 gof(12) = g(f(12)) = g(4) = 9 g o f = {(3, 3), (9, 3), (12, 9)} (ii) f o g To find: f o g Formula used: f o g = f(g(x)) Given: f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3),(4, 9), (5, 9)} Solution: We have, fog(1) = f(g(1)) = f(3) = 1 fog(3) = f(g(3)) = f(3) = 1 fog(4) = f(g(4)) = f(9) = 3 fog(5) = f(g(5)) = f(9) = 3 f o g = {(1, 1), (3, 1), (4, 3), (5, 3)} |
|
| 559. |
Let f: R → R be a function defined by f (x) = \(\frac{x-m}{x-n}\) , when m ≠ n, then(a) f is one-one onto (b) f is many-one onto (c) f is one-one into (d) f is many-one into |
|
Answer» Answer: (c) = f is one - one into ∀ (x, y) ∈ R, f (x) = f (y) ⇒ \(\frac{x-m}{x-n}\) = \(\frac{y-m}{y-n}\) ⇒ (x – m) (y – n) = (y – m) (x – n) ⇒ xy – my – nx + mn = yx – mx – ny + mn ⇒ mx – nx = my – ny ⇒ (m – n) x = (m – n) y ⇒ x = y ⇒ f is one-one. Let z = f (x) = \(\frac{x-m}{x-n}\) ⇒ zx – zn = x – m ⇒ zx – x = zn – m ⇒ x (z – 1) = zn – m ⇒ x = \(\frac{zn-m}{z-1} = \frac{m-zn}{1-z}\) x is not defined for z = 1 ⇒ for z = 1, there exists no pre-image in R ⇒ f is not onto. ∴ f is one-one, into function. |
|
| 560. |
Let f : R → R : f(x) = (3 - x3)1/3. Find f o f. |
|
Answer» To find: f o f Formula used: (i) f o f = f(f(x)) Given: (i) f : R → R : f(x) = (3 - x3)1/3 We have, f o f = f(f(x)) =(3 - x3)1/3 f o f ={3 -{(3 - x3)1/3}]1/3 = [3 - (3 - x3)]1/3 = [3 - 3 + x3]1/3 = [x3]1/3 = x f o f (x) = x |
|
| 561. |
Let f : R → R : f(x) = |x|, prove that f o f = f. |
|
Answer» To prove: f o f = f Formula used: f o f = f(f(x)) Given: (i) f : R → R : f(x) = |x| Solution: We have, f o f = f(f(x)) = f(|x|) =||x||= |x| = f(x) Clearly f o f = f. Hence Proved. |
|
| 562. |
Let f : R → R : f(x) = x2 and g : R → R : g(x) = (x + 1). Show that (g o f) ≠ (f o g). |
|
Answer» To prove: (g o f) ≠ (f o g) Formula used: (i) g o f = g(f(x)) (ii) f o g = f(g(x)) Given: (i) f : R → R : f(x) = x2 (ii) g : R → R : g(x) = (x + 1) Proof: We have, g o f = g(f(x)) = g(x2) = ( x2 + 1 ) f o g = f(g(x)) = g(x+1) = [ (x+1)2 + 1 ] = x2 + 2x + 2 From the above two equation we can say that (g o f) ≠ (f o g) Hence Proved |
|
| 563. |
Let f : R → R and g : R → R defined by f(x) = x2 and g(x) = (x + 1). Show that g o f ≠ f o g. |
|
Answer» To prove: g o f ≠ f o g Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : R → R : f(x) = x2 (ii)g : R → R g(x) = (x + 1) We have, f o g = f(g(x)) = f(x + 7) f o g = (x + 7)2 = x 2 + 14x + 49 g o f = g(f(x)) = g(x2) g o f = (x2 + 1) = x2 + 1 Clearly g o f ≠ f o g Hence Proved |
|
| 564. |
Consider f : {4, 5, 6} → {p, q, r} given by f (4) = p, f (5) = q, f (6) = r. Find the inverse of f i.e., f –1 and show that (f –1) –1 = f. |
|
Answer» Given, f : {4, 5, 6} → {p, q, r} such that f(4) = p, f (5) = q, f (6) = r ⇒ f = {4, p), (5, q), (6, r)} (f defined by ordered pairs) ⇒ f is one-one and onto ⇒ f –1 exists ⇒ f –1 = {(p, 4), (q, 5), (r, 6)} (∵ components of ordered pains are interchanged in case of inverse functions) ⇒ (f –1) –1 = {(4, p), (5, q), (6, r)} = f |
|
| 565. |
Let f : R → R : f(x) = (x2 + 3x + 1) and g: R → R : g(x) = (2x - 3). Write down the formulae for (i) g o f (ii) f o g (iii) g o g |
|
Answer» (i) g o f To find: g o f Formula used: g o f = g(f(x)) Given: (i) f : R → R : f(x) = (x2 + 3x + 1) (ii) g: R → R : g(x) = (2x - 3) Solution: We have, g o f = g(f(x)) = g(x2 + 3x + 1) = [ 2(x2 + 3x + 1) – 3 ] ⇒ 2x2 + 6x + 2 – 3 ⇒ 2x2 + 6x – 1 g o f (x) = 2x2 + 6x – 1 (ii) f o g To find: f o g Formula used: f o g = f(g(x)) Given: (i) f : R → R : f(x) = (x2 + 3x + 1) (ii) g: R → R : g(x) = (2x - 3) Solution: We have, f o g = f(g(x)) = f(2x - 3) = [ (2x - 3)2 + 3(2x – 3) + 1 ] ⇒ 4x2 - 12x + 9 + 6x – 9 + 1 ⇒ 4x2 - 6x + 1 f o g (x) = 4x2 - 6x + 1 (iii) g o g To find: g o g Formula used: g o g = g(g(x)) Given: (i) g: R → R : g(x) = (2x - 3) Solution: We have, g o g = g(g(x)) = g(2x - 3) = [ 2(2x – 3) - 3 ] ⇒ 4x – 6 - 3 ⇒ 4x - 9 g o g (x) = 4x – 9 |
|
| 566. |
Prove that the function f: R → R : f(x)= 2x is one-one and onto. |
|
Answer» To prove: function is one-one and onto Given: f: R → R : f(x)= 2x We have, f(x) = 2x For, f(x1) = f(x2) ⇒ 2x1 = 2x2 ⇒ x1 = x2 When, f(x1) = f(x2) then x1 = x2 ∴ f(x) is one-one f(x) = 2x Let f(x) = y such that \(y\in R\) ⇒ y = 2x \(\Rightarrow x=\frac{y}{2}\) Since \(y\in R\) \(\Rightarrow \frac{y}{2}\in R\) ⇒ x will also be a real number, which means that every value of y is associated with some x ∴ f(x) is onto Hence Proved |
|
| 567. |
Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f. |
|
Answer» Given function f: R → R given by f(x) = 4x + 3 Let us show that the given function is invertible. Consider injection of f: Such that f(x) = f(y) Now surjection of f: Such that f(x) = y. ⇒ 4x + 3 = y ⇒ 4x = y - 3 ⇒ x = (y - 3)/4 in R (domain) ⇒ f is onto. Let us find f -1 Let f-1(x) = y ...(1) ⇒ x = f(y) ⇒ x = 4y + 3 ⇒ x − 3 = 4y ⇒ y = (x - 3)/4 Now put these values in 1 we get Therefore, f-1(x) = (x - 3)/4 |
|
| 568. |
Let f : R → R : f(x) = (2x + 1) and g : R → R : g(x) = (x2 - 2). Write down the formulae for (i) (g o f) (ii) (f o g) (iii) (f o f) (iv) (g o g) |
|
Answer» (i) g o f To find: g o f Formula used: g o f = g(f(x)) Given: (i) f : R → R : f(x) = (2x + 1) (ii) g : R → R : g(x) = (x2 - 2) Solution: We have, g o f = g(f(x)) = g(2x + 1) = [ (2x + 1)2 – 2 ] ⇒ 4x2 + 4x + 1 – 2 ⇒ 4x2 + 4x – 1 g o f (x) = 4x2 + 4x – 1 (ii) f o g To find: f o g Formula used: f o g = f(g(x)) Given: (i) f : R → R : f(x) = (2x + 1) (ii) g : R → R : g(x) = (x2 - 2) Solution: We have, f o g = f(g(x)) = f(x2 - 2) = [ 2(x2 - 2) + 1 ] ⇒ 2x2 - 4 + 1 ⇒ 2x2 – 3 f o g (x) = 2x2 – 3 (iii) f o f To find: f o f Formula used: f o f = f(f(x)) Given: (i) f : R → R : f(x) = (2x + 1) Solution: We have, f o f = f(f(x)) = f(2x + 1) = [ 2(2x + 1) + 1 ] ⇒ 4x + 2 + 1 ⇒ 4x + 3 f o f (x) = 4x+ 3 (iv) g o g To find: g o g Formula used: g o g = g(g(x)) Given: (i) g : R → R : g(x) = (x2 - 2) Solution: We have, g o g = g(g(x)) = g(x2 - 2) = [ (x2 - 2)2 – 2] ⇒ x4 -4x2 + 4 - 2 ⇒ x 4 -4x2 + 2 g o g (x) = x4 -4x2 + 2 |
|
| 569. |
Let f : N → N : f(x) = 2x, g : N → N : g(y) = 3y + 4 and h : N → N : h(z) = sin z. Show that h o (g o f ) = (h o g) o f. |
|
Answer» To show: h o (g o f ) = (h o g) o f Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : N → N : f(x) = 2x (ii) g : N → N : g(y) = 3y + 4 (iii) h : N → N : h(z) = sin z Solution: We have, LHS = h o (g o f ) ⇒ h o (g(f(x)) ⇒ h(g(2x)) ⇒ h(3(2x) + 4) ⇒ h(6x +4) ⇒ sin(6x + 4) RHS = (h o g) o f ⇒ (h(g(x))) o f ⇒ (h(3x + 4)) o f ⇒ sin(3x+4) o f Now let sin(3x+4) be a function u RHS = u o f ⇒ u(f(x)) ⇒ u(2x) ⇒ sin(3(2x) + 4) ⇒ sin(6x + 4) = LHS Hence Proved |
|
| 570. |
Let f : R → R : f(x) = x2 + 2 and \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\)find f o g and g o f and hence find (f o g) (2) and (g o f) (-3). |
|
Answer» To find: f o g, g o f ,(f o g) (2) and (g o f) (-3) Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : R → R : f(x) = x2 + 2 (ii) \(g:R→R :g(x)=\frac{x}{x-1},x\neq1\) f o g = f(g(x)) \(\Rightarrow f(\frac{x}{x-1})\) \(\Rightarrow (\frac{x}{x-1})^2+2\) \(\Rightarrow\frac{(x)^2}{(x-1)^2}+2\) \(fog(2)=\frac{(2)^2}{(2-1)^2}+2\) \(=\frac{4}{1}+2\) = 6 g o f = g(f(x)) ⇒ g(x2+2) \(\Rightarrow \frac{x^2+2}{x^2+2-1}\) \(\Rightarrow \frac{x^2+2}{x^2+1}\) \((gof)(-3)=\frac{-3^2+2}{-3^2+1}\) \(=\frac{9+2}{9+1}\) \(=\frac{11}{10}\) |
|
| 571. |
If `f` be a greatest integer function and `g` be an absolute value function, find the value of `([email protected])(- 3/2)+([email protected])(4/3).` |
|
Answer» Correct Answer - 2 `( f o g) ((-3)/(2)) = f {g ((-3)/(2))}= f (|(-3)/(2)|) = f((3)/92)) =[(3)/(2)] =1 ` `(g o f) ((4)/(3)) =g {f ((4)/(3))} =g [(4)/(3)] =g(1) =|1|=1` |
|
| 572. |
If f be a greatest integer function and g be an absolute value function, find the value of(f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\). |
|
Answer» To find: (f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\). Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f is a greatest integer function (ii) g is an absolute value function f(x) = [x] (greatest integer function) g(x) = (absolute value function) \(f(\frac{4}{3})=[\frac{4}{3}]=1.....(i)\) \(g(\frac{-3}{2})=[\frac{-3}{2}]=1.5......(ii)\) Now, for (f o g)\((\frac{-3}{2})\)+(g o f)\((\frac{4}{3})\). Substituting values from (i) and (ii) \(\Rightarrow f(1.5)+g(1)\) ⇒ [1.5] +[1] ⇒ 1 + 1 = 2 |
|
| 573. |
If `f` be a greatest integer function and `g` be an absolute value function, find the value of `([email protected])(- 3/2)+([email protected])(4/3).` |
|
Answer» Correct Answer - 2 `( f o g) ((-3)/(2)) = f {g ((-3)/(2))}= f (|(-3)/(2)|) = f((3)/92)) =[(3)/(2)] =1 ` `(g o f) ((4)/(3)) =g {f ((4)/(3))} =g [(4)/(3)] =g(1) =|1|=1` |
|
| 574. |
Let `f : R to R : f(x) =(2x-7)/(4)` be an invertible function . Find `f^(-1)` |
|
Answer» Correct Answer - `f^(-1) (y)=(1)/(2) (4y+7) " for all " y in R` `y=(2x-7)/( 4) rArr x=(1)/(2) (4y+7)` `rArr f^(-1) (y) = (4y+7)/(2) " for all " y in R` |
|
| 575. |
If `f:R to R` is defined by `f(x) = x^(2)-3x+2,` write `f{f(x)}`. |
|
Answer» We have `(f o f) (x) = f{f(x)}= f(x^(2) -3x +2) =f(y)` where `y=(x^(2)-3x+2)` `=(y^(2) -3y +2)` ` =(x^(2) -3x +2)^(2) -3 (x^(2) -3x +2)+2` ` -=(x^(4) -6x^(3)+ 10x^(2) -3x).` |
|
| 576. |
(Associativity ) Let `f: A to B , g : B to C " and " h: C to `. Then prove that ( h o g) o f = h o ( g o f )` |
|
Answer» Let ` x in A` .Then `{( h o g ) o f } (x) = (h o g) { f (x)}` `=h [g {f (x) }]` `=h [( g o f ) (x) ]` `={h o (g o f )}(x)]` `:. ( h o g ) o f = h o ( g o f)` |
|
| 577. |
Let `A = R - {(3)/(5)} " and " B =R -{(7)/(5)}` Let `f: A to B : f (x) =(7x +4)/(5x-3) " and " g: B to A : g (y)= (3y+4)/(5y-7)` Show that `(g o f) I_(A) " and " ( f o g) = I_(B)` |
|
Answer» Let `x in A. `Then (g o f) (x) = g [f (x)] `=g ((7x+4)/(5x-3))` `=g(y) " where " y =(7x+4)/(5x-3)` `=(3y+4)/(5y-7) =(3((7x+4)/(5x-3))+4)/(5((7x+4)/(5x-3))-7) " " "[using (i)]"` `=((21 x+12 +20x-12))/((5x-3)) xx ((5x-3))/((35 x+20 -35 x+21))` `=(41x)/(41) =x= I_(A) (x)` `:. (g o f) =I_(A)` Again let `y in B .` Then ( f o g) (y) = f[g (y)] `=f((3y+4)/(5y-7))` `=f(z) " where " z= (3y+4)/(5y-7)` `=(7z+4)/(5z-3) =(7((3y+4)/(5y-7))+4)/(5((3y+4)/(5y-7))-3)` `=((21 y+28 +20y-28))/((5y-7)) xx ((5y-7))/((15y+20 -15y+21))` `=(41y)/(41) =y= I_(B) (y)` `:. (f o g) =I_(B)` hence (f o g ) `=I_(A) " and " (f o g) =I_(B)` |
|
| 578. |
Let `R^(+) ` be the set of all positive real numbers. Let `f : R^(+) to R^(+) : f(x) =e^(x) ` for all `x in R^(+)` . Show that f is invertible and hence find `f^(-1)` |
|
Answer» f is one-one since `f(x_(1)) =f(x_(2)) rArr e^(x) 1 rArr =e^(x)2 rArr x_(1)= x_(2)` Now for each `y in R^(+)` there exists a positive real number namely log y such that `f(log y) =e^(log y) =y` `:. ` f is onto . Thus , f is one-one onto and hence invertible . we define : `f^(-1) : R^(+) to R^(+) : f^(-1) (y) = " log y for all " y in R^(+)` |
|
| 579. |
Let `f: [-1 ,1] to Y : f(x) =.(x)/((x+2)), x ne -2 " and " Y=` range (`f`). Show that `f` is invertible and find `f^(-1)` |
|
Answer» we have `f(x_(1)) =f(x_(2)) rArr .(x_(1))/(x_(1)=2) =(x_(2))/(x_(2)+2)` `rArr x_(1)x_(2) +2x_(1) =x_(1)x_(2) +2x_(2)` `rArr 2(x_(1)-x_(2)) =0` `rArr x_(1) - x_(2)=0` `rArr x_(1) =x_(2)` `:.` f is one-one Since range `( f) =Y ` so f is onto Thus f is one-one onto and therefore invertible . Let `y in Y.` Then there exists `x in [ -1,1]` such that f(x) =y. Now ` y = f(x) rArr y= (x)/((x+2)) ` ` rArr x= (2y)/((1-y))` `rArr f^(-1) (y) = (2y)/((1-y))` Thus we define : `f^(-1) : [ -1,1] to Y : f^(-1) (y) = (2y)/((1-y)) , y ne 1` |
|
| 580. |
Let `f : R to R : f (x) =10x +7.` Find the function `g : R to R : g o f = f o g =I_(g)` |
|
Answer» Clearly `g = f^(-1)` Now `f(x_(1)) =f(x_(2)) rArr 10x_(1) +7 =10x_(2) +7` `rArr x_(1) =x_(2)` `:. ` f is one-one Now `y =f(x) rArr y = 10x +7` `rArr x= ((y-7))/(10)` Clearly for each `y in R` (codomain of f) there exists `x in R` such that `f(x) =f ((y-7)/(10)) ={ 10.((y-7)/(10))+7 } =y` ` :.` f is onto. Thus f is one-one onto and therefore `f^(-1)` exists we define `f^(-1) : R to R : f^(-1) (y) = (y-7)/(10)` Hence `g : R to R : g (y) = (y-7)/(10) ` [using (i)] |
|
| 581. |
Let `f : R to R : f (x) =10x +3` .Find `f^(-1)` |
|
Answer» Correct Answer - `f^(-1) (y) =(1)/(10) (y-3) " for all " y in R` `y=10x+3 rArr x=(y-3)/(10)` , `rArr f^(-1) (y)= ((y-3))/(10)` |
|
| 582. |
Let ` f(x) : R to R b " and " g (x) =x-7 , x in R ". Find "(f o g) (7)` |
|
Answer» Correct Answer - 7 (f o g )(7) =f{g(7)}=f(7-7) =f(0) =(0+7)=7 |
|
| 583. |
Let `A ={1,2,3,4}. ` Let ` f : A to A " and " g : A to A` defined by `f : ={(1,4),(2,1),(3,3),(4,2)}` and `g = {(1,3),(2,1),(3,2),(4,4)}` Find (i) g o f (ii) f o g (iii) f o f . |
|
Answer» Correct Answer - (i) ( g o f) ={(1,4),(2,3),(3,2) ,(4,1} (ii) (f o g) ={(1,3),(2,4),(3,1),(4,2)} (iii) (f o f) = {(1,2) ,(2,4) ,(3,3) ,(4,1)} |
|
| 584. |
Let `f : R to R : f (x) =(3-x^(3))^(1//3).`Find f o f |
|
Answer» Correct Answer - `( f o f) (x) =x` `(f o g) (x) =f{f(x)}=f{(3-x^(3))^(1//3)} =f(y)" where " y=(3-x^(3))^(1//3)` ` =(3-y^(3))^(1//3) ={3 -(3 -x^(3))}^(1//3)= (x^(3))^(1//3)=x` `:.` (f o f) (x) =x |
|
| 585. |
Let `f={(3,1),(9,3),(12 ,4)}`and `g={(1,3),(3,3),(4,9),(5,9)}dot`Show that `gofa n dfog`are bothdefined. Also, find `foga n dgofdot` |
|
Answer» Correct Answer - (i) (g o f) ={(3,3) ,(9,3) ,(12,9)} (ii) (f o g) +[(1,1),(3,1) ,(4,3) ,(5,3)} |
|
| 586. |
Let `f : R to R : f(x) =x^(2) , g : R to R : g (x) =tan x` , and ` h : R to R: h (x) = ` log x find a formula for ho(gof) Show that `[ho(gof)] sqrt(π/(4)) = 0 |
| Answer» Correct Answer - `[h o (g o f) ](x) = ` log `"(tan "x^(2)")"` | |
| 587. |
If `f: R->R`is defined by `f(x)=3x+2`, find `f(f(x))`. |
|
Answer» Correct Answer - `f{f(x)}= (9x +8)` f{f(x)} =f(3x+2) =3(3x+2)+2 =(9x+8) |
|
| 588. |
Let `f : R to R : f (x) =(2x +1) " and " g : R to R : g (x) =(x^(2) -2)` Write down the formulae for (i) ` ( g o f) (ii) ( f o g) (iii) ( f o f) (iv) ( g o f)` |
|
Answer» Correct Answer - `(i) (g o f) (x) = (4x^(2) +4x -1) " "(ii) ( f o g) (x ) = (2x^(2) -3)` `(iii) (f o f) (x) =(4x +3) " " (iv) ( g o g) (x ) = (x^(4) _4x^(2) + 2)` |
|
| 589. |
Let ` f : R to R : f (x) = (x^(2) +3x +1) " and " g : R to R : g (x) = (2x-3).` Write down the formulae for (i) g o f (ii) f o g (iii) g o g |
|
Answer» Correct Answer - (i) `(g o f) (x) =(2x^(2) +6x -1) " " (ii) ( f o g ) (x) =(4x^(2) -6x +1)` ` (iii) (g o g ) (x ) = (4x -9)` |
|
| 590. |
If `f: Z to Z` be given by `f(x)=x^(2)+ax+b`, Then,A. `a in Z and b in Q-Z`B. `a,b, in Z`C. `b in Z and a in Q-Z`D. `a,b in Q-Z` |
|
Answer» Correct Answer - B Since `f: Z to Z`. Therefore, f(x) assumes integral values for all `x in Z`. `Rightarrow f(0)` and (1) are integers `Rightarrow` b and a+b+1 are integers `Rightarrow` b and a integers i.e. ` b in Z` |
|
| 591. |
Prove that the function f: R → R: f(x) = 2x is one-one and onto. |
|
Answer» We know that f (x1) = f (x2) So we get 2x1 = 2x2 => x1 = x2 Here, f is one-one Consider y = 2x where x = ½ y Each y in co domain R there exists ½ y where f (1/2 y) = (2 × ½ y) = y Hence, f is onto. |
|
| 592. |
Let `f:{1, 3,4 }->{1, 2, 5}`and `g:{1, 2, 5}->{1, 3}`be given by `f={(1, 2), (3, 5), (4, 1)}`and `g={(1, 3), (2, 3), (5, 1)}`. Write down `gofdot` |
|
Answer» Correct Answer - `(g o f) ={(1,3),(3,1),(4,3)}` Dom (g o f) =Dom (f ) ={1,2,4} (g o f)(1)=g{f(1)} =g(2)=3 (g o f) (3)=g{f(3)} =g(5)=1 (g o f)(4)= g{(f(4)}=g(1) =3 `:.` g o f ={(1,3),(3,1),(4,3)} |
|
| 593. |
Given `A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+ x )`. Find ` f (A)`.A. `[pi//6,pi//3]`B. `[-pi//3,pi-6]`C. `[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt3)/(2)-(pi)/(6)(1+(pi)/(6))]`D. `[(1)/(2)+(pi)/(3)(1-(pi)/(3)),(sqrt3)/(2)+(pi)/(6)(1-(pi)/(6))]` |
|
Answer» Correct Answer - C Since f(x) is a continous decreasing functions on `[pi//6, pi//3]`. Therefore, f(x) attains every value between its minimum and maximum values `"f"(pi)/(3)=(1)/(2)-(pi)/(3)(1+(pi)/(3))` `and f((pi)/(6))=(sqrt3)/(2)-(pi)/(6)(1+(pi)/(6))"respectively"` `"Hence" f(A)="Range of f(x) "=[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt(3))/(2)-(pi)/(6)(1+(pi)/(3))]` |
|
| 594. |
Let `a,b,c` be rational numbers and `f:Z->Z` be a function given by `f(x)=a x^2+b x+c.` Then, `a+b` isA. a negative integerB. an integerC. non-integral rational numberD. none of these |
|
Answer» Correct Answer - B Since `f(x) Z to Z` is given by `f(x)=ax^(2)+bx+c" for all x "inZ.` `therefore f(x)=ax^(2)+bc+c` takes integral values for all `x in Z`. `therefore f(x)` is an integer for all `x in Z`. `therefore f(0)` and f(1) are integers `therefore f(1)-f(0)` is an integer. `therefore (a+b+c)-c` is an integer `[therefore f(0)=c and f(1)=a+b+c]` `therefore` a+b is an integer. |
|
| 595. |
Let f: R → R: f(x) = |x|, prove that f o f = f. |
|
Answer» It is given that f(x) = |x| We can write it as f o f = f{f(x)} = f(|x|) = |x| …….. (1) Same way f = |x| …….. (2) From both the equations we know that fof = f. |
|
| 596. |
If `f(x)=cos (logx)`, then `f(x)f(y)-1/2[f(x/y)+f(xy)]=` |
|
Answer» Correct Answer - A We have, `f(x)=cos (log _(e) x)` `therefore f(x) f(y)-(1)/(2){f((x)/(y))+f(xy)}"` `=cos (log x) cos (log y)-(1)/(2){cos log((x)/(y))+cos (log (x y))}` `=cos (log x) cos (log y)-(1)/(2){cos (log-x log-y)+cos (log x+log y)}` `=cos (log x) cos (log y)-(1)/(2){2cos (log x) cos(log y)}` =0 |
|
| 597. |
Let ` A = {1,2,3,4) " and " f ={(1,4),(2,1),(3,3) ,(4,2)}. ` Write down (f o f) |
|
Answer» Correct Answer - f o f `={(1,2),(2,4),(3,3),(4,1)}` (f o f) (1)=f{f(1)}=f(4)=2 (f o f)(2)= f{f(2)} =f(1) =4. (f o f) (3)= f{f(3)}=f(3) =3 (f o f)(4)= f{f(4)} =f(2)=1 `:.` f o f ={(1,2),(2,4),(3,3),(4,1)} |
|
| 598. |
Let f: R → R: f(x) = (x2 + 3x + 1) and g: R → R: g(x) = (2x – 3). Write down the formulae for(i) g o f (ii) f o g (iii) g o g. |
|
Answer» It is given that f(x) = (x2 + 3x + 1) and g(x) = (2x – 3) (i) g o f = g o f (x) = g{f(x)} = g(x2 + 3x + 1) So we get = 2 (x2 + 3x + 1) – 3 It can be written as = 2x2 + 6x + 2 – 3 On further calculation = 2x2 + 6x – 1 (ii) f o g = f o g (x) = f{g(x)} = f {2x – 3} So we get = (2x – 3)2 + 3 (2x – 3) + 1 It can be written as = 4x2 – 12x + 9 + 6x – 9 + 1 On further calculation = 4x2 – 6x + 1 (iii) g o g = g o g (x) = g {g(x)} = g{2x – 3} So we get = 2 (2x – 3) – 3 It can be written as = 4x – 6 – 3 On further calculation = 4x – 9 |
|
| 599. |
Find the domain of the following real functions: (i) `f(x)=(3x+5)/(x^(2)-9)` (ii) `f(x)=(2x-3)/(x^(2)+x-2)` (iii) `f(x)=(x^(2)-2x+1)/(x^(2)-8x+12)` (iv) `f(x)=(x^(3)-8)/(x^(2)-1)` |
| Answer» Correct Answer - (i) `R-{3,-3}` (ii) `R-{-1,-2}` (iii) `R-{2,6}` (iv) `R-{-1,-1}` | |
| 600. |
Find `gof`and `gof`when `f: R->R`and `g: R->R`is defined by `f(x)=8x^3`and `g(x)=x^(1//3)` |
|
Answer» Correct Answer - (g o f) (x) =2x and (f o g) (x) = 8x `(g o f) (x)=g[f(x)] =g (8x^(3))= g(y) "where " y=8x^(3)` `=y^(1//3) =(8x^(3))^(1/3) =2x` `(f o f) (x)= f[g (x)] =f(x^(1/3))^(3)=8x^(((1)/(3)xx3))=8x` |
|