InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 701. |
The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)A. `[0,(7pi)/(6)]`B. `[0,(pi)/(6)]`C. `[(11pi)/(6)]`D. `[pi,2pi]` |
|
Answer» Correct Answer - A::B::C `1le|sinx|+|cosx|lesqrt2` `therefore" "2[|sinx|+|cosx|]=2` `thereforef(x)` is defined if `sin^(2)x+2 sin x+(11)/(4)ge2` `"or "(sinx+1)^(2)ge(1)/(4)` `"or "sinx+1ge(1)/(2) or sin x+1le-(1)/(2)` `"or "sinx ge-(1)/(2) or sin le-(3)/(2)` (which is not true) |
|
| 702. |
`f(x)=sin^2x+cos^4x+2` and `g(x)=cos(cosx)+cos(sinx)` Also let period f(x) and g(x) be `T_1` and `T_2` respectively thenA. `T_(1)=2T_(2)`B. `2T_(1)=T_(2)`C. `T_(1)=T_(2)`D. `T_(1)=4T_(2)` |
|
Answer» Correct Answer - C `f(x)=sin^(2)x+(1-sin^(2)x)^(2)+2` `=3-sin^(2)x+sin^(4)x` `=3-sin^(2)xcos^(2)x` `=3-(sin^(2)2x)/(4)` `rArr" "T_(1)=(pi)/(2), and T_(2)=(pi)/(2)` |
|
| 703. |
If `f:RrarrR` is a function satisfying the property `f(x+1)+f(x+3)=2" for all" x in R` than `f` isA. periodic with period 3B. periodic with period 4C. non periodicD. periodic with period 5 |
|
Answer» Correct Answer - B `f(x+1)+f(x+3)=2" (i)"` `"Replacing x by "x+2," we get"` `f(x+3)+f(x+5)=2" (ii)"` Subtracting (ii) rom (i), we get `f(x+1)=f(x+5)` `"or "f(x)=f(x+4)` |
|
| 704. |
Let A = {–2, –1, 0, 1, 2} and f: A → Z be a function defined by f(x) = x2 – 2x – 3. Find:(i) range of f i.e. f (A)(ii) pre-images of 6, –3 and 5 |
|
Answer» Given as A = {–2, –1, 0, 1, 2} f : A → Z such that f(x) = x2 – 2x – 3 (i) A is the domain of the function f. Thus, range is the set of elements f(x) for all x ∈ A. By substituting x = –2 in f(x), we get f(–2) = (–2)2 – 2(–2) – 3 = 4 + 4 – 3 = 5 By substituting x = –1 in f(x), we get f(–1) = (–1)2 – 2(–1) – 3 = 1 + 2 – 3 = 0 By substituting x = 0 in f(x), we get f(0) = (0)2 – 2(0) – 3 = 0 – 0 – 3 = – 3 By substituting x = 1 in f(x), we get f(1) = 12 – 2(1) – 3 = 1 – 2 – 3 = – 4 By substituting x = 2 in f(x), we get f(2) = 22 – 2(2) – 3 = 4 – 4 – 3 = –3 Hence, the range of f is {-4, -3, 0, 5}. (ii) pre-images of 6, –3 and 5 Suppose x be the pre-image of 6 ⇒ f(x) = 6 x2 – 2x – 3 = 6 x2 – 2x – 9 = 0 x = [-(-2) ± √ ((-2)2 – 4(1) (-9))] / 2(1) = [2 ± √ (4+36)] / 2 = [2 ± √40] / 2 = 1 ± √10 However, 1 ± √10 ∉ A Hence, there exists no pre-image of 6. Then, suppose x be the pre-image of –3 ⇒ f(x) = –3 x2 – 2x – 3 = –3 x2 – 2x = 0 x(x – 2) = 0 x = 0 or 2 It is clear, both 0 and 2 are elements of A. Hence, 0 and 2 are the pre-images of –3. Then, suppose x be the pre-image of 5 ⇒ f(x) = 5 x2 – 2x – 3 = 5 x2 – 2x – 8= 0 x2 – 4x + 2x – 8= 0 x(x – 4) + 2(x – 4) = 0 (x + 2)(x – 4) = 0 x = –2 or 4 However, 4 ∉ A but –2 ∈ A Hence, –2 is the pre-images of 5. Thus, Ø, {0, 2}, -2 are the pre-images of 6, -3, 5 |
|
| 705. |
Find the range of the function `f(x)=sinx`. |
| Answer» Correct Answer - `[-1,1]` | |
| 706. |
Define a function as a set of ordered pairs. |
|
Answer» A function from is defined by a set of ordered pairs such that any two ordered pairs should not have the same first component and the different second component. This means that each element of a set, say X is assigned exactly to one element of another set, say Y. The set X containing the first components of a function is called the domain of the function. The set Y containing the second components of a function is called the range of the function. For example, f = {(a, 1), (b, 2), (c, 3)} is a function. Domain of f = {a, b, c} Range of f = {1, 2, 3} |
|
| 707. |
Let `A={-2, -1, 0, 1, 2}a n d f: A->Z`be given y `f(x)=x^2-2x-3.`Find: i. the range of `f`ii. pre images of 6,-3 and 5. |
| Answer» Correct Answer - `f(A)={5,0,-3,-4}` | |
| 708. |
Define a function as a correspondence between two sets. |
|
Answer» A function from a set X to a set Y is defined as a correspondence between sets X and Y such that for each element of X, there is only one corresponding element in Y. The set X is called the domain of the function. The set Y is called the range of the function. For example, X = {a, b, c}, Y = {1, 2, 3, 4, 5} and f be a correspondence which assigns the position of a letter in the set of alphabets. Therefore, f(a) = 1, f(b) = 2 and f(c) = 3. As there is only one element of Y for each element of X, f is a function with domain X and range Y. |
|
| 709. |
Describe random functions ? |
||||||||||||||
|
Answer» Random numbers are used for fames, simulations, testing, security, and privacy applicatons. Python includes following functions that are commonly used.
|
|||||||||||||||
| 710. |
Let f : N `to N : f(x) =2 x` for all `x in N` Show that f is one -one and into. |
|
Answer» We have `f(x_(1)) = f(x_(2)) rArr 2x_(1) =2 x_(2) rArr x_(1) = x_(2)`. `:. ` f is one - one Let y =2x . Then `x=(y)/(2).` If we put y=3 then `x=(3)/(2) in N` Thus `3 in N` has no pre-image in N `:.` f is into Hence f is one-one and into . |
|
| 711. |
Let `a,b,c in R. " If " f(x) =ax^(2)+bx+c` be such that `a+b+c=3 and f(x+y)=f(x)+f(y)+xy, AA x,y in R, " then " sum_(n=1)^(10)f(n)` is equal toA. 330B. 165C. 190D. 255 |
|
Answer» Correct Answer - A We have, `f(x)=ax^(2)+bx+c` Now, `f(x+y)=f(x) +f(y)+xy` Put `y=0 rArr f(x) = f(x)+f(0)+0` `rArr f(0)=0` `rArr c=0` Again, put `y= -x` ` therefore f(0)=f(x)+f(-x)-x^(2)` `rArr 0=ax^(2)+bx+ax^(2)-bx-x^(2)` `rArr 2ax^(2)-x^(2)=0` `rArr a=(1)/(2)` Also, `a+b+c=3` `rArr (1)/(2) +b+0=3 rArr b=(5)/(2)` ` therefore f(x)=(x^(2)+5x)/(2)` Now, `f(n)=(n^(2)+5n)/(2)=(1)/(2)n^(2)+(5)/(2)n` `therefore sum_(n=1)^(10)f(n)=(1)/(2)sum_(n=1)^(10)n^(2)+(5)/(2)sum_(n=1)^(10)n` `=(1)/(2)*(10xx11xx21)/(6)+(5)/(2)xx(10xx11)/(2)` `=(385)/(2)+(275)/(2)=(660)/(2)=330` |
|
| 712. |
Let `f: IvecI`be a function `(I`is set of integers`)`such that `f(0)=1,f(f(n)=f(f(n+2)+2)=ndot`then`f(3)=0`b. `f(2)=0`c. `f(3=-2)`d. `f`is many one functionA. `f(3)=0`B. `f(2)=0`C. `f(3)=-2`D. f is many -one function |
|
Answer» Correct Answer - C Given that `f(f(n)) = n and " (i)"` f(0) = 1 Put n = 0, we get `f(f(0))=0 or f(1)=0` Also given that `f(f(n+2)+2)=n" (ii)"` Put `n=-1`, we get `f(f(1)+2)=-1 or f(0+2)=-1 or f(2)=-1` For f(3), put n= -2 in (ii) `therefore" "f(f(0)+2)=-2` `"or "f(1+2)=-2` `"or "f(3)=-2` |
|
| 713. |
Suppose that `f(x)f(f(x))=1` and `f(1000)=999` then which of the following is trueA. `f(500)=(1)/(500)`B. `f(199)=(1)/(199)`C. `f(x)=(1)/(x)AA x in R-{0}`D. `f(1999)=(1)/(1999)` |
|
Answer» Correct Answer - A::B `f(1000)f(f(1000))=1` `rArr" "f(1000)f(999)=1` `rArr" "999f(999)=1` `therefore" "f(999)=(1)/(999)` The numbers 999 and `(1)/(999)` are in the range of f. Hence, by intermediate value property of continuous function, function takes all values between 999 and `(1)/(999)`, then there exists `alpha in ((1)/(999),999)` such that `f(alpha)=500` Then `f(alpha)f(f(alpha))=1 rArr f(500)=(1)/(500)` Similarly, `199 in ((1)/(199),999),` thus `f(199)=(1)/(199)` But there is nothing to show that 1999 lies in the range of f. Thus (d) is not correct and (c) is alos incorrect. |
|
| 714. |
Let f(x) be defined on [-2,2] and is given by `f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le 2):}` and g(x)`=f(|x|)+|f(x)|`. Then g(x) is equal toA. `{{:(,-x,-2 le x lt 0),(,0,0 le x lt 1),(,x-1,1 le x le 2):}`B. `{{:(,-x,-2le x lt 0),(,0,0le x lt 1),(,2(x-1),1le x le 2):}`C. `{{:(,-x,-2le x lt0),(,x-1,0 le x le 2):}`D. none of these |
| Answer» Correct Answer - B | |
| 715. |
Consider a differentiable `f:R to R` for which `f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R.` The minimum value of `f(x)` isA. `1`B. `-(1)/(2)`C. `-(1)/(4)`D. none of these |
|
Answer» Correct Answer - C `f(x+y)=2^(x)f(y)+4^(y)f(x)" (i)"` Interchanging x and y, we get `f(x+y)=2^(y)f(x)+4^(x)f(y)" (ii)"` `rArr" "2^(x)f(y)+4^(y)f(x)=2^(y)f(x)+4^(x)f(y)` `rArr" "(f(x))/(4^(x)-2^(x))=(f(y))/(4^(y)-2^(y))=k` `rArr" "f(x)=k(4^(x)-2^(x))` `rArr" "f(1)=k(4-2)=2` `rArr" "k=1.` Hence, `f(x)=4^(x)-2^(x).` `f(4)=4^(4)-2^(4)=240` `f(x)=(2^(x))^(2)-2^(x)=(2^(x)-1//2)^(2)-1//4` Thus, f(x) has least value as `-1//4.` |
|
| 716. |
Consider a differentiable `f:R to R` for which `f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R.` The value of f(4) isA. 160B. 240C. 200D. none of these |
|
Answer» Correct Answer - B `f(x+y)=2^(x)f(y)+4^(y)f(x)" (i)"` Interchanging x and y, we get `f(x+y)=2^(y)f(x)+4^(x)f(y)" (ii)"` `rArr" "2^(x)f(y)+4^(y)f(x)=2^(y)f(x)+4^(x)f(y)` `rArr" "(f(x))/(4^(x)-2^(x))=(f(y))/(4^(y)-2^(y))=k` `rArr" "f(x)=k(4^(x)-2^(x))` `rArr" "f(1)=k(4-2)=2` `rArr" "k=1.` Hence, `f(x)=4^(x)-2^(x).` `f(4)=4^(4)-2^(4)=240` `f(x)=(2^(x))^(2)-2^(x)=(2^(x)-1//2)^(2)-1//4` Thus, f(x) has least value as `-1//4.` |
|
| 717. |
A function `f (x)` is defined for all `x in R` and satisfies, `f(x + y) = f (x) + 2y^2 + kxy AA x, y in R`, where `k` is a given constant. If `f(1) = 2 and f(2) = 8`, find `f(x)` and show that `f (x+y).f(1/(x+y))=k,x+y != 0`.A. f(0) = 0B. f(0) cannot be determinedC. k = 2D. k cannot be determined |
|
Answer» Correct Answer - A::C `f(x+y)-kxy=f(x)+2y^(2)" (1)"` Put `y=-x` `rArr" "f(0)=kx^(2)=f(x)+2x^(2)" (2)"` `rArr" "f(x)=(k-2)x^(2)+f(0)` Put x = 1 `therefore" "f(1)=(k-2)+f(0)` `therefore" "k-2+f(0)=2` `therefore" "k+f(0)=4" (3)"` Put x = 1 `therefore" "f(2)=(k-2).4+f(0)` `therefore" "4k+f(0)=16` Solving we get 3k = 12 or k = 4 and f(0) = 0 `therefore" "f(x)=2x^(2)` |
|
| 718. |
If a function satisfies `(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2`, thenA. f(x) must be polynomial functionB. f(3) = 12C. f(0) = 0D. f(x) may not be differentiable |
|
Answer» Correct Answer - A::B::C `(x-y)f(x+y)-(x+y)f(x-y)=2y(x-y)(x+y)` Let `x-y=u, x+y=v`. Then `uf(v)-vf(u)=uv(v-u)` `rArr" "(f(v))/(v)-(f(u))/(u)=v-u` `rArr" "((f(v))/(x)-v)=((f(u))/(u)-u)=" constant"` `"Let "(f(x))/(x)-x=lambda. " Then"` `f(x)=(lambdax+x^(2))` Since `f(1)=2" then "lambda=1` `therefore" "f(x)=x^(2)+x` |
|
| 719. |
Let `f(x)=x^2a n dg(x)=sinxfora l lx in Rdot`Then the set of all `x`satisfying `(fogogof)(x)=(gogof)(x),w h e r e(fog)(x)=f(g(x)),`is`+-sqrt(npi),n in {0,1,2, dot}``+-sqrt(npi),n in {1,2, dot}``pi/2+2npi,n in { ,-2,-1,0,1,2}``2npi,n in { ,-2,-1,0,1,2, }`A. `pm sqrt(n pi), n in {0,1,2, …..}`B. `pm sqrt(n pi), n in {1,2,…}`C. `pi//2+2n pi, n in {…, -2,-1,0,1,2, …}`D. `2n pi, n in {…, -2,-1,0,1,2, … }` |
|
Answer» Correct Answer - B `f(x)=x^(2),g(x)=sinx` `(gof)(x)=sin x^(2)` `go(gof)(x)=sin(sinx^(2))` `(fogogof)(x)=(sin(sin x^(2)))^(2) " …(i)" ` Again, `(gof)(x)=sin x^(2)` `(gogof)(x)=sin(sin x^(2)) " …(ii)" ` Given, `(fogogof) (x)=(gogof)(x)` `rArr (sin(sin^(2)))^(2)=sin(sin x^(2))` `rArr sin(sin x^(2)) {sin (sin x^(2))-1}=0` `implies sin(sin x^(2) )=0 or sin(sin x^(2))=1` `rArr sin x^(2)=0 or sin x^(2)=(pi)/(2)` ` therefore x^(2) = n pi ` `[ sin x^(2)=(pi)/(2) " is not possible as " -1 le sin theta le 1]` ` x =pm sqrt(n pi)` |
|
| 720. |
If `f(x)=a^x,` which of the following equalities do not hold ?(i) `f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x)`(ii) `f(-x)f(x)-1=0`(iii) `f(x+y)=f(x)f(y)`(iv) `f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)`A. `f(x+2)-2f(x+1)+f(x)=(a-1)^(2)f(x)`B. `f(-x)f(x)-1=0`C. `f(x+y)=f(x) f(y)`D. `f(x+3)-2(x+2)+f(x+1)=(a-2)^(2)f(x+1)` |
| Answer» Correct Answer - D | |
| 721. |
If `f(x^2-6x+6)+f(x^2-4x+4)=2x AA in x in R` then `f(-3) + f(9) -5f(1)=` (A) 7 (B) 8 (C) 9 (D) 10A. 7B. 8C. 9D. 10 |
|
Answer» Correct Answer - C `x^(2)-6x+6=x^(2)-4x+4 rArr x=1` Put x = 1 in the given relation to get f(1) = 1 for `x^(2)-6x+6=1, x = 1 or 5` for `x^(2)-4x+4=1, x =1or 3` Put x = 3 and 5 in the given relation to get `f(-3)+f(1)=6rArrf(-3)=5` `and f(1)+f(9)=10 rArr f(9)=9` `therefore" "f(-3)+f(9)-5f(1)=9` |
|
| 722. |
Suppose `f(x)=a x+ba n dg(x)=b x+a ,w h e r eaa n db`are positive integers. If `f(g(20))-g(f(20))=28 ,`then which of the following is nottrue?`a=15`b. `a=6`c. `b=14`d. `b=3`A. `a=15`B. `a=6`C. `b=14`D. `b=3` |
|
Answer» Correct Answer - D `f(g(x))=a(bx+a)+b` `=abx+a^(2)+b" (i)"` `g(f(x))=b(ax+b)+a` `=abx+b^(2)+a" (ii)"` From (i) - (ii), we get `f(g(20))-g(f(20))=a^(2)-b^(2)+b-a` `therefore" "(a^(2)-b^(2))+(b-a)=28` `therefore" "(a-b)(a+b-1)=28=1xx 2x or 2 xx 14 or 4xx7` If `a-b=1 and a+b-1=28` Then `a=15, b=14` If `a-b=2 and a+b-1=14` (not possible) If `a-b=4 and a+b-1 =7` Then a = 6 and b = 2 |
|
| 723. |
Let `f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0` and f(0)=0 then the value of `f(1) +f(2)=`A. `-1`B. 0C. 1D. none of these |
|
Answer» Correct Answer - B `f(x+(1)/(y))+f(x-(1)/(y))=2f(x)f((1)/(y))AA x, y in R` Given f(0) = 0 Putting `x=0, y=(1)/(x)`, we get `f(x)+f(-x)=2f(0)f(x)` `rArr" "f(x)+f(-x)=0` `rArr" "f(x)=-f(-x)` Putting x = 1, y = -1, we get `rArr" "f(2)+f(0)=2[f(1)]^(2)` `rArr" "f(2)=2[f(1)]^(2)` Putting `x=-1, y=-1,` we get `rArr" "f(-2)=2f(-1)f(-1)` `rArr" "-f(2)=2(f(1))^(2)` `rArr" "f(2)=-f(2)` `rArr" "f(2)=0` `rArr" "f(1)=0` `therefore" "f(1)=f(2)=0` `therefore" "f(1)+f(2)=0` |
|
| 724. |
`f:R to R` given by f(x)=5-3 sin x, isA. one-oneB. ontoC. one-one and ontoD. none of these |
| Answer» Correct Answer - D | |
| 725. |
Let `f: A to B; g: B to A` be two functions such that `gof = I_A`. Then; f is an injection and g is a surjection.A. f is an injection and g is a surjectionB. f is a surjection and g is an injectionC. f and g both are injectionsD. f and g both are surjections |
| Answer» Correct Answer - A | |
| 726. |
Let `f:A->B` be a function defined by `f(x) sqrt3sin x +cos x+4.` If `f` is invertible, thenA. `A=[-2pi//3, pi//3], B=[2,6]`B. `A=[pi//6, 5pi//6], B=[-2,2]`C. `A=[-pi//2, pi//2], B=[2,6]`D. `A=[-pi//3, pi//3], B=[2,6]` |
| Answer» Correct Answer - A | |
| 727. |
Let `f : Q to Q : f(x) =3x -4` show tha t f is invertible and find `f^(-1)` |
| Answer» Correct Answer - `f^(-1) (y)=(1)/(2) (y+4)` | |
| 728. |
If `f(x)`is an invertible function and `g(x)=2f(x)+5,`then the value of `g^(-1)(x)i s``2f^(-1)(x)-5`(b) `1/(2f^(-1)(x)+5)``1/2f^(-1)(x)+5`(d) `f^(-1)((x-5)/2)`A. `2f^(-1)(x)-5`B. `(1)/(2f^(-1)(x)+5)`C. `(1)/(2)f^(-1)(x)+5`D. `f^(-1)((x-5)/(2))` |
|
Answer» Correct Answer - D Given `g(x)=2f(x)+5` Replacing x by `g^(-1)(x)`, we get `g(g^(-1)(x))=2f(g^(-1)(x))+5` `rArr" "x=2 f(g^(-1)(x))+5` `rArr" "f(g^(-1)(x))=(x-5)/(2)` `rArr" "f^(-1)(x)=f^(-1)((x-5)/(2))` |
|
| 729. |
If f(x) = x3 - \(\frac{1}{x^3}\)then show that f(x) + f\((\frac{1}x)\) = 0 |
|
Answer» Given f(x) = x3 - \(\frac{1}{x^3}\) Need to prove: f(x) + f\((\frac{1}{x})\) = 0 Replacing x by \(\frac{1}{x}\) we get, f\((\frac{1}{x})\) = \(\frac{1}{x^3}\) - \(\frac{1}{\frac{1}{x^3}}\) = \(\frac{1}{x^3}\) - x3 Now according to the problem, f(x) + f\((\frac{1}{x})\) = x3 - \(\frac{1}{x^3}\) + \(\frac{1}{x^3}\) - x3 ⇒ f(x) + f\((\frac{1}{x})\) = 0 [proved] |
|
| 730. |
Let f(x) = 2x + 5 and g(x) = x2 + x. Describe i. f + g ii. f – g iii. fgiv. \(\frac{f}{g}\)Find the domain in each case. |
|
Answer» Given, f(x) = 2x + 5 and g(x) = x2 + x Clearly, Both f(x) and g(x) are defined for all x ∈ R. Hence, Domain of f = domain of g = R i. f + g We know, (f + g)(x) = f(x) + g(x) ⇒ (f + g)(x) = 2x + 5 + x2 + x ∴ (f + g)(x) = x2 + 3x + 5 Clearly, (f + g)(x) is defined for all real numbers x. ∴ The domain of (f + g) is R ii. f – g We know, (f – g)(x) = f(x) – g(x) ⇒ (f – g)(x) = 2x + 5 – (x2 + x) ⇒ (f – g)(x) = 2x + 5 – x2 – x ∴ (f – g)(x) = 5 + x – x2 Clearly, (f – g)(x) is defined for all real numbers x. ∴ The domain of (f – g) is R iii. fg We know, (fg)(x) = f(x)g(x) ⇒ (fg)(x) = (2x + 5)(x2 + x) ⇒ (fg)(x) = 2x(x2 + x) + 5(x2 + x) ⇒ (fg)(x) = 2x3 + 2x2 + 5x2 + 5x ∴ (fg)(x) = 2x3 + 7x2 + 5x Clearly, (fg)(x) is defined for all real numbers x. ∴ The domain of fg is R iv. \(\frac{f}{g}\) We know, (\(\frac{f}{g}\))(x) = \(\frac{f(x)}{g(x)}\) ∴ (\(\frac{f}{g}\))(x) = \(\frac{2x+5}{x^2+x}\) Clearly, (\(\frac{f}{g}\))(x) is defined for all real values of x, except for the case when x2 + x = 0. x2 + x = 0 ⇒ x(x + 1) = 0 ⇒ x = 0 or x + 1 = 0 ⇒ x = 0 or –1 When x = 0 or –1,(\(\frac{f}{g}\))(x) will be undefined as the division result will be indeterminate. Thus, Domain of \(\frac{f}{g}\) = R – {–1, 0} |
|
| 731. |
What is the fundamental difference between a relation and a function? Is every relation a function? |
|
Answer» Suppose ‘f’ be the function and R be the relation defined from the set X to set Y. A domain of a relation R might be a subset of the set X, but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation. In the relation, one element of X might be associated with the one or more elements of Y, while it must be associated with the only one element of Y in a function. Hence, not every relation is a function. However, every function is necessarily a relation. |
|
| 732. |
A continuous, even periodic function f with period 8 is such that `f(0)=0,f(1)=-2,f(2)=1,f(3)=2,f(4)=3,` then the value of `tan^(-1) tan{f(-5)+f(20)+cos^(-1)(f(-10))+f(17)}` is equal toA. `2pi-3`B. `3-2pi`C. `2pi+3`D. `3-pi` |
|
Answer» Correct Answer - D `f(-5)=f(3)=2,f(20)=f(4)=3,f(-10)=f(-2)=f(2)=1`, `f(17)=f(1)=-2` `therefore" "tan^(-1)tan{f(-5)+f(20)+cos^(-1)(f(-10))+f(17)}` `" "=tan^(-1)tan(2+3+0-2)=3-pi`. |
|
| 733. |
The domain of the function `f(x)=sqrt(10-sqrt(x^4-21 x^2))`is`[5,oo)`b. `[-sqrt(21),sqrt(21)]`c. `[-5,-sqrt(21)]uu[sqrt(21),5]uu{0]`d. `(-oo,-5)`A. `[5,oo]`B. `[-sqrt(21),sqrt(21)]`C. `[-5-sqrt(21]]uu[sqrt(21),5)]uu{0}`D. `(-oo,-5)` |
|
Answer» Correct Answer - C We must have `x^(4)-21x^(2) ge 0 and 10-sqrt(x^(4)-21x^(2))ge0` `rArr" "x^(2)(x^(2)-21)ge0" (1)"` `"and "100gex^(4)-21x^(2)" (2)"` Eq. (1) gives x = 0 or `x le-sqrt(21)or x ge sqrt(21)` `"Eq. (2)" rArrx^(4)-21x^(2)-100le0` `rArr" "(x^(2)-25)(x^(2)+4)le0` `rArr" "x^(2)-25le0" "("as "x^(2)+4 gt0" always")` `rArr" "-5lexle5` Domain is given by `[-5,-sqrt(21)]cup[sqrt(21),5]` and x=0.` |
|
| 734. |
The range of the function `f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3)))` `x in R` isA. `[(pi)/(6),(pi)/(2))`B. `[(pi)/(6),(pi)/(3))`C. `[(pi)/(6),(pi)/(4))`D. none of these |
|
Answer» Correct Answer - C We have `f(x)=tan^(-1)((x^(2)+1)/(x^(2)+sqrt3)),x in R` `"Let "y=(x^(2)+1)/(x^(2)+sqrt3)` `rArr" "yx^(2)+sqrt3y=x^(2)+1` `rArr" "(sqrt3y-1)=(1-y)x^(2)` `therefore" "x^(2)=((sqrt3y-1)/(1-y))ge0` `"So, "(sqrt3y-1)/(y-1)le0` `rArr" "y in[(1)/(sqrt3),1)` `therefore" Range of "f(x)=[(pi)/(6),(pi)/(4))` |
|
| 735. |
If a and b are natural numbers and `f(x)=sin(sqrt(a^2-3))x+cos(sqrt(b^2+7))x` is periodic with finite fundamental period then period of f(x) isA. `pi`B. `2pi`C. `2pi(sqrt(a^(2)-3)+sqrt(b^(2)+7))`D. `pi(sqrt(a^(2)-3)+sqrt(b^(2)+7))` |
|
Answer» Correct Answer - B Since the function is periodic, `a^(2)-3 and b^(2)+7` should be perfect square, which is possible only if a = 2, b = 3 in which case `f(x) = sin x +cos 4x`, which has periodic with `2pi`. |
|
| 736. |
What is the fundamental period of `f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)`A. `pi//2`B. `pi`C. `2pi`D. `3pi` |
|
Answer» Correct Answer - B `f(x)=(sinx+sin3x)/(cosx+cos3x)` `=(2sin2xcosx)/(2cos2x cos3x)` where `x ne (2n+1)(pi)/(4),(2n+1)(pi)/(2)` `f(x+(pi)/(2))=tan2(x+(pi)/(2))=tan(2x+pi)=tan2x` it seems that `(pi)/(2)` is a period but it is not because f(0) is defined where as `f((pi)/(2))` is not defined. |
|
| 737. |
Range of the function `f(x)=sqrt(cos^(- 1)(sqrt(log_4x))-pi/2)+sin^(- 1)((1+x^2)/(4x))` is equal to (A) `(0,pi/2+sqrt(pi/2)]` (B) `[pi/2,pi/2+sqrt(pi/2)]` (C) `[pi/6,pi/4)` (D) `{pi/6}`A. `(0,(pi)/(2)+sqrt((pi)/(2))]`B. `[(pi)/(2),(pi)/(2)+sqrt((pi)/(2))]`C. `[(pi)/(6),(pi)/(2)]`D. `{(pi)/(6)}` |
|
Answer» Correct Answer - D We have `f(x)=sqrt(-sin^(-1)(sqrtlog_(4)x))+sin^(-1)((1+x^(4))/(4x))` Clearly, domain of `f(x)` is `x=1` only, so `f(1)=sqrt0+sin^(-1)((2)/(4))=(pi)/(6).` Hence, range of f(x) is `{(pi)/(6)}.` |
|
| 738. |
For relation `2 log y - log x - log ( y-1)`=0A. domain `=(4,+oo),"range"=(1+oo)`B. domain`=(4,oo),"range"=(2+oo)`C. domain`=(2,oo),"range"=(2,+oo)`D. none of these |
|
Answer» Correct Answer - A Here , `log.(y^(2))/(x(y-1))=0` `or" "(y^(2))/(x(y-1))=1` `"or "y^(2)=xy-x` `"or "y^(2)-xy+x=0` `therefore" "y=(xpnsqrt(x^(2)-4x))/(2)` So y is real if `x^(2)-4xge0` `"or "x(x-4)ge0` `therefore" "xle0orxge4.` But `xgt0` for log x to be defined. `"So, "xge4` `"Now, "x=(y^(2))/(y-1)ge4` `"or "(y^(2)-4y+4)/(y-1)ge0` `"or "(y-2)^(2)//(y-1)ge0` `rArr" "yge1` But `ygt1` for log `(y-1)` to be real. |
|
| 739. |
The number of elements in the domain of the function `f(x)=sin^(-1)((x^2-2x)/3)+sqrt(([x]+[-x]))`, (where [.] denotes the greater integer function) isequal toa. 4b. 6 c. 3 d. 5A. 6B. 4C. 3D. 5 |
|
Answer» Correct Answer - D `f(x)=sin^(-1)((x^(2)-2x)/(3))+sqrt([x]+[-x])` `sin^(-1)((x^(2)-2x)/(3))"is denfined for"-1le(x^(2)-2x)/(3)le1` and `sqrt([x]-[-x])` is defined only for integral values of x `rArr" "x=-1,0,1,2,3` |
|
| 740. |
The range of the function `y=[x^2]-[x]^2` `x in [0,2]` (where [] denotes the greatest integer function), isA. [0]B. [0,1]C. [1,2]D. [0,1,2] |
|
Answer» Correct Answer - D We have, `{:(,y=[x^(2)]-[x]^(2)",",x in[0,2]),("i.e.,",y=[x^(2)]",",0lexlt1),(,y=[x^(2)]-1",",1lexlt2),(,y=0,x=2),("i.e.,",y=0",",0lexlt1),(,=1-1=0",",1lexltsqrt2),(,=2-1=1",",sqrt2lexltsqrt3),(,=3-1=2",",sqrt2lexltsqrt3),(,=3-1=2",",sqrt3lexlt2),(,=0,x=2):}` Hence, the range is `{0,1,2}.` |
|
| 741. |
Period of `f(x) = sin 3x cos[3x]-cos 3x sin [3x]` (where[] denotes the greatest integer function), isA. `1//6`B. `2//3`C. `5//6`D. `1//3` |
|
Answer» Correct Answer - D `{x}=x-[x]` which is periodic with period 1. Now, `f(x)=sin(3x-[3x])=sin({x})` `{3x}` has period `(1)/(3)` `therefore" "f(x)"has alos period "(1)/(3)`. |
|
| 742. |
Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.|x2 – x – 6| = x + 2 |
|
Answer» |x2 – x – 6| = x + 2 …..(i) R.H.S. must be non-negative ∴ x ≥ -2 …..(ii) |(x – 3) (x + 2)| = x + 2 ∴ (x + 2) |x – 3| = x + 2 as x + 2 ≥ 0 ∴ |x – 3| = 1 if x ≠ -2 ∴ x – 3 = ±1 ∴ x = 4 or 2 ∴ x = -2 also satisfies the equation ∴ Solution set = {-2, 2, 4} |
|
| 743. |
Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. 1 < |x – 1| < 4 |
|
Answer» 1 < |x – 1| < 4 ∴ -4 < x – 1 < -1 or 1 < x – 1 < 4 ∴ -3 < x < 0 or 2 < x < 5 ∴ Solution set = (-3, 0) ∪ (2, 5) |
|
| 744. |
Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.(i) {x} > 4(ii) {x} = o(iii) {x} = 0.5(iv) 2{x} = x + [x] |
|
Answer» (i) {x} > 4 This is a meaningless statement as 0 ≤ {x} < 1 ∴ The solution set = { } or Φ (ii) {x} = 0 ∴ x is an integer ∴ The solution set is Z. (iii) {x} = 0.5 ∴ x = ….., -2.5, -1.5, -0.5, 0.5, 1.5, ….. ∴ The solution set = {x : x = n + 0.5, n ∈ Z} (iv) 2{x} = x + [x] = [x] + {x} + [x] ……[x = [x] + {x}] ∴ {x} = 2[x] R.H.S. is an integer ∴ L.H.S. is an integer ∴ {x} = 0 ∴ [x] = 0 ∴ x = 0 |
|
| 745. |
Find x, if g(x) = 0 whereg(x) = x3 – 2x2 – 5x + 6 |
|
Answer» g(x) = x3 – 2x2 – 5x + 6 = ( x- 1) (x2 – x – 6) = (x – 1) (x + 2) (x – 3) g(x) = 0 ∴ (x – 1) (x + 2) (x – 3) = 0 ∴ x – 1 = 0 or x + 2 = 0 or x – 3 = 0 ∴ x = 1, -2, 3 |
|
| 746. |
Find x, if f(x) = g(x) wheref(x) = x4 + 2x2, g(x) = 11x2 |
|
Answer» f(x) = x4 + 2x2 , g(x) = 11x2 f(x) = g(x) ∴ x4 + 2x2 = 11x2 ∴ x4 – 9x2 = 0 ∴ x2 (x2– 9) = 0 ∴ x2 = 0 or x2 – 9 = 0 ∴ x = 0 or x2 = 9 ∴ x = 0, ±3 |
|
| 747. |
Find the range of the following functions.f(x) = 1/1+√x |
|
Answer» f(x) = 1/1+√x = y, (say) ∴ √x y + y = 1 ∴ √x = 1-y/y ≥ 0 ∴= y-1/y ≤ 0 ∴ o < y ≤ 1 ∴ Range of f = (0, 1] |
|
| 748. |
Find the range of the following functions.f(x) = x/9+x2 |
|
Answer» f(x) = x/9+x2 = y (say) ∴ x2 y – x + 9y = 0 For real x, Discriminant > 0 ∴ 1 – 4(y)(9y) ≥ 0 ∴ y2 ≤ 1/36 ∴ -1/6 ≤ y ≤ 1/6 ∴ Range of f = [-1/6, 1/6] |
|
| 749. |
Find the domain of the following functions.fx = \(\sqrt{log(x^2-6x+6)}\)fx = √log(x2 - 6x +6) |
|
Answer» f(x) = \(\sqrt{x-x^2} + \sqrt {5-x}\) For f to be defined, log (x2 – 6x + 6) ≥ 0 ∴ x2 – 6x + 6 ≥ 1 ∴ x2 – 6x + 5 ≥ 0 ∴ (x – 5)(x – 1) ≥ 0 ∴ x ≤ 1 or x ≥ 5 …..(i) [∵ The solution of (x – a) (x – b) ≥ 0 is x ≤ a or x ≥ b, for a < b] and x2 – 6x + 6 > 0 ∴ (x – 3)2 > -6 + 9 ∴ (x – 3)2 > 3 ∴ x < 3 – √3 0r x > 3 + √3 ……..(ii) From (i) and (ii), we get x ≤ 1 or x ≥ 5 Solution set = (-∞, 1] ∪ [5, ∞) ∴ Domain of f = (-∞, 1] ∪ [5, ∞) |
|
| 750. |
If f(x) = (x – a)2(x – b)2, find f(a + b). |
|
Answer» Given, f(x) = (x – a)2(x – b)2 We need to find, f(a + b). We have, f(a + b) = (a + b – a)2(a + b – b)2 ⇒ f(a + b) = (b)2(a)2 ∴ f(a + b) = a2b2 Thus, f(a + b) = a2b2 |
|