Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)A. `[0,(7pi)/(6)]`B. `[0,(pi)/(6)]`C. `[(11pi)/(6)]`D. `[pi,2pi]`

Answer» Correct Answer - A::B::C
`1le|sinx|+|cosx|lesqrt2`
`therefore" "2[|sinx|+|cosx|]=2`
`thereforef(x)` is defined if
`sin^(2)x+2 sin x+(11)/(4)ge2`
`"or "(sinx+1)^(2)ge(1)/(4)`
`"or "sinx+1ge(1)/(2) or sin x+1le-(1)/(2)`
`"or "sinx ge-(1)/(2) or sin le-(3)/(2)` (which is not true)
702.

`f(x)=sin^2x+cos^4x+2` and `g(x)=cos(cosx)+cos(sinx)` Also let period f(x) and g(x) be `T_1` and `T_2` respectively thenA. `T_(1)=2T_(2)`B. `2T_(1)=T_(2)`C. `T_(1)=T_(2)`D. `T_(1)=4T_(2)`

Answer» Correct Answer - C
`f(x)=sin^(2)x+(1-sin^(2)x)^(2)+2`
`=3-sin^(2)x+sin^(4)x`
`=3-sin^(2)xcos^(2)x`
`=3-(sin^(2)2x)/(4)`
`rArr" "T_(1)=(pi)/(2), and T_(2)=(pi)/(2)`
703.

If `f:RrarrR` is a function satisfying the property `f(x+1)+f(x+3)=2" for all" x in R` than `f` isA. periodic with period 3B. periodic with period 4C. non periodicD. periodic with period 5

Answer» Correct Answer - B
`f(x+1)+f(x+3)=2" (i)"`
`"Replacing x by "x+2," we get"`
`f(x+3)+f(x+5)=2" (ii)"`
Subtracting (ii) rom (i), we get
`f(x+1)=f(x+5)`
`"or "f(x)=f(x+4)`
704.

Let A = {–2, –1, 0, 1, 2} and f: A → Z be a function defined by f(x) = x2 – 2x – 3. Find:(i) range of f i.e. f (A)(ii) pre-images of 6, –3 and 5

Answer»

Given as

A = {–2, –1, 0, 1, 2}

f : A → Z such that f(x) = x2 – 2x – 3

(i) A is the domain of the function f. Thus, range is the set of elements f(x) for all x ∈ A.

By substituting x = –2 in f(x), we get

f(–2) = (–2)2 – 2(–2) – 3

= 4 + 4 – 3

= 5

By substituting x = –1 in f(x), we get

f(–1) = (–1)2 – 2(–1) – 3

= 1 + 2 – 3

= 0

By substituting x = 0 in f(x), we get

f(0) = (0)2 – 2(0) – 3

= 0 – 0 – 3

= – 3

By substituting x = 1 in f(x), we get

f(1) = 12 – 2(1) – 3

= 1 – 2 – 3

= – 4

By substituting x = 2 in f(x), we get

f(2) = 22 – 2(2) – 3

= 4 – 4 – 3

= –3

Hence, the range of f is {-4, -3, 0, 5}.

(ii) pre-images of 6, –3 and 5

Suppose x be the pre-image of 6 ⇒ f(x) = 6

 x2 – 2x – 3 = 6

x2 – 2x – 9 = 0

x = [-(-2) ±  ((-2)2 – 4(1) (-9))] / 2(1)

= [2 ±  (4+36)] / 2

= [2 ± 40] / 2

= 1 ± 10

However, 1 ± 10 ∉ A

Hence, there exists no pre-image of 6.

Then, suppose x be the pre-image of –3 ⇒ f(x) = –3

x2 – 2x – 3 = –3

x2 – 2x = 0

x(x – 2) = 0

x = 0 or 2

It is clear, both 0 and 2 are elements of A.

Hence, 0 and 2 are the pre-images of –3.

Then, suppose x be the pre-image of 5 ⇒ f(x) = 5

x2 – 2x – 3 = 5

x2 – 2x – 8= 0

x2 – 4x + 2x – 8= 0

x(x – 4) + 2(x – 4) = 0

(x + 2)(x – 4) = 0

x = –2 or 4

However, 4 ∉ A but –2 ∈ A

Hence, –2 is the pre-images of 5.

Thus, Ø, {0, 2}, -2 are the pre-images of 6, -3, 5

705.

Find the range of the function `f(x)=sinx`.

Answer» Correct Answer - `[-1,1]`
706.

Define a function as a set of ordered pairs.

Answer»

A function from is defined by a set of ordered pairs such that any two ordered pairs should not have the same first component and the different second component. 

This means that each element of a set, say X is assigned exactly to one element of another set, say Y. 

The set X containing the first components of a function is called the domain of the function. 

The set Y containing the second components of a function is called the range of the function. 

For example,

f = {(a, 1), (b, 2), (c, 3)} is a function. 

Domain of f = {a, b, c} 

Range of f = {1, 2, 3}

707.

Let `A={-2, -1, 0, 1, 2}a n d f: A->Z`be given y `f(x)=x^2-2x-3.`Find: i. the range of `f`ii. pre images of 6,-3 and 5.

Answer» Correct Answer - `f(A)={5,0,-3,-4}`
708.

Define a function as a correspondence between two sets.

Answer»

A function from a set X to a set Y is defined as a correspondence between sets X and Y such that for each element of X, there is only one corresponding element in Y. 

The set X is called the domain of the function. 

The set Y is called the range of the function. 

For example, 

X = {a, b, c}, Y = {1, 2, 3, 4, 5} and f be a correspondence which assigns the position of a letter in the set of alphabets. 

Therefore, 

f(a) = 1, f(b) = 2 and f(c) = 3. 

As there is only one element of Y for each element of X, f is a function with domain X and range Y.

709.

Describe random functions ?

Answer»

Random numbers are used for fames, simulations, testing, security, and privacy applicatons. Python includes following functions that are commonly used.

    Function   Description
choice(seq) A random item from a list, tuple, or string.
randrange ([start,] stop [,Step]) A randomly selected element from range(start, stop, step)
 random() A random float, such that 0 is less than or equal to r and r is less than 1
seed([x]) Sets the integer starting value used in generating random numbers. Call this function before calling any other random module function. Returns None.
shuffle(Ist)Randomizes the items of a list in plae. Returns None.
Uniform(x,y)A random float r, such that x is less than or equal to r and r is less than y

710.

Let f : N `to N : f(x) =2 x` for all `x in N` Show that f is one -one and into.

Answer» We have
`f(x_(1)) = f(x_(2)) rArr 2x_(1) =2 x_(2) rArr x_(1) = x_(2)`.
`:. ` f is one - one
Let y =2x . Then `x=(y)/(2).`
If we put y=3 then `x=(3)/(2) in N`
Thus `3 in N` has no pre-image in N
`:.` f is into
Hence f is one-one and into .
711.

Let `a,b,c in R. " If " f(x) =ax^(2)+bx+c` be such that `a+b+c=3 and f(x+y)=f(x)+f(y)+xy, AA x,y in R, " then " sum_(n=1)^(10)f(n)` is equal toA. 330B. 165C. 190D. 255

Answer» Correct Answer - A
We have, `f(x)=ax^(2)+bx+c`
Now, `f(x+y)=f(x) +f(y)+xy`
Put `y=0 rArr f(x) = f(x)+f(0)+0`
`rArr f(0)=0`
`rArr c=0`
Again, put `y= -x`
` therefore f(0)=f(x)+f(-x)-x^(2)`
`rArr 0=ax^(2)+bx+ax^(2)-bx-x^(2)`
`rArr 2ax^(2)-x^(2)=0`
`rArr a=(1)/(2)`
Also, `a+b+c=3`
`rArr (1)/(2) +b+0=3 rArr b=(5)/(2)`
` therefore f(x)=(x^(2)+5x)/(2)`
Now, `f(n)=(n^(2)+5n)/(2)=(1)/(2)n^(2)+(5)/(2)n`
`therefore sum_(n=1)^(10)f(n)=(1)/(2)sum_(n=1)^(10)n^(2)+(5)/(2)sum_(n=1)^(10)n`
`=(1)/(2)*(10xx11xx21)/(6)+(5)/(2)xx(10xx11)/(2)`
`=(385)/(2)+(275)/(2)=(660)/(2)=330`
712.

Let `f: IvecI`be a function `(I`is set of integers`)`such that `f(0)=1,f(f(n)=f(f(n+2)+2)=ndot`then`f(3)=0`b. `f(2)=0`c. `f(3=-2)`d. `f`is many one functionA. `f(3)=0`B. `f(2)=0`C. `f(3)=-2`D. f is many -one function

Answer» Correct Answer - C
Given that `f(f(n)) = n and " (i)"`
f(0) = 1
Put n = 0, we get
`f(f(0))=0 or f(1)=0`
Also given that `f(f(n+2)+2)=n" (ii)"`
Put `n=-1`, we get
`f(f(1)+2)=-1 or f(0+2)=-1 or f(2)=-1`
For f(3), put n= -2 in (ii)
`therefore" "f(f(0)+2)=-2`
`"or "f(1+2)=-2`
`"or "f(3)=-2`
713.

Suppose that `f(x)f(f(x))=1` and `f(1000)=999` then which of the following is trueA. `f(500)=(1)/(500)`B. `f(199)=(1)/(199)`C. `f(x)=(1)/(x)AA x in R-{0}`D. `f(1999)=(1)/(1999)`

Answer» Correct Answer - A::B
`f(1000)f(f(1000))=1`
`rArr" "f(1000)f(999)=1`
`rArr" "999f(999)=1`
`therefore" "f(999)=(1)/(999)`
The numbers 999 and `(1)/(999)` are in the range of f.
Hence, by intermediate value property of continuous function, function takes all values between 999 and `(1)/(999)`, then there exists
`alpha in ((1)/(999),999)` such that `f(alpha)=500`
Then `f(alpha)f(f(alpha))=1 rArr f(500)=(1)/(500)`
Similarly, `199 in ((1)/(199),999),` thus `f(199)=(1)/(199)`
But there is nothing to show that 1999 lies in the range of f.
Thus (d) is not correct and (c) is alos incorrect.
714.

Let f(x) be defined on [-2,2] and is given by `f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le 2):}` and g(x)`=f(|x|)+|f(x)|`. Then g(x) is equal toA. `{{:(,-x,-2 le x lt 0),(,0,0 le x lt 1),(,x-1,1 le x le 2):}`B. `{{:(,-x,-2le x lt 0),(,0,0le x lt 1),(,2(x-1),1le x le 2):}`C. `{{:(,-x,-2le x lt0),(,x-1,0 le x le 2):}`D. none of these

Answer» Correct Answer - B
715.

Consider a differentiable `f:R to R` for which `f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R.` The minimum value of `f(x)` isA. `1`B. `-(1)/(2)`C. `-(1)/(4)`D. none of these

Answer» Correct Answer - C
`f(x+y)=2^(x)f(y)+4^(y)f(x)" (i)"`
Interchanging x and y, we get
`f(x+y)=2^(y)f(x)+4^(x)f(y)" (ii)"`
`rArr" "2^(x)f(y)+4^(y)f(x)=2^(y)f(x)+4^(x)f(y)`
`rArr" "(f(x))/(4^(x)-2^(x))=(f(y))/(4^(y)-2^(y))=k`
`rArr" "f(x)=k(4^(x)-2^(x))`
`rArr" "f(1)=k(4-2)=2`
`rArr" "k=1.`
Hence, `f(x)=4^(x)-2^(x).`
`f(4)=4^(4)-2^(4)=240`
`f(x)=(2^(x))^(2)-2^(x)=(2^(x)-1//2)^(2)-1//4`
Thus, f(x) has least value as `-1//4.`
716.

Consider a differentiable `f:R to R` for which `f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R.` The value of f(4) isA. 160B. 240C. 200D. none of these

Answer» Correct Answer - B
`f(x+y)=2^(x)f(y)+4^(y)f(x)" (i)"`
Interchanging x and y, we get
`f(x+y)=2^(y)f(x)+4^(x)f(y)" (ii)"`
`rArr" "2^(x)f(y)+4^(y)f(x)=2^(y)f(x)+4^(x)f(y)`
`rArr" "(f(x))/(4^(x)-2^(x))=(f(y))/(4^(y)-2^(y))=k`
`rArr" "f(x)=k(4^(x)-2^(x))`
`rArr" "f(1)=k(4-2)=2`
`rArr" "k=1.`
Hence, `f(x)=4^(x)-2^(x).`
`f(4)=4^(4)-2^(4)=240`
`f(x)=(2^(x))^(2)-2^(x)=(2^(x)-1//2)^(2)-1//4`
Thus, f(x) has least value as `-1//4.`
717.

A function `f (x)` is defined for all `x in R` and satisfies, `f(x + y) = f (x) + 2y^2 + kxy AA x, y in R`, where `k` is a given constant. If `f(1) = 2 and f(2) = 8`, find `f(x)` and show that `f (x+y).f(1/(x+y))=k,x+y != 0`.A. f(0) = 0B. f(0) cannot be determinedC. k = 2D. k cannot be determined

Answer» Correct Answer - A::C
`f(x+y)-kxy=f(x)+2y^(2)" (1)"`
Put `y=-x`
`rArr" "f(0)=kx^(2)=f(x)+2x^(2)" (2)"`
`rArr" "f(x)=(k-2)x^(2)+f(0)`
Put x = 1
`therefore" "f(1)=(k-2)+f(0)`
`therefore" "k-2+f(0)=2`
`therefore" "k+f(0)=4" (3)"`
Put x = 1
`therefore" "f(2)=(k-2).4+f(0)`
`therefore" "4k+f(0)=16`
Solving we get 3k = 12 or k = 4 and f(0) = 0
`therefore" "f(x)=2x^(2)`
718.

If a function satisfies `(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2`, thenA. f(x) must be polynomial functionB. f(3) = 12C. f(0) = 0D. f(x) may not be differentiable

Answer» Correct Answer - A::B::C
`(x-y)f(x+y)-(x+y)f(x-y)=2y(x-y)(x+y)`
Let `x-y=u, x+y=v`. Then
`uf(v)-vf(u)=uv(v-u)`
`rArr" "(f(v))/(v)-(f(u))/(u)=v-u`
`rArr" "((f(v))/(x)-v)=((f(u))/(u)-u)=" constant"`
`"Let "(f(x))/(x)-x=lambda. " Then"`
`f(x)=(lambdax+x^(2))`
Since `f(1)=2" then "lambda=1`
`therefore" "f(x)=x^(2)+x`
719.

Let `f(x)=x^2a n dg(x)=sinxfora l lx in Rdot`Then the set of all `x`satisfying `(fogogof)(x)=(gogof)(x),w h e r e(fog)(x)=f(g(x)),`is`+-sqrt(npi),n in {0,1,2, dot}``+-sqrt(npi),n in {1,2, dot}``pi/2+2npi,n in { ,-2,-1,0,1,2}``2npi,n in { ,-2,-1,0,1,2, }`A. `pm sqrt(n pi), n in {0,1,2, …..}`B. `pm sqrt(n pi), n in {1,2,…}`C. `pi//2+2n pi, n in {…, -2,-1,0,1,2, …}`D. `2n pi, n in {…, -2,-1,0,1,2, … }`

Answer» Correct Answer - B
`f(x)=x^(2),g(x)=sinx`
`(gof)(x)=sin x^(2)`
`go(gof)(x)=sin(sinx^(2))`
`(fogogof)(x)=(sin(sin x^(2)))^(2) " …(i)" `
Again, `(gof)(x)=sin x^(2)`
`(gogof)(x)=sin(sin x^(2)) " …(ii)" `
Given, `(fogogof) (x)=(gogof)(x)`
`rArr (sin(sin^(2)))^(2)=sin(sin x^(2))`
`rArr sin(sin x^(2)) {sin (sin x^(2))-1}=0`
`implies sin(sin x^(2) )=0 or sin(sin x^(2))=1`
`rArr sin x^(2)=0 or sin x^(2)=(pi)/(2)`
` therefore x^(2) = n pi `
`[ sin x^(2)=(pi)/(2) " is not possible as " -1 le sin theta le 1]`
` x =pm sqrt(n pi)`
720.

If `f(x)=a^x,` which of the following equalities do not hold ?(i) `f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x)`(ii) `f(-x)f(x)-1=0`(iii) `f(x+y)=f(x)f(y)`(iv) `f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)`A. `f(x+2)-2f(x+1)+f(x)=(a-1)^(2)f(x)`B. `f(-x)f(x)-1=0`C. `f(x+y)=f(x) f(y)`D. `f(x+3)-2(x+2)+f(x+1)=(a-2)^(2)f(x+1)`

Answer» Correct Answer - D
721.

If `f(x^2-6x+6)+f(x^2-4x+4)=2x AA in x in R` then `f(-3) + f(9) -5f(1)=` (A) 7 (B) 8 (C) 9 (D) 10A. 7B. 8C. 9D. 10

Answer» Correct Answer - C
`x^(2)-6x+6=x^(2)-4x+4 rArr x=1`
Put x = 1 in the given relation to get
f(1) = 1
for `x^(2)-6x+6=1, x = 1 or 5`
for `x^(2)-4x+4=1, x =1or 3`
Put x = 3 and 5 in the given relation to get
`f(-3)+f(1)=6rArrf(-3)=5`
`and f(1)+f(9)=10 rArr f(9)=9`
`therefore" "f(-3)+f(9)-5f(1)=9`
722.

Suppose `f(x)=a x+ba n dg(x)=b x+a ,w h e r eaa n db`are positive integers. If `f(g(20))-g(f(20))=28 ,`then which of the following is nottrue?`a=15`b. `a=6`c. `b=14`d. `b=3`A. `a=15`B. `a=6`C. `b=14`D. `b=3`

Answer» Correct Answer - D
`f(g(x))=a(bx+a)+b`
`=abx+a^(2)+b" (i)"`
`g(f(x))=b(ax+b)+a`
`=abx+b^(2)+a" (ii)"`
From (i) - (ii), we get
`f(g(20))-g(f(20))=a^(2)-b^(2)+b-a`
`therefore" "(a^(2)-b^(2))+(b-a)=28`
`therefore" "(a-b)(a+b-1)=28=1xx 2x or 2 xx 14 or 4xx7`
If `a-b=1 and a+b-1=28`
Then `a=15, b=14`
If `a-b=2 and a+b-1=14` (not possible)
If `a-b=4 and a+b-1 =7`
Then a = 6 and b = 2
723.

Let `f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0` and f(0)=0 then the value of `f(1) +f(2)=`A. `-1`B. 0C. 1D. none of these

Answer» Correct Answer - B
`f(x+(1)/(y))+f(x-(1)/(y))=2f(x)f((1)/(y))AA x, y in R`
Given f(0) = 0
Putting `x=0, y=(1)/(x)`, we get
`f(x)+f(-x)=2f(0)f(x)`
`rArr" "f(x)+f(-x)=0`
`rArr" "f(x)=-f(-x)`
Putting x = 1, y = -1, we get
`rArr" "f(2)+f(0)=2[f(1)]^(2)`
`rArr" "f(2)=2[f(1)]^(2)`
Putting `x=-1, y=-1,` we get
`rArr" "f(-2)=2f(-1)f(-1)`
`rArr" "-f(2)=2(f(1))^(2)`
`rArr" "f(2)=-f(2)`
`rArr" "f(2)=0`
`rArr" "f(1)=0`
`therefore" "f(1)=f(2)=0`
`therefore" "f(1)+f(2)=0`
724.

`f:R to R` given by f(x)=5-3 sin x, isA. one-oneB. ontoC. one-one and ontoD. none of these

Answer» Correct Answer - D
725.

Let `f: A to B; g: B to A` be two functions such that `gof = I_A`. Then; f is an injection and g is a surjection.A. f is an injection and g is a surjectionB. f is a surjection and g is an injectionC. f and g both are injectionsD. f and g both are surjections

Answer» Correct Answer - A
726.

Let `f:A->B` be a function defined by `f(x) sqrt3sin x +cos x+4.` If `f` is invertible, thenA. `A=[-2pi//3, pi//3], B=[2,6]`B. `A=[pi//6, 5pi//6], B=[-2,2]`C. `A=[-pi//2, pi//2], B=[2,6]`D. `A=[-pi//3, pi//3], B=[2,6]`

Answer» Correct Answer - A
727.

Let `f : Q to Q : f(x) =3x -4` show tha t f is invertible and find `f^(-1)`

Answer» Correct Answer - `f^(-1) (y)=(1)/(2) (y+4)`
728.

If `f(x)`is an invertible function and `g(x)=2f(x)+5,`then the value of `g^(-1)(x)i s``2f^(-1)(x)-5`(b) `1/(2f^(-1)(x)+5)``1/2f^(-1)(x)+5`(d) `f^(-1)((x-5)/2)`A. `2f^(-1)(x)-5`B. `(1)/(2f^(-1)(x)+5)`C. `(1)/(2)f^(-1)(x)+5`D. `f^(-1)((x-5)/(2))`

Answer» Correct Answer - D
Given `g(x)=2f(x)+5`
Replacing x by `g^(-1)(x)`, we get
`g(g^(-1)(x))=2f(g^(-1)(x))+5`
`rArr" "x=2 f(g^(-1)(x))+5`
`rArr" "f(g^(-1)(x))=(x-5)/(2)`
`rArr" "f^(-1)(x)=f^(-1)((x-5)/(2))`
729.

If f(x) = x3 - \(\frac{1}{x^3}\)then show that f(x) + f\((\frac{1}x)\) = 0

Answer»

Given f(x) = x3\(\frac{1}{x^3}\)

Need to prove: f(x) + f\((\frac{1}{x})\) = 0

Replacing x by \(\frac{1}{x}\) we get,

f\((\frac{1}{x})\) = \(\frac{1}{x^3}\) - \(\frac{1}{\frac{1}{x^3}}\) = \(\frac{1}{x^3}\) - x3

Now according to the problem,

f(x) + f\((\frac{1}{x})\) = x3\(\frac{1}{x^3}\) + \(\frac{1}{x^3}\) - x3

f(x) + f\((\frac{1}{x})\) = 0 

[proved]

730.

Let f(x) = 2x + 5 and g(x) = x2 + x. Describe i. f + g ii. f – g iii. fgiv. \(\frac{f}{g}\)Find the domain in each case.

Answer»

Given,

f(x) = 2x + 5 and g(x) = x2 + x 

Clearly,

Both f(x) and g(x) are defined for all x ∈ R. 

Hence, 

Domain of f = domain of g = R 

i. f + g 

We know,

(f + g)(x) = f(x) + g(x) 

⇒ (f + g)(x) = 2x + 5 + x2 + x 

∴ (f + g)(x) = x2 + 3x + 5 

Clearly, 

(f + g)(x) is defined for all real numbers x. 

∴ The domain of (f + g) is R 

ii. f – g 

We know,

(f – g)(x) = f(x) – g(x) 

⇒ (f – g)(x) = 2x + 5 – (x2 + x) 

⇒ (f – g)(x) = 2x + 5 – x2 – x 

∴ (f – g)(x) = 5 + x – x2 

Clearly, 

(f – g)(x) is defined for all real numbers x. 

∴ The domain of (f – g) is R 

iii. fg 

We know,

(fg)(x) = f(x)g(x) 

⇒ (fg)(x) = (2x + 5)(x2 + x) 

⇒ (fg)(x) = 2x(x2 + x) + 5(x2 + x) 

⇒ (fg)(x) = 2x3 + 2x2 + 5x2 + 5x 

∴ (fg)(x) = 2x3 + 7x2 + 5x 

Clearly, 

(fg)(x) is defined for all real numbers x. 

∴ The domain of fg is R

 iv. \(\frac{f}{g}\) 

We know,

(\(\frac{f}{g}\))(x) = \(\frac{f(x)}{g(x)}\)

∴ (\(\frac{f}{g}\))(x) = \(\frac{2x+5}{x^2+x}\)

Clearly,

(\(\frac{f}{g}\))(x) is defined for all real values of x, except for the case when x2 + x = 0.

x2 + x = 0 

⇒ x(x + 1) = 0 

⇒ x = 0 or x + 1 = 0 

⇒ x = 0 or –1

When x = 0 or –1,(\(\frac{f}{g}\))(x) will be undefined as the division result will be indeterminate.

Thus, 

Domain of \(\frac{f}{g}\) = R – {–1, 0}

731.

What is the fundamental difference between a relation and a function? Is every relation a function?

Answer»

Suppose ‘f’ be the function and R be the relation defined from the set X to set Y.

A domain of a relation R might be a subset of the set X, but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation.

In the relation, one element of X might be associated with the one or more elements of Y, while it must be associated with the only one element of Y in a function.

Hence, not every relation is a function. However, every function is necessarily a relation.

732.

A continuous, even periodic function f with period 8 is such that `f(0)=0,f(1)=-2,f(2)=1,f(3)=2,f(4)=3,` then the value of `tan^(-1) tan{f(-5)+f(20)+cos^(-1)(f(-10))+f(17)}` is equal toA. `2pi-3`B. `3-2pi`C. `2pi+3`D. `3-pi`

Answer» Correct Answer - D
`f(-5)=f(3)=2,f(20)=f(4)=3,f(-10)=f(-2)=f(2)=1`,
`f(17)=f(1)=-2`
`therefore" "tan^(-1)tan{f(-5)+f(20)+cos^(-1)(f(-10))+f(17)}`
`" "=tan^(-1)tan(2+3+0-2)=3-pi`.
733.

The domain of the function `f(x)=sqrt(10-sqrt(x^4-21 x^2))`is`[5,oo)`b. `[-sqrt(21),sqrt(21)]`c. `[-5,-sqrt(21)]uu[sqrt(21),5]uu{0]`d. `(-oo,-5)`A. `[5,oo]`B. `[-sqrt(21),sqrt(21)]`C. `[-5-sqrt(21]]uu[sqrt(21),5)]uu{0}`D. `(-oo,-5)`

Answer» Correct Answer - C
We must have `x^(4)-21x^(2) ge 0 and 10-sqrt(x^(4)-21x^(2))ge0`
`rArr" "x^(2)(x^(2)-21)ge0" (1)"`
`"and "100gex^(4)-21x^(2)" (2)"`
Eq. (1) gives x = 0 or `x le-sqrt(21)or x ge sqrt(21)`
`"Eq. (2)" rArrx^(4)-21x^(2)-100le0`
`rArr" "(x^(2)-25)(x^(2)+4)le0`
`rArr" "x^(2)-25le0" "("as "x^(2)+4 gt0" always")`
`rArr" "-5lexle5`
Domain is given by `[-5,-sqrt(21)]cup[sqrt(21),5]` and x=0.`
734.

The range of the function `f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3)))` `x in R` isA. `[(pi)/(6),(pi)/(2))`B. `[(pi)/(6),(pi)/(3))`C. `[(pi)/(6),(pi)/(4))`D. none of these

Answer» Correct Answer - C
We have
`f(x)=tan^(-1)((x^(2)+1)/(x^(2)+sqrt3)),x in R`
`"Let "y=(x^(2)+1)/(x^(2)+sqrt3)`
`rArr" "yx^(2)+sqrt3y=x^(2)+1`
`rArr" "(sqrt3y-1)=(1-y)x^(2)`
`therefore" "x^(2)=((sqrt3y-1)/(1-y))ge0`
`"So, "(sqrt3y-1)/(y-1)le0`
`rArr" "y in[(1)/(sqrt3),1)`
`therefore" Range of "f(x)=[(pi)/(6),(pi)/(4))`
735.

If a and b are natural numbers and `f(x)=sin(sqrt(a^2-3))x+cos(sqrt(b^2+7))x` is periodic with finite fundamental period then period of f(x) isA. `pi`B. `2pi`C. `2pi(sqrt(a^(2)-3)+sqrt(b^(2)+7))`D. `pi(sqrt(a^(2)-3)+sqrt(b^(2)+7))`

Answer» Correct Answer - B
Since the function is periodic, `a^(2)-3 and b^(2)+7` should be perfect square, which is possible only if a = 2, b = 3 in which case `f(x) = sin x +cos 4x`, which has periodic with `2pi`.
736.

What is the fundamental period of `f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)`A. `pi//2`B. `pi`C. `2pi`D. `3pi`

Answer» Correct Answer - B
`f(x)=(sinx+sin3x)/(cosx+cos3x)`
`=(2sin2xcosx)/(2cos2x cos3x)`
where `x ne (2n+1)(pi)/(4),(2n+1)(pi)/(2)`
`f(x+(pi)/(2))=tan2(x+(pi)/(2))=tan(2x+pi)=tan2x`
it seems that `(pi)/(2)` is a period but it is not because f(0) is defined where as `f((pi)/(2))` is not defined.
737.

Range of the function `f(x)=sqrt(cos^(- 1)(sqrt(log_4x))-pi/2)+sin^(- 1)((1+x^2)/(4x))` is equal to (A) `(0,pi/2+sqrt(pi/2)]` (B) `[pi/2,pi/2+sqrt(pi/2)]` (C) `[pi/6,pi/4)` (D) `{pi/6}`A. `(0,(pi)/(2)+sqrt((pi)/(2))]`B. `[(pi)/(2),(pi)/(2)+sqrt((pi)/(2))]`C. `[(pi)/(6),(pi)/(2)]`D. `{(pi)/(6)}`

Answer» Correct Answer - D
We have `f(x)=sqrt(-sin^(-1)(sqrtlog_(4)x))+sin^(-1)((1+x^(4))/(4x))`
Clearly, domain of `f(x)` is `x=1` only, so `f(1)=sqrt0+sin^(-1)((2)/(4))=(pi)/(6).`
Hence, range of f(x) is `{(pi)/(6)}.`
738.

For relation `2 log y - log x - log ( y-1)`=0A. domain `=(4,+oo),"range"=(1+oo)`B. domain`=(4,oo),"range"=(2+oo)`C. domain`=(2,oo),"range"=(2,+oo)`D. none of these

Answer» Correct Answer - A
Here , `log.(y^(2))/(x(y-1))=0`
`or" "(y^(2))/(x(y-1))=1`
`"or "y^(2)=xy-x`
`"or "y^(2)-xy+x=0`
`therefore" "y=(xpnsqrt(x^(2)-4x))/(2)`
So y is real if
`x^(2)-4xge0`
`"or "x(x-4)ge0`
`therefore" "xle0orxge4.`
But `xgt0` for log x to be defined.
`"So, "xge4`
`"Now, "x=(y^(2))/(y-1)ge4`
`"or "(y^(2)-4y+4)/(y-1)ge0`
`"or "(y-2)^(2)//(y-1)ge0`
`rArr" "yge1`
But `ygt1` for log `(y-1)` to be real.
739.

The number of elements in the domain of the function `f(x)=sin^(-1)((x^2-2x)/3)+sqrt(([x]+[-x]))`, (where [.] denotes the greater integer function) isequal toa. 4b. 6 c. 3 d. 5A. 6B. 4C. 3D. 5

Answer» Correct Answer - D
`f(x)=sin^(-1)((x^(2)-2x)/(3))+sqrt([x]+[-x])`
`sin^(-1)((x^(2)-2x)/(3))"is denfined for"-1le(x^(2)-2x)/(3)le1`
and `sqrt([x]-[-x])` is defined only for integral values of x
`rArr" "x=-1,0,1,2,3`
740.

The range of the function `y=[x^2]-[x]^2` `x in [0,2]` (where [] denotes the greatest integer function), isA. [0]B. [0,1]C. [1,2]D. [0,1,2]

Answer» Correct Answer - D
We have,
`{:(,y=[x^(2)]-[x]^(2)",",x in[0,2]),("i.e.,",y=[x^(2)]",",0lexlt1),(,y=[x^(2)]-1",",1lexlt2),(,y=0,x=2),("i.e.,",y=0",",0lexlt1),(,=1-1=0",",1lexltsqrt2),(,=2-1=1",",sqrt2lexltsqrt3),(,=3-1=2",",sqrt2lexltsqrt3),(,=3-1=2",",sqrt3lexlt2),(,=0,x=2):}`
Hence, the range is `{0,1,2}.`
741.

Period of `f(x) = sin 3x cos[3x]-cos 3x sin [3x]` (where[] denotes the greatest integer function), isA. `1//6`B. `2//3`C. `5//6`D. `1//3`

Answer» Correct Answer - D
`{x}=x-[x]` which is periodic with period 1.
Now, `f(x)=sin(3x-[3x])=sin({x})`
`{3x}` has period `(1)/(3)`
`therefore" "f(x)"has alos period "(1)/(3)`.
742.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.|x2 – x – 6| = x + 2

Answer»

|x2 – x – 6| = x + 2 …..(i) 

R.H.S. must be non-negative 

∴ x ≥ -2 …..(ii) 

|(x – 3) (x + 2)| = x + 2 

∴ (x + 2) |x – 3| = x + 2 as x + 2 ≥ 0 

∴ |x – 3| = 1 if x ≠ -2 

∴ x – 3 = ±1 

∴ x = 4 or 2 

∴ x = -2 also satisfies the equation 

∴ Solution set = {-2, 2, 4}

743.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. 1 < |x – 1| < 4

Answer»

1 < |x – 1| < 4 

∴ -4 < x – 1 < -1 or 1 < x – 1 < 4 

∴ -3 < x < 0 or 2 < x < 5 

∴ Solution set = (-3, 0) ∪ (2, 5)

744.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.(i) {x} &gt; 4(ii) {x} = o(iii) {x} = 0.5(iv) 2{x} = x + [x]

Answer»

(i) {x} > 4

This is a meaningless statement as 0 ≤ {x} < 1

∴ The solution set = { } or Φ

(ii) {x} = 0

∴ x is an integer

∴ The solution set is Z.

(iii) {x} = 0.5

∴ x = ….., -2.5, -1.5, -0.5, 0.5, 1.5, …..

∴ The solution set = {x : x = n + 0.5, n ∈ Z}

(iv) 2{x} = x + [x]

= [x] + {x} + [x] ……[x = [x] + {x}]

∴ {x} = 2[x]

R.H.S. is an integer

∴ L.H.S. is an integer

∴ {x} = 0

∴ [x] = 0

∴ x = 0

745.

Find x, if g(x) = 0 whereg(x) = x3 – 2x2 – 5x + 6

Answer»

g(x) = x3 – 2x2 – 5x + 6

= ( x- 1) (x2 – x – 6)

= (x – 1) (x + 2) (x – 3)

g(x) = 0

∴ (x – 1) (x + 2) (x – 3) = 0

∴ x – 1 = 0 or x + 2 = 0

or x – 3 = 0

∴ x = 1, -2, 3

746.

Find x, if f(x) = g(x) wheref(x) = x4 + 2x2, g(x) = 11x2

Answer»

f(x) = x4 + 2x2 , g(x) = 11x2

f(x) = g(x)

∴ x4 + 2x2 = 11x2

∴ x4 – 9x2 = 0

∴ x2 (x2– 9) = 0

∴ x2 = 0 or x2 – 9 = 0

∴ x = 0 or x2 = 9

∴ x = 0, ±3

747.

Find the range of the following functions.f(x) = 1/1+√x

Answer»

f(x) = 1/1+√x = y, (say)

∴ √x y + y = 1

∴ √x = 1-y/y ≥ 0

∴= y-1/y  ≤ 0

∴ o < y ≤ 1 

∴ Range of f = (0, 1]

748.

Find the range of the following functions.f(x) = x/9+x2

Answer»

f(x) = x/9+x2 = y (say)

∴ x2 y – x + 9y = 0 

For real x, Discriminant > 0 

∴ 1 – 4(y)(9y) ≥ 0

∴ y2 ≤ 1/36

∴ -1/6 ≤ y ≤ 1/6

∴ Range of f = [-1/6, 1/6]

749.

Find the domain of the following functions.fx = \(\sqrt{log(x^2-6x+6)}\)fx = √log(x2 - 6x +6)

Answer»

 f(x) = \(\sqrt{x-x^2} + \sqrt {5-x}\)

For f to be defined, 

log (x2 – 6x + 6) ≥ 0 

∴ x2 – 6x + 6 ≥ 1 

∴ x2 – 6x + 5 ≥ 0

∴ (x – 5)(x – 1) ≥ 0 

∴ x ≤ 1 or x ≥ 5 …..(i) 

[∵ The solution of (x – a) (x – b) ≥ 0 is x ≤ a or

x ≥ b, for a < b]

and x2 – 6x + 6 > 0 

∴ (x – 3)2 > -6 + 9 

∴ (x – 3)2 > 3 

∴ x < 3 – √3 0r x > 3 + √3 ……..(ii) 

From (i) and (ii), we get 

x ≤ 1 or x ≥ 5 

Solution set = (-∞, 1] ∪ [5, ∞) 

∴ Domain of f = (-∞, 1] ∪ [5, ∞)

750.

If f(x) = (x – a)2(x – b)2, find f(a + b).

Answer»

Given,

f(x) = (x – a)2(x – b)2 

We need to find,

f(a + b). 

We have, 

f(a + b) = (a + b – a)2(a + b – b)2 

⇒ f(a + b) = (b)2(a)2 

∴ f(a + b) = a2b2 

Thus,

f(a + b) = a2b2