InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that:`sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi` |
|
Answer» here, `alpha + beta + gamma = pi` `sin alpha = 12/13` so, `tan alpha = 12/5` and `cos beta = 4/5` so, `tan beta= 3/4` and `tan gamma = 63/16` so,`alpha + beta = pi -gamma` `tan(alpha + beta) = tan(pi- gamma)` `(tan alpha + tan beta)/(1 - tan beta) = (tan pi -tan gamma)/(1+ tan pi tan gamma) ` `= (12/5 + 3/4)/(1- 12/5 xx 3/4) = -(63/16)` `(48 + 15)/(-16) = -63/16` hence proved |
|
| 2. |
What is greater, `tan1 or tan^(-1)1?` |
|
Answer» `tan 1 or tan^-1 1` `1> pi/4` `1> tan^-1 1` applying tan on both sides for above eqn `tan 1 > tan pi/4` `tan 1 > 1` now, `tan 1 > tan^-1 1` `tan 1 > 1 > tan^-1 1` Answer |
|
| 3. |
In a ` A B C ,`, if C is a right angle, then `tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))=``pi/3`(b) `pi/4`(c) `(5pi)/2`(d) `pi/6` |
|
Answer» `tan^-1 x + tan^-1 y = tan^-1 ((x+y)/(1-xy))` so, `tan^-1 (a/(b+c)) + tan^-1(b/(a+c))` `tan^-1((a/(b+c) + b/(a+c))/(1- (ab)/((a+c)(b+c))))` `= tan^-1[ (a^2 + ac + b^2 + bc)/(ab + bc + ac + c^2 - ab)]` `= tan^-1[(a^2+ b^2 + ac+bc)/(bc + ac+c^2)]` so, `/_ c= pi/2` `cos c = (a^2 + b^2 - c^2)/(2ab)=0` `a^2 + b^2 = c^2` `tan^-1 [ (bc+ac+c^2)/(bc + ac+c^2)]` `= tan^-1 1 = pi/4` Answer |
|
| 4. |
Prove that:`(i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2`, |
|
Answer» `cos 2 theta = 2 cos^2 theta - 1` `1 + cos 2 theta = 2 cos^2 theta` so, `1 + cos x = 2cos^2 (x/2)` Also `cos 2 theta = 1- 2sin^2 theta` `1- cos 2 theta = 2 sin^2 theta` so, `1 - cosx = 2sin^2(x/2)` now, putting it in the equation given `tan^-1{(sqrt(2cos^2(x/2)) - sqrt(2sin^2(x/2)))/(sqrt(2cos^2(x/2)) - sqrt(2sin^2(x/2)))}` `= tan^-1{ (sqrt2 cos(x/2) + sqrt2 sin(x/2))/(sqrt2 cos(x/2) - sqrt2sin(x/2))}` `= tan^-1{(1+tan(x/2))/(1- tan(x/2))}` `= tan^-1 {(tan (pi/2) + tan(x/2))/(1 - tan(pi/4) tan(x/2))}` `= tan^-1{tan(pi/4 + x/2)}` `= pi/4 + x/2 ` = RHS hence proved |
|
| 5. |
Prove that `tan(cot^(-1)x)=cot(tan^(-1)x)` |
|
Answer» `tan(cor^-1 x) = cot(tan^-1 x) ` `tan^-1 x + cot^-1 x = pi/2` `tan theta = cot(pi/2 - theta)` LHS: `tan(cot^-1 x) = cot(pi/2 - cot^-1 x)` `= cot(tan^-1 x) `=RHS hence proved |
|
| 6. |
Write the value of `sin^-1(sin1550^@)` |
|
Answer» `1550^@ = 1550 xx pi/180` `= (155 pi)/18` `=> sin^-1(sin ((155 pi)/18))` `= sin^-1 (sin (8 pi + (11 pi)/18))` `=> sin^-1(sin((11pi)/18))` `= sin^-1[sin(pi- (7pi)/18)]` `=> sin^-1(sin((7pi)/18))= (7pi)/18` Answer |
|
| 7. |
Prove that:`tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2` |
|
Answer» `cot^-1 (1/x) = tan^-1 x` `tan^-1((1-x^2)/(2x)) + tan^-1((2x)/(1-x^2))` as we know `tan^-1 x + tan^-1 y = tan^-1((x+y)/(1-xy))` so, `tan^-1(((1-x^2)/(2x) + (2x)/(1-x^2))/(1- (1-x^3)/(2x)xx(2x)/(1-x^2)))` `= tan^-1(oo) = pi/2` hence proved |
|
| 8. |
Write the value of `cos^2(1/2cos^(-1)3/5)` |
|
Answer» `cos 2 theta = 2cos^2 theta- 1` `=> cos^2 theta = (1 + cos 2 theta)/2` `cos^2 (1/2 cos^-1(3/5))` `= (1 + cos(2 xx 1/2 cos^-1 (3/5)))/2` `=> (1 + cos(cos^-1(3/5)))/2` `= (1 + (3/5))/2 = 8/(2 xx 5)` `= 4/5` Answer |
|
| 9. |
Solve the equation: `cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b)-cos^(-1)(1/a)` |
|
Answer» `cos^-1 (a/x) + cos^-1 (1/a) = cos^-1(b/x) + cos^-1 (1/b) ` `cos^-1 x + cos^-1 y = cos^-1 (xy - sqrt(1-x^2) sqrt(1-y^2))` `cos^-1 (a/x 1/a - sqrt(1- a^2/x^2)sqrt(1- 1/a^2))` `cos^-1 (b/x*1/b - sqrt(1- b^2/x^2) sqrt(1- 1/b^2))` `(1- a^2/x^2) (1-1/a^2) = (1- b^2/x^2)(1- 1/b^2) ` `= 1- 1/a^2 - a^2/x^2 + 1/x^2 = 1- 1/b^2 - b^2/x^2 + 1/x^2` `a^2/x^2 - b^2/x^2 = 1/b^2 - 1/a^2` `= 1/x^2 [ a^2- b^2] = (a^2- b^2)/(a^2b^2) ` `x^2 = (ab)^2` `x= ab` Answer |
|
| 10. |
If `tan^(-1)x+tan^(-1)y=pi/4,`then write the value of `x+y+x ydot` |
|
Answer» `tan^-1 x + tan^-1 y = pi/4` `tan^-1((x+y)/(1-xy)) = pi/4` `(x+y)/(1-xy) = tan (pi/4)` `(x+y)/(1-xy) = 1` `x+y = 1-xy` `x+y+xy= 1` Answer |
|
| 11. |
Evaluate:`sin(cos^(-1)3/5+cos e c^(-1)(13)/5)` |
|
Answer» `sin(cos^-1 (3/5) + cosec^-1(3/5))` `= sin(cos^-1(3/5)) cos(cosec^-1(13/5)) + cos(cos^-1(3/5))sin(cosec^-1(13/5))` `= sin (sin^-1(4/5)) cos(cos^-1(12/13)) + cos(cos^-1(3/5))sin(sin^-1(5/13))` here, `cos theta = 3/5` `sin theta = 4/5` so, in equation `=4/5 xx 12/13 + 3/5 + 5/13` `= 4/65 + 15/65 = 63/65` Answer |
|
| 12. |
Prove that:`"sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))````cos"[tan^(-1){"sin"(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))`` |
|
Answer» LHS= `sin{cot^-1 { cos(tan^-1x)}}` let `tan^-1 x = theta` `tan theta = x` `cos theta = 1/(sqrt(1+x^2))` now, `sin^-1[ cot^-1 (1/sqrt(1+x^2))]` `= siny` `= sqrt(x^2 + 1)/sqrt(x^2 + 2) = `RHS 2) `cos[tan^-1{sin(cot^-1 x)}] ` `cos[tan^-1{sin theta}] = cos[ tan^-1( 1/sqrt(x^2+1))]` `= cos y` `sqrt(x^2 + 1)/sqrt(x^2+2) =RHS` hence proved |
|
| 13. |
Evaluate the following:`sin^(-1)(sin 10)` |
|
Answer» range will be `[-pi/2, pi/2]` `[-1.57, 1.57]` `1^@ -> 57^@` `10^@ -> ?` `10^@` belongs to 3rd quad ans should be negative `10^@ - pi = 6.78` `10 - 2 pi = 3.72` `10 - 3pi = 0.58` `sin^-1(sin(3pi-(0))` `= -0.58` Answer |
|
| 14. |
If `cos e c^(-1)x+cos e c^(-1)y+cos e c^(-1)z=-(3pi)/2,`find the value of `x/y+y/z+z/xdot` |
|
Answer» `cosec^-1 x=> [ -pi/2,0) uu (0, pi/2]` `cosec^-1 x = -pi/2` `cosec^-1 y = -pi/2` `cosec^-1 z = -pi/2` `x= -1` `y= -1` `z=-1` `=> x/y + y/z + z/x` `-1/-1 + -1/-1 + -1/-1` = `1 + 1 + 1 = 3` Answer |
|
| 15. |
`"If"sin{cot^(-1)(x+1)}=cos(tan^(-1)x),`then find `x.` |
|
Answer» `sin{cost^-1 (x+1)} = cos(tan^-1 x)` `cot^-1(x+1) = sin^-1( 1/sqrt(1+ (x+1)^2))` `tan^-1 x = cos^-1 (1/sqrt(1+x^2))` =`sin[sin^-1 1/(sqrt(1+ (x+1)^2))] = cos[ cos^-1 (1/sqrt(1+x^2))]` `= 1/sqrt(x^2 + 2x+ 2) = 1/(1+x^2) ` `x^2 + 1 = x^2 + 2x+2` `2x+ 1 = 0` `x= -1/2` Answer |
|
| 16. |
Prove that : `tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)` |
|
Answer» here, `alpha + beta = gama` `tan alpha = 2/11` `tan beta = 7/24` as,`tan(alpha+ beta) = tan gamma` `=> (tan alpha + tan beta)/(1 - tan alpha tan beta) ` `=(2/11 + 7/24)/(1- 2/11 xx 7/24)` `= (48 + 77)/(24 xx 11 -14) = 125/250 = 1/2` now, `tan(alpha + beta) = 1/2= tan gamma ` `gamma = tan^-1 1/2` hence proved |
|
| 17. |
If `(sin^(-1)x)^2+(cos^(-1)x)^2=(17pi^2)/(36)`, find `xdot` |
|
Answer» `(17 pi^2)/36 = (sin^-1 x + cos^-1 x)^2 - 2 sin^-1 x cos^-1 x` `(17 pi^2)/36 = pi^2/4 - 2sin^-1 x[ pi/2 - sin^-1 x]` `2(sin^-1 x)^2 - pi(sin^-1 x) + pi^2/4- 17 pi^2/36= 0` `2(sin^-1 x)^2 - pi(sin^-1 x) - (8pi^2)/36 = 0` `(sin^-1 x)^2 - pi/2 (sin^-1 x) - pi^2 / 9= 0` `sin^-1 x = (pi/2 +- sqrt(pi^2/4 + (4 pi^2)/9))/(2(1))` `sin^-1 x = (pi/2 +- sqrt((25 pi^2)/(36)))/2` now, `(pi/2 + 5pi/6)/2 or (pi/2 - 5 pi/6)/2` `8pi/24 = pi/3or -pi/3` `sin^-1 x = pi/3` `x = sqrt3/2` and `sin^-1 x = -pi/6` `x= -1/2` Answer |
|
| 18. |
Find the maximum and minimum values of `(sin^(-1)x)^3+(cos^(-1)x)^3,`where `-1lt=xlt=1.` |
|
Answer» `(sin^-1 x)^3 + (cos^-1 x)^3 = (sin^-1 x + cos^-1 x)^3 - 3sin^-1 x cos^-1 x (sin^-1x + cos^-1 x)` `y = (pi/2)^3 - 3sin^-1 x (pi/2 - sin^-1 x )*(pi/2)` `y= pi^3/8 - 3pi^2/4 sin^-1 x + 3 pi/2 (sin^-1 x)^2` `3 pi/2 theta^2 - 3 pi^2/4 theta + pi^3/8 -y=0 ` `(theta - pi/4)^2 - pi^2/16 + pi^2/12 -2y/(3y) = 0` `(theta- pi/4)^2 + pi^2/48 - (2y)/(3 pi) = 0` `-pi/2 <= sin^-1 x <= pi/2` `-(3pi)/4 <= sin^-1 x - pi/4 <= pi/4` `0 <= (sin^-1 x - pi/4)^2 <= (9pi^2)/(16)` `pi^2/48 <= 24/(3 pi) <= (9pi^2)/16 + pi^2/48` `y max= (7pi^2)/8 ; y min = pi^3/32` Answer |
|
| 19. |
Prove that:`tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^2) (1+y^2))))` |
|
Answer» `tan^-1( (1-x)/(1+x)) - tan^-1 ((1-y)/(1+y))` `tan^-1 (1) - tan^-1 x - [tan^-1 (1) - tan^-1 y]` `= tan^-1 y - tan^-1 x` `= tan^-1 ((y-x)/(1+xy))` `= sqrt(y^2 +x^2 -2xy+1+ x^2y^2 + 2xy)` `= sqrt(y^2(1+x^2)+1(1+x^2))` `= sqrt((y^2+1)(1+x^2)` `sin^-1 ((y-x)/(sqrt(1+x^2)sqrt(1+y^2)))` answer |
|
| 20. |
Simplify each of the following:`cos^(-1)(3/5cosx+4/5sinx)`, where `-(3pi)/4lt=xlt=pi/4` |
|
Answer» `cos^-1 (3/5 cos x + 4/5 sin x)` here, `cos alpha= 3/5` `sin alpha = 4/5` so,`cos^-1[cos alpha cos x + sin alpha sin x]` `= cos^-1[ cos(x- alpha)]` `x- alpha` as`alpha = cos^-1 (3/5) = sin^-1(4/5) = tan^-1(4/3)` so,answer=`x- tan^-1 (4/3)` |
|
| 21. |
Evaluate : `cos(2cos^(-1)x+sin^(-1)x)a tx=1/5` |
|
Answer» `cos(2cos^-1 x + sin^-1 x) `at `x=1/5` `=> sin^-1 x + cos^-1 x = pi/2` `(cos^-1x)= sqrt(1-x^2)` `=> cos(2cos^-1 x + sin^-1x) = cos(cos^-1 x+ (cos^-1 x + sin^-1 x))` `=> cos(pi/2 + cos^-1 x) = - sin(cos^-1 x )` `= sin (cos^-1(1/5))` `= - sqrt(1- (1/5)^2)` `= sqrt(24/25) = -2sqrt6/5` Answer |
|
| 22. |
Write each of the following in the simplest form:`cot^(-1){a/(sqrt(x^2-a^2))},|x|> a` |
|
Answer» `cot^-1{a/sqrt(x^2 - a^2)}` let `x= acosec theta` `cot^-1 { a/sqrt(a^2 cosec^2 theta - a^2)}` `cot^-1 { a/(a sqrt(cosec^2 theta -1))}` `cot^-1 (tan theta)` `cot^-1(cot(pi/2 - theta))` `pi/2 - cosec^-1 (x/a) ` `= sec^-1 (x/a)` Answer |
|
| 23. |
Write the principal value of `cos^(-1)(cos680^0)dot` |
|
Answer» `cos^-1(cos 680^@) ` As, `680= 360 + 320` so, `cos^-1[cos(360+320)]` `cos^-1 [ cos(360 - 40)] ` `cos^-1[cos(40)]` `cos^-1[cos(40 xx pi/100)]` `cos^-1[cos((2pi)/9)]` `(2pi)/9` Answer |
|
| 24. |
Evaluate each of the following:`cot^(-1)1/(sqrt(3))-cos e c^(-1)(-2)+sec^(-1)(2/(sqrt(3)))``cot^(-1){2"cos"(sin^(-1)(sqrt(3))/2)}``cos e c^(-1)(-2/(sqrt(3)))+2cot^(-1)(-1)``tan^(-1)(1/(sqrt(3)))+cot^(-1)(1/(sqrt(3)))+tan^(-1)(sin(-pi/2))` |
|
Answer» (i) `cot^-1 (1/sqrt3) - cosec^-1(-2) + sec^-1(2/sqrt3)` `= pi/3 - (-pi/6)+ pi/6= pi/3 + pi/6 + pi/6 = (2pi)/3` (ii) `cot^-1(2cos(sin^-1 (sqrt3/2)))` `= cot^-1 { 2cos(pi/3)}` `= cot^-1{1}= pi/4` (iii) `cosec^-1 (-2/sqrt3) + 2cot^-1(-1)` `= -pi/6 + 2(-pi/4) = - pi/6 + (-pi/2)` `= -(2pi)/3` (iv) `tan^-1(1/sqrt3) + cot^-1(1/sqrt3) + tan^-1(sin(-pi/2))` as `tan^-1 x + cot^-1 x = pi/2` so `pi/2 + tan^-1(-1)` `pi/2 - pi/4 = pi/4` Answers |
|
| 25. |
Evaluate:`tan{1/2cos^(-1)(sqrt5/3)}` |
|
Answer» `tan[ 1/2 cos^-1(sqrt5/3)]` `1/2 cos^-1(sqrt5/3) = theta` `cos^-1(sqrt5/3) = 2 theta` `cos 2theta = sqrt5/3` `(1- tan^2 theta)/(1 + tan^2 theta) = sqrt5/3` `3- 3 tan^2 theta = sqrt5 + sqrt5 tan^2 theta` `sqrt((3 - sqrt5)/(3 + sqrt5))= tan theta` `sqrt(((3- sqrt5)(3- sqrt5))/((3 + sqrt5)(3- sqrt5))) = tan theta` `tan theta = sqrt((3- sqrt5)^2/4)` `= (3- sqrt5)/2` Answer |
|
| 26. |
If `y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")),`prove that `siny=tan^2x/2` |
|
Answer» `y= cot^-1 sqrt(cos x) - tan^-1 sqrt cosx` `y = cot^-1 sqrtcosx - tan^-1 sqrt cos x ` `= tan^-1 sqrt secx - tan^-1 sqrt cos x` `y = tan^-1 ((sqrt secx - sqrt cos x)/(1+1)) ` `= tan^-1 ( (sqrt secx - sqrt cosx)/2)` `y= tan^-1 ((1 -cosx)/(2 sqrtcosx))` `tan y = (1- cosx)/(2 sqrt cosx)` now, `sin y = (1 -cosx)/ (1+cosx) ` `= (2sin^2 (x/2))/(2 cos^2(x/2))= tan^2 (x/2)` Answer |
|
| 27. |
Find the principal value of each of the following:(i)`sin^(-1)1/2-2sin^(-1)1/(sqrt(2))``"""""`(ii) `sin^(-1){cos(sin^(-1)(sqrt(3/2))}` |
|
Answer» (i) `sin^-1 (1/2) - 2sin(1/sqrt2) = pi/6 - 2(pi/4) ` `=> pi/6 - pi/2 = -pi/3` (ii) `sin^-1 {cos (sin^-1 (sqrt3/2))} = sin^-1 (cos (pi/3)) ` `= sin^-1 (1/2) = pi/6` Answer |
|
| 28. |
Solve the following equations:`sin[2cos^(-1)"{"cot"("2tan^(-1)x"}]"=0` |
|
Answer» `sin(2cos^(1-)(cot(2tan^(-1)x)))=0` `2cos^(-1)(cot(2tan^(-1)x))=sin^(-1)0=0` `cos^(-1)(cot(2tan^(-1)x))=0` `cot(2tan^(-1)x)=cos0` `cot(2tan^(-1)x)=1` `cot(tan^(-1)((2x)/(1-x^2)))=1` `(1-x^2)/(2x)=1` `1-x^2=2x` `x^2+2x-1=0` `x=(-2pmsqrt(4+4))/2` `x=-1pmsqrt2`. |
|
| 29. |
Evaluate: `tan(2tan^(-1)(1/5))` |
|
Answer» We have =`tan(2tan^-1 1/5) ` as `[2 tan^-1 x = tan^-1((2x)/(1-x^2))]` so,`tan(tan^-1 ((2(1/5))/(1- (1/5)^2)))` `= tan(tan^-1 (2/5 xx 25/24))` `= 5/12` Answer |
|
| 30. |
Find the value of expression: `sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))` |
|
Answer» `2 tan^-1 x = sin^-1 (2x)/(1-x^2) ` & `tan^-1 x = cos^-1 (1/sqrt(1 + x^2))` now, `sin(2 tan^-1 (1/3)) + cos( tan^-1 2 sqrt2)` `2 tan^-1 (1/3) = sin^-1 ( ( 2 xx 1/3)/(1 + (1/3)^2)) = sin^-1(2/3 xx 9/10) = sin^-1 3/5` `tan^-1 ( 2 sqrt3) = cos^-1(1/sqrt(1 + 8))` `= cos^-1 1/3` now, equating `3/6 + 1/3 = (9+5)/15 = 14/15` Answer |
|
| 31. |
Show that: `cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))` |
|
Answer» LHS=`cos(2 tan^-1 (1/7))` `cos(tan^-1((1/7)/(1-49)))` `= cos(tan^-1(27/48))` `= cos(cos^-1(24/25)) = 24/25`= LHs RHS= `sin(4tan^-1(1/3)` `= sin(2(2tan^-1(1/3)))` `= sin(2 tan^-1 ((2/3)/(1-1/9)))` `= sin(2 tan^-1 (3/4))` `= sin(sin^-1((2 xx3/4)/(1 + 9/16)))` `= 24/25= `RHS so, LHS=RHS hence proved |
|
| 32. |
Solve the following equation for `x :``tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4` |
|
Answer» `2 tan^-1 x = tan^-1((2x)/(1-x^2))` now,`tan^-1 (1/4) + tan^-1((2/5)/(1-(1/25))) + tan^-1(1/6) + tan^-1 (1/x) = pi/4` =`tan^-1(1/4) + tan^-1(5/12) + tan^-1(1/6) + tan^-1(1/x) = tan^-1 1` `= tan^-1((1/4 + 5/12)/(1- 5/48)) + tan^-1(1/6) + tan^-1 (1/x) = tan^-1 1` `= tan^-1(32/43) + tan^-1(1/6) + tan^-1(1/x) = tan^-1(1) ` `= tan^-1((32/43 + 1/6)/(1- (32/43)(1/6))) + tan^-1(1/x) = tan^-1 1` `= tan^-1(((192+43)/258)/((258- 32)/(258))) + tan^-1 (1/x)= tan^-1 1 ` `tan^-1 (235/226) + tan^-1(1/x) = tan^-1 1` `tan^-1 (1/x) = tan^-1 1 - tan^-1(235/226)` `= tan^-1((1- 235/226)/(1 + 235/226))` `tan^-1 (1/x) = tan^-1((226-235)/(226 + 235))` `1/x = -9/461` `x= -461/9` Answer |
|