Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

`int ((1+tanx))/((x-logcosx))dx.`

Answer» Correct Answer - `-log |cos x+sin x|C`
2.

Examples: ` int sec^2x / sqrt ( 16 + tan^2x) dx`A. `log|tanx+sqrt(tan^(2)x+16)|+C`B. `log|x+sqrt(tan^(2)x+16)|+C`C. `log|tan x-sqrt(tan^(2)x+16)|+C`D. None of these

Answer» Correct Answer - A
Put `tan x=t and sec^(2)x dx =dt . `then ,
`I=int (dt)/(sqrt(t^(2)+4^(2)))=log |t+sqrt(t^(2)+16)|=log |tan x+sqrt(tan^(2)x+16)|+C.`
3.

`int (x)/((x^(4)-16))dx=?`A. `(1)/(4)log |(x^(2)+4)/(x^(2)-4)+C`B. `(1)/(16)log |(x^(2)+4)/(x^(2)-4)+C`C. `(1)/(16)log |(x^(2)-4)/(x^(2)+4)+C`D. None of these

Answer» Correct Answer - C
Put `x^(2)=t and 2xdx=dt.`
`therefore I=(1)/(2)int(dt)/((t^(2)-4^(2)))=(1)/(2).(1)/(2xx4)log|(t-4)/(t+4)|=(1)/(16)log|(x^(2)-4)/(x^(2)+4)|+C.`
4.

`int(x^(2))/(sqrt(x^(6)-1))dx=?`A. `(1)/(2) log |x^(3)+sqrt(x^(6)-1)|+C`B. `(1)/(3) log |x^(3)+sqrt(x^(6)-1)|+C`C. `(1)/(3) log |x^(3)-sqrt(x^(6)-1)|+C`D. None of these

Answer» Correct Answer - B
Put `x^(3) = t and 3x^(2)dx=dt.` then
`I=(1)/(3)int (dt)/(sqrt(t^(2)-1))=(1)/(3)log |t+sqrt(t^(2)-1)|+C=(1)/(3)log |x^(3)+sqrt(x^(6)-1)|+C.`
5.

Evaluate:`int(sinx)/(sqrt(4cos^2x-1))dx`A. `-(1)/(2)log |2cosx+sqrt(4cos^(2)x-1)|+C`B. `-(1)/(3)log |2cosx+sqrt(4cos^(2)x-1)|+C`C. `-(1)/(6)log |cosx+sqrt(2cos^(2)x-1)|+C`D. None of these

Answer» Correct Answer - A
Put ` cos x=t and sin x dx =-dt ,` then
`I=-int(dt)/(sqrt(4t^(2)-1))=-(1)/(2)int (dt)/(sqrt(t^(2)-(1)/(4)))=-(1)/(2)log |t+sqrt(t^(2)-(1)/(4))|+C`
`=-(1)/(2)log |2t+sqrt(4t^(2)-1)|+C=-(1)/(2) log|2cos x+sqrt(4 cos^(2)x-1)|+C.`
6.

Evaluate:`int(3_(4x)-x^2)/((x+2)(x-1))dx`

Answer» Correct Answer - `-x+3log |x+2|+2log |x-1|+C`
`((3+4x-x^(2)))/((x+2)(x-1))=((-x^(2)+4x+3))/((x^(2)+x-2))={-1+((5x+1))/((x+2)(x-1))}.`
7.

Evaluate `int dx/(x(x^n+1))`

Answer» Putting `x^(n)=t,` We get `nx^(n-1)dx=dt.`
`therefore (nx^(n))/(x)dx=dt implies(1)/(x)dx=(1)/(nt)dt("note").`
`therefore int(dx)/(x(x^(n)+1))=int(dt)/(nt(t+1))=(1)/(n).int(dt)/(t(t+1)).`
`Let (1)/(t(t+1))=(A)/(t)+(B)/((t+1)).`
Then`,1-=A(t+1)+Bt.`
Putting `t=0`in (i) ,we get `A=1.`
Putting `t=-1` in (i), we get `B=-1.`
`therefore (1)/(t(t+1))={(1)/(t)-(1)/((t+1))}`
`=(1)/(n)[int(1)/(t)dt-int(1)/((t+1))dt]`
`=(1)/(n).{log|t|-log|t+1|}+C`
`=(1)/(n).log|(t)/(t|1)|+C`
`=(1)/(n)log|(x^(n))/(x^(n)+1)|+C.`
8.

Evaluate: `int(2x+5)/(x^2-x-2) dx`

Answer» Correct Answer - `3 log |x-2|-log |x-1|+C`
`I=int((2x+5))/((x-2)(x+1))dx.`
9.

Evaluate: `int(x^3)/((x-1)(x-2)) dx`

Answer» Correct Answer - `(x^(2))/(2)+3x-log |x-1|+8 log|x-2|+C`
`(x^(3))/((x-1)(x+2))=(x^(3))/((x^(2)-3x+2))=[x+3+(7x-6)/(x^(2)-3x+2)]={x+3+(7x-6)/((x-2)(x-1))}.`
10.

Evaluate :`int(x^2)/((x^2+4)(x^2+9))dx`

Answer» `Let (x^(2))/((x^(2)+4)(x^(2)+9))=(y)/((y+4)(y+9)),"where "x^(2)=y.`
`Let (y)/((y+4)(y+9))=(A)/((y+4))+(B)/((y+9)).`
then`,y-=A(y+9)+B(y+4).`
Putting `y=-4`on both sides of(i) , we get `A=(-4)/(5).`
Putting `y=-9`on both sides of (i) , we get `B=(9)/(5).`
`therefore (y)/((y+4)(y+9))=(-4)/(5(y+4))+(9)/(5(y+9))`
`implies(x^(2))/((x^(2)+4)(x^(2)+9))=(-4)/(5(x^(2)+4))+(9)/(5(x^(2)+9))`
`implies int(x^(2))/((x^(2)+4)(x^(2)+9))dx=(-4)/(5)int(dx)/((x^(2)+4))+(9)/(5(x^(2)+9))=((-4)/(5)xx(1)/(2))tan^(-1)""(x)/(2)+((9)/(5)xx(1)/(3))tan^(-1)""(x)/(3)=(-2)/(5)tan^(-1)++(x)/(2)+(3)/(5)tan^(-1)""(x)/(3)+C.`
11.

`int (dx)/((9+x^(2)))=?`A. `tan^(-1)""(x)/(3)+C`B. `(1)/(3)tan^(-1)""(x)/(3)+C`C. ` 3tan^(-1)""(x)/(3)+C`D. None of these

Answer» Correct Answer - B
`I=int(dx)/((3^(2)+x^(2)))=(1)/(3)tan^(-1)""(x)/(3)+C.`
12.

`int (dx)/((4+16x^(2)))=?`A. `(1)/(32)tan^(-1)4x+C`B. `(1)/(16)tan^(-1)""(x)/(2)+C`C. `(1)/(8)tan^(-1)""2x+C`D. `(1)/(4)tan^(-1)""(x)/(2)+C`

Answer» Correct Answer - C
`I=int (1)/(16).int (dx)/(((1)/(4)+x^(2)))=(1)/(16).(dx)/({((1)/(2))^(2)+x^(2)})=(1)/(16).(1)/(((1)/(2)))tan^(-1)""(x)/(((1)/(2)))+X=(1)/(8)tan^(-1)2x+c.`
13.

Evaluate `int (x^(2))/((1+x^(3))(2+x^(3)))dx.`

Answer» Putting `x^(3)=t and x^(2)dx=(1)/(3)dt,`we get
`I=int(x^(2))/((1+x^(3))(2+x^(3)))dx=(1)/(3).int(dt)/((1+t)(2+t)).`
`Let (1)/((1+t)(2+t))=(A)/((1+t))+(B)/((2+t)).`then,
`1-=A(2+t)+B(1+t).`
Putting `t=-1` in (i) , we get `A=1.`
Putting `t=-2`in (i) , we get `B=-1.`
`therefore (1)/((1+t)(2+t))=(1)/((1+t))-(1)/((2+t))`
`implies I=int (dt)/((1+t)(2+t))=int(dt)/((1+t))-int(dt)/((2+t))`
`=log |1+t|-log|2+t|+C`
`=log |(1+t)/(2+t)|+C`
`=log |(1+x^(3))/(2+x^(3))|+C`
14.

Evaluate `int (dx)/(x{6(logx)^(2)+7logx+2}).`

Answer» Putting `log x=t and (1)/(x) dx=dt,` we get
`I=int (dx)/(x{6(logx)^(2)+7logx+2})=int(dt)/((6t^(2)+7t+2))=int(dt)/((2t+1)(3t+2)).`
`Let (1)/((2t+1)(3t+2))=(A)/((2t+1))+(B)/((3t+2)).`
Then,`1-=A(3t+2)+B(2t+1).`
Putting `t=-(1)/(2)`in (i) , we get `A=2`
Putting `t=(-2)/(3)`in (i) , we get `B=-3.`
`therefore (1)/((2t+1)(3t+2))=(2)/((2t+1))-(3)/((3t+2))`
`implies I=int(dt)/((2t+1)(3t+2))`
`=int (dt)/((2t+1)(3t+2))`
`=log |2t+1|-log|3t+2|+C`
`=log|(2t+1)/(3t+2)|+C`
`=log |(2logx+1)/(3logx+2)|+C`
15.

Evaluate `int(cos x)/((1-sinx)(2-sinx))dx.`

Answer» Putting sin `x=t` cos `x dx =dt,`we get
`I=(cosx)/((1-sinx)(2-sinx))dx=int(dt)/((1-t)(2-t)).`
`Let (1)/((1-t)(2-t))=(A)/((1-t))+(B)/((2-t))`
`implies 1-=A(2-t)+B(1-t).`
Putting `t=1` in (i) , we get `A=1. . . . (i).`
Putting `t=2`in (i) , we get `B=-1.`
`therefore (1)/((1-t)(2-t))=(1)/((1-t))-(1)/((2-t))`
`implies int (cosx)/((-sinx)(2-sinx))dx=int(dt)/((1-t)(2-t))`
`=int {(1)/((1-t))-(1)/((2-t))}dt`
`=int (dt)/((1-t))-int(dt)/((2-t))`
`=-log|1-t|+log|2-t|+C`
`=log |(2-t)/(1-t)|+C=log |(2-sinx)/(1-sinx)|+C.`
16.

`int((5x^(2)-18x+17))/((x-1)^(2)(2x-3))dx`

Answer» Correct Answer - `(4)/((x-1))+(5)/(2)log|2x-3|+C`
17.

Evaluate `int(dx)/((e^(x)-1)).`

Answer» Putting `e^(x)=t and e^(x)dx=dt,i.e., dx=(1)/(t),`we get
`I=int(dx)/((e^(x)-1))=int(dt)/(t(t-1)).`
`Let(1)/(t(t-1))=(A)/(t)+(B)/(t(t-1)).`
`Then,1-=A(t-1)+Bt.`
Putting `t=0`in (i) ,we get `A=-1.`
Putting `t=1`in (i) , we get `B=1.`
`therefore (1)/(t(t-1))=(-1)/(t)+(1)/((t-1)).`
`"Hence",I=int(dx)/((e^(x)-1))`
`=int(dt)/(t(t-1))=int(-1)/(t)dt+int(1)/((t-1))dt`
`=-log |t|+log|t-1|+C`
`=log |(t-1)/(t)|+C`
`=log |(e^(x)-1)/(e^(x))|+C`
18.

Evaluate:`int(tantheta+tan^3theta)/(1+tan^3theta)dtheta`

Answer» WE have
`((tan theta+tan^(3) theta))/((1+tan^(3) theta))=(tan theta(1+tan^(2) theta))/((1+tan^(3)theta))=(tan theta sec^(2)theta)/((1+tan^(3) theta)).`
`therefore I=int((tan theta+ tan ^(3) theta))/((1+tan^(3) theta))`
`= int (tan theta sec^(2) theta)/((1+tan^(3) theta))d theta`
`=int (t)/((1+t^(3)))dt=int (t)/((1+t)(1-t+t^(2))dt,`where `tan theta =t.`
`Let (t)/((1+t)(1-t+t^(2)))=(A)/((1+t))+((Bt+C))/((1-t+t^(2))).`then
`t-=A(1-t+t^(2))+(Bt+C)(1+t).`
Putting `t=-1` on both sides of (i) , we get `A=(-1)/(3).`
Comparing the coefficients of `t^(2)` on both sides of (i) , we get
`A+B=0impliesB=-A=(1)/(3).`
Comparing the constant terms on both sides of (i) , we get
`A+C=0impliesC=-A=(1)/(3).`
`therefore (t)/((1+t)(1-t+t^(2)))=(-1)/(3(1+t))+(((1)/(3)t+(1)/(3)))/((1-t+t^(2))).`
`Now,I=int(t)/((1+t)(1-t+t^(2)))dt`
`=-(1)/(3)int(dt )/((1+t))+(1)/(6)int(2t)/((t^(2)-t+1))dt+(1)/(3)int(dt)/((t^(2)-t+1))`
`=-(1)/(3)int(dt )/((1+t))+(1)/(6)int((2t-1)+1)/((t^(2)-t+1))dt+(1)/(3)int(dt)/((t^(2)-t+1))`
`=-(1)/(3)log|1+t|+(1)/(6)log|t^(2)+1|+(1)/(2)int(dt)/((t^(2)-t+(1)/(4))+(3)/(4))`
`=-(1)/(3)log|1+t|+(1)/(6)log|t^(2)+1|+(1)/(2)int (dt)/((t-1//2)^(2)+(sqrt(3)//2)^(2))`
`=-(1)/(3)log|1+t|+(1)/(6)log|t^(2)+t+1|+(1)/(2).(2)/(sqrt(3))tan^(-1)((t-(1)/(2)))/((sqrt(3)//2))+C`
`=-(1)/(3)log |1+t|+(1)/(6)log|t^(2)-t+1|+(1)/(sqrt(3))tan^(-1)((2t-1)/(sqrt(3)))+C`
`=-(1)/(3) log |1+ tan theta|+(1)/(6)log |tan^(2) theta - tan theta +1|+(1)/(sqrt(3))tan^(-1)((2 tan theta -1)/(sqrt(3)))+C.`
19.

Evaluate: `int((x^2+1)(x^2+2))/((x^2+3)(x^2+4)) dx`

Answer» We have
`((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))=((t+1)(t+2))/((t+3)(t+4)),"where "x^(2)=t`
`=((t^(2)+3t+2))/((t^(2)+7t+12))=1-((4t+10))/((t+3)(t+4)).`
`Let ((4t+10))/((t+3)(t+4))+(A)/((t+3))+(B)/((t+4))`
`implies (4t+10)-=A(t+4)+B(t+3).. . . (i)`
Putting `t=-3`in(i) ,we get `A=-2`
Putting `t=-4`in(i) ,we get `B=6`.
`therefore ((4t+10))/((t+3)(t+4))=(-2)/((t+3))+(6)/((t+4)).`
`thus ,((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4)=((t+1)(t+2))/((t+3)(t+4)),"where"x^(2)=t`
`=((t^(2)+3t+2))/(t^(2)+7t+12))+1-((4t+10))/((t+3)(t+4))`
`=1-{(-2)/((t+3))+(6)/((t+4))}["from(ii)"]`
`={1+(2)/((t+3))-(6)/((t+4))}`
`={1+(2)/((x^(2)+3))-(6)/((x^(2)+4))}.`
`thereforeint((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))dx=int{1+(2)/((x^(2)+3))-(6)/((x^(2)+4))}dx.`
`intdx+2int(dx)/((x^(2)+3))-6int(dx)/((x^(2)+4))`
`=x+(2)/(sqrt(3))tan^(-1)((x)/(sqrt(3)))-(6)/(2)tan^(-1)((x)/(2))+C`
`=x+(2)/(sqrt(3))tan^(-1)((x)/(sqrt(3)))-3tan^(-1)((x)/(2))+C.`
20.

Evaluate: `int(x^2+5x+3)/(x^2+3x+2) dx`

Answer» Correct Answer - `x+3 log |x+2|- log |x+1|+C`
`I=int{1+((2x+1))/((x+2)(x+1))}dx.`
21.

`int(x^(3))/((x^(2)-4))dx`

Answer» Correct Answer - `(x^(2))/(2)+2 log |x^(2)-4|+C`
`I=int{1+(4x)/((x^(2)-4))}dx=int{1+(2)/((x-2)(x+2))}dx.`
22.

Evaluate: `int(x^2)/(1+x^3) dx`

Answer» Correct Answer - `(1)/(3)log |1+x^(3)|+C`
23.

Evaluate `int(dx)/((sinx-sin2x)).`

Answer» `int(dx)/((sinx-sin2x))=int (dx)/((sin s-2 sin x cos x))`
`=int (dx)/(sinx(1-2cos x ))=int(sinx)/(sin^(2)x(1-2 cos x))dx`
`intj (sin x)/((1-cos^(2) x)(1-2cos x))dx`
`=-int(dt)/((1-t^(2))(1-2t)),`where cos x=t
`= int (dt)/((t-1)(t+1)(1-2t)).`
`Let (1)/((t-1)(t+1)(1-2t))=(A)/((t-1))+(B)/((t+1))+( C)/((1-2t)).`
`then , 1-=A(t+1)(1-2t)+B(t-1)(1-2t)+C(t-1)(t+1).`
Putting `t=1` in (i) , we get `A=(-1)/(2)`
Putting `t=-1` in (ii), we get `B=(-1)/(6).`
Putting `t=(1)/(2)` in (ii), we get `C=(-4)/(3).`
`therefore I=-(1)/(2)int(dt )/((t-1))-(1)/(6). int (dt) /((t+1))-(4)/(3).int (dt)/((1-2t))`
`=-(1)/(2)log|t-1|-(1)/(6)log |t+1|+(2)/(3).int(-2dt)/((1-2t))`
`=-(1)/(2) log |t-1|-(1)/(6)log |t+1|+(2)/(3)log|1-2t+C`
`=-(1)/(2) log |cos x-1|-(1)/(6)log |cos x+1|+(2)/(3)log |1-2 cos x|+c.`
24.

Evaluate:`int(sin2x)/((1+sinx)2+sinx)dx`

Answer» Correct Answer - `-2log |1+sin x|+4log |2+sin x|+C`
write `sin 2x=2 and x cos x. `put `sin x=t and cos x dx=dt.`
25.

Evaluate:`int(x^4+1)/(x^2+1)dx`

Answer» Correct Answer - `(x^(3))/(3)-x+2 tan^(-1)x+C`
26.

Evaluate: `int(x^4 dx)/((x-1)(x^2+1))`

Answer» `(x^(4))/((x-1)(x^(2)+1))=(x^(4))/((x^(3)-x^(2)+x-1))=(x+1)+(1)/((x^(3)-x^(2)+x-1))`
`implies(x^(4))/((x-1)(x^(2)+1))=(x+1)+(1)/((x-1)(x^(2)+1)).`
`Let (1)/((x-1)(x^(2)+1))=(A)/((x-1))+(bx+C)/((x^(2)+1)).then`,
`1-=A(x^(2)+1)+(Bx+C)(x-1).`
Putting `x=1` in (ii) , we get `A=(1)/(2).`
Comparing the coefficients of `x^(2)` on both sides of (ii) , we get
`A+B=0implies B=-A=-(1)/(2).`
Comparing the constant Terms on both sides on (ii) , we get
`A-C=1implies C=(A-1)=((1)/(2)-1)=(-1)/(2).`
`therefore (1)/((x-1)(x^(2)+1))=(1)/(2(x-1))+(-(1)/(2)x-(1)/(2))/((x^(2)+1))`
`therefore (x^(4))/((x-1)(x^(2)+1))=(x+1)+(1)/(2(x-1))-(1)/(2).((x+1))/((x^(2)+1))`
`=int (x^(4))/((x-1)(x^(2)+1))dx=int (x+1)dx=int(x-1)dx+(1)/(2)int(dx)/((x-1))-(1)/(4).int (2x)/((x^(2)+1))dx-(1)/(2)int(dx)/((x^(2)+1))`
`=(x^(2))/(2)+x+(1)/(2)log|x-1|-(1)/(4)log(x^(2)+1)-(1)/(2)tan^(-1)x+C.`
27.

Evaluate: `int(3x-2)/((x+1)^2(x+3)) dx`

Answer» `Let ((3x-2))/((x+1)^(2)(x+3))=(A)/((x+1))+(B)/((x+1)^(2))+(C)/((x+3))`
`implies (3x-2)-=A(x+1)(x+3)+B(x+3)+C(x+1)^(2).`
Putting `x=-3` on both sides of (i) , we get `C=(-11)/(4).`
Putting `x=-1` on both sides of (i), we get `B=(-5)/(2).`
Comparing the coefficients of `x^(2)` on both sides of (i) ,we get
`A+C=0impliesA=-C=(11)/(4).`
`therefore ((3x-2))/((x+1)^(2)(x+3))=(11)/(4(x+1))-(5)/(2(x+1)^(2))-(11)/(4(x+3))`
`implies int((3x-2))/((x+1)^(2)(x+3))dx=(11)/(4).int (dx)/((x+1))-(5)/(2).int (1)/((x+1)^(2))dx-(11)/(4).int(dx)/((x+3))`
`=(11)/(4).log |x+1|+(5)/(2(x+1))-(11)/(4).log|x+3|+C`
`=(11)/(4)/log|(x+1)/(x+3)|+(5)/(2(x+1))+C.`
28.

Evaluate:`int(x^2+1)/(x^2-5x+6)dx`

Answer» Here the integrand is not a proper rational function , on dividing `(x^(2)+1)"by" (x^(2)-5x+6),`we get
`((x^(2)+1))/((x^(2)-5x+6))=1+((5x-5))/((x^(2)-5x+6))=1+((5x-5))/((x-2)(x-3)).`
`Now ,Let ((5x-5))/((x-2)(x-3))=(A)/((x-2))+(B)/((x-3))`
`implies ((5x-5))/((x-2)(x-3))=(A(x-3)+B(x-2))/((x-2)(x-3))`
`implies (5x-5-=A(x-3)+B(x-2).`
Putting `x=2` on both sides of (i) we get `A=-5.`
Putting `x=3` on both sides of (i) , we get `B=10.`
`therefore ((x^(2)+1))/((x^(2)-5x+6))=1-(5)/((x-2))+(10)/((x-3))`
`implies int((x^(2)+1))/((x^(2)-5x+6))dx=intdx-5int(dx)/((x-2))+10int(dx)/((x-3))`
`=x-5 log |x-2|+10 log |x-3|+c.`
29.

Resolve `(2x+1)/((x-1)(x^(2)+1))` into partial fractions.

Answer»
Equating the like powers of x on both sides of (i) , we get
`A+B=0,C-B=2 and A-C=1`
On solving these equations , we get
`A=(3)/(2),B=(-3)/(2)and C=(1)/(2).`
`therefore (2x+1)/((x-1)(x^(2)+1))=(3)/(2(x-1))+(((-3)/(2)x+(1)/(2)))/(x^(2)+1)=[(3)/(2(x-1))+((1-3x))/(2(x^(2)+1))].`
30.

Resolve `(16)/((x-2)(x+2)^(2))` into partial fractions.

Answer» `Let (16)/((x-2)(x+2)^(2))=(A)/(x-2)+(B)/(x+2)+( C)/((x+2)^(2))`
`or (16)/((x-2)(x+2)^(2))=(A(x+2)^(2)+B(x-2)(x+2)+C(x-2))/((x-2)(x+2)^(2))`
`therefore 16-= A(x+2)^(2)+b(x-2)(x+2)+C(x-2) . . . .(i)`
`or 16-=(A+B)x^(2)+(4A+C)x+(4A-4B-2C).. . . .(ii)`
Putting `(x-2)=0 or x=2` in (i), we get `A=1.`
Putting `(x+2)=0 or x=-2` in (i), we get `C=-4.`
Comparing the coefficients of `x^(2)` on both sides of (ii) , we get
`A+B=0 or B=-A=-1`
Thus `A=1,B=-1 and C=-4.`
`therefore (16)/((x-2)(x+2)^(2))=[(1)/((x-2))-(1)/((x+2))-(4)/((x+2)^(2))].`
31.

Resolve `(x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)` into partial fractions.

Answer» On dividing we get
`(x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)=(x+1)-(2)/((x^(2)-3x-10))`
`Let (2)/((x^(2)-3x-10))=(2)/((x-5)(x+2))=(A)/(x-5)+(B)/(x+2)`
then`, (2)/((x-5)(x+2))+(A(x+2)+B(x-5))/((x-5)(x+2))`
or `2-= A(x+2)+B(x-5).`
putting `(x-5)=0 or x=5 `in (ii) , we get `A=(2//7)`
Putting `(x+2)=0 or x=-2`in (ii) , we get `B=(-2//7)`
`therefore (2)/((x^(2)-3x-10))=(2)/(7(x-5))-(2)/(7(x+2)).`
`"hence", (x^(3)-2x^(2)-13x-12)/(x^(2)-3x-10)=(x+1)-(2)/(7(x-5))+(2)/(7(x+2)).`
32.

` int[3x+5]/[x^3-x^2-x+1].dx`

Answer» `(x^(3)-x^(2)-x-1)=x^(2)(x-1)-(x-1)-=(x-1)(x^(2)-1)=(x-1)^(2)(x+1).`
`Let (3x+5)/((x^(3)-x^(2)-x-1))=(3x+5)/((x-1)^(2)(x+1))=(A)/((x-1))+(B)/((x-1)^(2))+( C)/((x+1))`
`implies (3x+5)-=A(x-1)(x+1)+B(x+1)+C(x-1)^(2).`
Putting `x=1` on both sides of (i) we get `B=4.`
Putting `x=-1` on both sides of `(i)`, we get `C=(1)/(2).`
Comparing the coefficient of `x^(2)` on both sides of (i) , we get
`A+C=0implies A=-C=(-1)/(2)`
`therefore ((3x+5))/((x^(3)+x^(2)+x+1))=(-1)/(2(x-1))+(4)/((x-1)^(2))+(1)/(2(x+1))`
`implies ((3x+5))/((x^(3)-x^(2)-x+1))dx=-(1)/(2)int(dx)/((x-1))+4int(dx)/((x-1))^(2)+(1)/(2)int(dx)/((x+1))=-(1)/(2)log|x-1|-(4)/((x-1))+(1)/(2)log|x+1|+C.`
33.

Evaluate`int (dx)/((x^(3)+x^(2)+x+1)).`

Answer» We have `(1)/((x^(3)+x^(2)+x+1))=(1)/(x^(2)(x+1)+(x+1))=(1)/((x+1)(x^(2)+1)).`
`Let (1)/((x+1)(x^(2)+1))=(A)/((x+1))+(Bx+C))/((x^(2)+1))`
`implies 1-=A(x^(2)+1)+(Bx+C)(x+1).. . . .(i)`
Putting `x=-1`on both sides of (i),we get `A=(1)/(2).`
Comparing the coefficients of `x^(2)` on both sides of (i) , we get
`A+B=0impliesB=-A=(-1)/(2).`
COmparing the coefficients of x on both sides of (i) , we get
`B+C=0impliesC=-B=(1)/(2).`
`therefore (1)/((x+1)(x^(2)+1))=(1)/(2(x+1))+((-1)/(2)x+(1)/(2))/(x^(2)+1)`
`therefore int(dx)/((x^(3)+x^(2)+x+1))=int(dx)/((x+1)(x^(2)+1))`
`=(1)/(2).int(dx)/((x+1))-(1)/(2)int(x)/((x^(2)+1))dx+(1)/(2)(dx)/((x^(2)+1))`
`=(1)/(2).int(dx)/((x+1))-(1)/(4).int(2x)/((x^(2)+1))dx+(1)/(2)int(dx)/((x^(2)+1))`
`=(1)/(2)log |x+1|-(1)/(4) log |x^(2)+1|+(1)/(2) tan^(-1)x+C.`
34.

`int(cosx)/((1+sinx)(2+sin x))dx`

Answer» Correct Answer - `log|(1+sin x)/(2+sin x)|+C`
Putting `sin x=t` and` cos x dx=dt,`we get
`I=int(dt)/((1+t)(2+t)).`
35.

`int ((3sinphi-2) cosphi)/(5-cos^2phi-4sinphi) d phi`

Answer» Correct Answer - `3 log |sin phi -2|-(4)/((sin phi-2))+C`
36.

Evaluate:`int(1-sin2x)/(x+cos^2x)dx`

Answer» Correct Answer - `log |x+cos^(2)x|+C`
37.

`int 2^(x) " dx "`

Answer» Correct Answer - `(2^x)/(log2)+C`
38.

`int(dx)/(sqrt(4-9x^(2)))=?`

Answer» Correct Answer - `(1)/(3) sin ^(-1)((3x)/(2))+C`
39.

`int(sin^-1(cosx)).dx`

Answer» Correct Answer - `(pix)/(2)-(x^(2))/(2)+C`
40.

`int (2x+1)(sqrt(x^(2)+x+1))dx`

Answer» Correct Answer - `(2)/(3) (x^(2) +x+1)^(3//2)+C`
41.

`int x cos x^(2)dx`

Answer» Correct Answer - `(1)/(2)sin x^(2)+C`
42.

`int cos x cos 3x dx`

Answer» Correct Answer - `(sin 4x)/(8)+(sin2x)/(4)+C`
43.

`int sin 3x sin x dx`

Answer» Correct Answer - `(sin 2x)/(4)+(sin4x)/(8)+C`
44.

`int (dx)/((sqrt(x+2)+sqrt(x+1)))`

Answer» Correct Answer - `(2)/(3)(x+2)^(3//2)-(2)/(3)(x+1)^(3//2)+C`