Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

If `a in (-1,1),`then roots of the quadratic equation `(a-1)x^2+a x+sqrt(1-a^2)=0`area. realb. imaginaryc. both equald. none of theseA. realB. imaginaryC. both equalD. none of these

Answer» Correct Answer - 1
`(a - 1) x^(2) + ax + sqrt(1 - a^(2)) = 0`
`therefore D = a^(2) - 4(a - 1) sqrt(1 - a^(2))`
`= a^(2) - 4a sqrt(1 - a^(2)) + 4 sqrt(1 - a^(2))`
`= (a - 2 sqrt(1 - a^(2)))^(2) + 4sqrt(1 - a^(2))(1 - sqrt(1 - a^(2)))`
`ge 0` for `a in (-1, 1)`
Hence roots are real but not equal.
102.

If `x`is real and the roots of the equation `a x^2+b x+c=0`are imaginary, then prove tat `a^2x^2+a b x+a c`is always positive.

Answer» Correct Answer - ` a in ( infty), -2)`
Given, roots of `ax^(2) + bx + c = 0` are imaginary . Hence,
` b^(2) - 4ac lt 0 ` (1)
Let us consider `f(x) = a^(2) x^(2) + abx + ac `. Her, coefficient of f(x)
is `a^(2)` which is + ve, which makes graph concave upward. Also,
` D = (ab)^(2) - 4a^(2) (ac) = a^(2) (b^(2) - 4ac) lt 0`
Hence, `f(x) gt 0 , AA x in ` R .
103.

If `alpha`is a root of the equation `x^2+2x-1=0,`then prove that `4alpha^2-3alpha`is the other root.

Answer» We have `4x^(2) + 2x - 1 = 0`
Let the other root be `beta` .
`therefore alpha + beta = - (1)/(2), alpha beta = - (1)/(4)`
Also, `4alpha^(2) + 2alpha - 1 = 0 as alpha` is a root, and we have to prove that
`beta = 4alpha^(3) - 3 alpha.` Now
`4alpha^(3) - 3alpha = 4 alpha ^(2) alpha - 3 alpha`
= ` alpha (1 - 2 alpha) - 3 alpha `
`= - (1)/(2)[4alpha^(2) - 2alpha]`
=`-(1)/(2)[1-2alpha + 4 alpha]`
`= - (1)/(2) (1 + 2 alpha ) = - (1)/(2) - alpha = beta` [From (1)]
Hence, the other root `beta is 4alpha^(3) - 3 alpha`.
104.

For a `alt=0,`determine all real roots of theequation `x^2-2a|x-a|-3a^2=0.`

Answer» Correct Answer - `x={a(1-sqrt2),a (sqrt6-1)}`
Here, `a ge 0`
Given, `x^(2)-2a |x-a|-3a^(2)=0`
Case I When `x ge a`
`impliesx^(2)-2a(x-a)-3a^(2)=0`
`impliesx^(2)-2ax -a^(2)=0`
`impliesx=a +-sqrt2a`
`" "[as a(1+sqrt2)ltaand a (1-sqrt2)gta]`
`therefore"Neglecting" x=a(1+sqrt2)as x gea`
`impliesx=a(1-sqrt2)" "...(i)`
Case II When `x lt a impliesx^(2)+2a(x-a)-3a^(2)=0`
`impliesx^(2)+2ax-5a^(2)=0impliesx=-aa+-sqrt6a`
`" "[as a (sqrt6-1)lta (sqrt6-1)gta]`
`therefore"Neglecting"x=a (-1-sqrt6)impliesx=a(sqrt6-1)" "...(ii)`
From Eqs. (i) and (ii), we get
`x={a(1-sqrt2),a (sqrt6-1)}`
105.

If `x^2+p x+q=0`is the quadratic equation whose roots are `a-2a n d b-2`where `aa n db`are the roots of `x^2-3x+1=0,`then`p-1,q=5`b. `p=1,1=-5`c. `p=-1,q=1`d. `p=1,q=-1`A. `p=1,q=5`B. `p=1,q=-5`C. `p=-1,q=1`D. none of these

Answer» Correct Answer - D
106.

If equation `(lamda^(2)-5lamda+6)x^(2)+(lamda^(2)-3lamda+2)x+(lamda^(2)-4)=0` is satisfied by more than two values of `x`, find the parameter `lamda`.

Answer» If an equation of degree to is satisfied by more than two values of unknown, then it must be an identity. Then, we must have
`lamda^(2)-5lamda+6=0,lamda^(2)-3lamda+2=0lamda^(2)-4=0`
`implieslamda=2,3` and `lamda=2,1` and `lamda=2,-2`
Common value of `lamda` which satisfies each condition is `lamda=2`.
107.

If `(-2,7)` is the highest point on the graph of` y =-2x^2-4ax +lambda`, then `lambda` equalsA. 31B. 11C. `-1`D. `-1/3`

Answer» Correct Answer - C
We have `-((-4a)/(2(-2)))=-2`
`impliesa=2`
`:.y=-2x^(2)-8x+lamda`…..i
Since Eq. (i) passes through points `(-2,7)`
`:.7=-2(-2)^(2)-8(-2)+lamda`
`implies7=-8+16+lamda`
`:.lamda=-1`
108.

Let `f(x) =4x^2-4ax+a^2-2a+2` be a quadratic polynomial in x,a be any real number.If x-coordinate ofd vertex of parabola y =f(x) is less thna 0 and f(x) has minimum value 3 for `x in [0,2]` then value of a isA. 1B. 2C. 3D. 0

Answer» Correct Answer - 4
`f(x) = 4x^(2) - 4ax + a^(2)-2a + 2` represents a parabola whose vertex is at `((a)/(2), 2 - 2a)`
Case-I : `0 lt(a)/(2) lt 2`
In this case , `f(x)` attains the global minimum value at `x = (a)/(2)` .
Thus , `f((a)/(2)) = 3`
`rArr 3 = -2a + 2`
`rArr a = - (1)/(2)` (Rejected)
Case II : `(a)/(2)le2`
In this cases, f(x) attains the global minimun value at x = 0 .
Thus, `f(0) = 3`
`rArr 3 = a^(2) - 2a + 2`
`rArr a = 5 pm sqrt(10)`
So, `a = 5 + sqrt(10)`
Case III: `(a)/(2) le 0`
In case,f(x) attains the global minimum value at x = 0.
`rArr 3=a^(2) - 2a + 2 `
`rArr a = 1 p, sqrt(2)`.
So, `a= 1 - sqrt(2)`.
Hence, premissible values of a are `1-sqrt(2)` and `5+ sqrt(10)`.
`f(x) = 4x^(2)-4ax + a^(2) -2a+ 2` is monotonic in `[0,2]`
Hence, point of minima of funciton should not lie in `[0,2]`.
Now, `f(x) = 0`
`rArr 8x - 4a =0`
If `(a)/(2)in [0,2]`, then `a in [0,4]`.
For f(x) to be montomic in `[0,2], a notin [0,4]`. So , `a le 0 or a ge 4`.
109.

Let `f(x) =4x^2-4ax+a^2-2a+2` be a quadratic polynomial in x,a be any real number.If x-coordinate ofd vertex of parabola y =f(x) is less thna 0 and f(x) has minimum value 3 for `x in [0,2]` then value of a isA. `a le 0 or a ge 4`B. `0 le a le 4`C. `a ge 0`D. none of these

Answer» Correct Answer - 1
`f(x) = 4x^(2) - 4ax + a^(2)-2a + 2` represents a parabola whose vertex is at `((a)/(2), 2 - 2a)`
Case-I : `0 lt(a)/(2) lt 2`
In this case , `f(x)` attains the global minimum value at `x = (a)/(2)` .
Thus , `f((a)/(2)) = 3`
`rArr 3 = -2a + 2`
`rArr a = - (1)/(2)` (Rejected)
Case II : `(a)/(2)le2`
In this cases, f(x) attains the global minimun value at x = 0 .
Thus, `f(0) = 3`
`rArr 3 = a^(2) - 2a + 2`
`rArr a = 5 pm sqrt(10)`
So, `a = 5 + sqrt(10)`
Case III: `(a)/(2) le 0`
In case,f(x) attains the global minimum value at x = 0.
`rArr 3=a^(2) - 2a + 2 `
`rArr a = 1 p, sqrt(2)`.
So, `a= 1 - sqrt(2)`.
Hence, premissible values of a are `1-sqrt(2)` and `5+ sqrt(10)`.
`f(x) = 4x^(2)-4ax + a^(2) -2a+ 2` is monotonic in `[0,2]`
Hence, point of minima of funciton should not lie in `[0,2]`.
Now, `f(x) = 0`
`rArr 8x - 4a =0`
If `(a)/(2)in [0,2]`, then `a in [0,4]`.
For f(x) to be montomic in `[0,2], a notin [0,4]`. So , `a le 0 or a ge 4`.
110.

Consider equation `x^(4)-6x^(3)+8x^(2)+4ax-4a^(2)=0,ainR`. Then match the following lists: A. `{:(,a,b,c,d),((1),q,s,s,r):}`B. `{:(,a,b,c,d),((2),r,s,q,p):}`C. `{:(,a,b,c,d),((3),q,s,r,p):}`D. `{:(,a,b,c,d),((4),q,r,p,p):}`

Answer» Correct Answer - 4
`(x^(2)-2x-2a)(x^(2)-4x+2a)=0`
`impliesx^(2)-2x-2a=0" "....(1)` or
`x^(2)-4x+2a=0" "....(2)`
Discrtiminant of eq. (1) is: `D_(1)=4+8a`
Discriminant of eq. (2) is: `D_(2)=16-8a`
(a) If equation has exactly two distinct roots then
(1) `D_(1)gt0implies4+8agt0impliesagt-1//2` and
`D_(2)implies16-8agt0impliesalt2`
`:.ain(-1//2,2)`
(b) If equation has exactly two distinct roots then (i) `D_(1)gt0andD_(2)lt0`
`impliesain(2,oo)`
(ii) `D_(1)lt0andD_(2)gt0`
`impliesain(-oo,-1//2)`
(c) If equation has no real roots then
`D_(1)lt0andD_(2)lt0`
`impliesainphi`
(d) Clearly, rquation cannot have four roots positive.
111.

Solve the equation `x^(2)+(x/(x-1))^(2)=8`

Answer» Correct Answer - `x_(1)=2,x_(2)=-1+sqrt(3)` and `x_(3)=-1-sqrt(3)`
We have `x^(2)+(x/(x-1))^(2)=8`
`implies(x+x/(x-1))^(2)-2.x.x/((x-1))=8`
`implies(x^(2))/(x-1))^(2)-2((x^(2))/(x-1))-8=0`.........i
Let `y=(x^(2))/(x-1)`. Then Eq. (i) reduces to
`y^(2)-2y-8=0`
`implies(y-4)(y+2)=0`
`:.y=4,-2`
If `y=4` then `4=(x^(2))/(x-1)`
or `x^(2)-4x+4=0`
or `(x-2)^(2)=0`
or `x=2`
`:.x_(1)=2`
and if `y=-2`, then `-2=(x^(2))/(x-1)`
or `x^(2)+2x-2=0`
`:.x=(-2+-sqrt((4+8)))/2`
`impliesx=-1+-sqrt(3)`
`:.x_(2)=-1+sqrt(3),x_(3)=-1-sqrt(3)`
112.

Solve the equation `x((3-x)/(x+1))+(x+(3-x)/(x+1))=2`

Answer» Hence `x+1!=0`
and let `x((3-x)/(x+1))=u` and `x+(3-x)/(x+1)=v`
`:.uv=2`……….i
and `u+v=x((3-x)/(x+1))+x+((3-x)/(x+1))`
`=(x+1)((3-x)/(x+1))+x=3-x+x=3`
`:.u+v=3` and `uv=2`
Then `u=2,v=1` or `u=1,v=2`
Givnen equation is equivalent to the collection
`:.{(x((3-x)/(x+1))=2),(x+(3-x)/(x+1)=1):}` or `{(x((3-x)/(x+1)))=1),(x+(3-x)/(x+1)=2):}`
`implies{(x^(2)-x+2=0),(x^(2)-x+2=0):}` or `{(x^(2)-2x+1=0),(x^(2)-2x+1=0):}`
`implies{(x^(2)-x+2=0),(x^(2)-2x+1=0):}implies{((x-1/2)^(2)+7/4!=0),((x-1)^(2)=0):}`
`:.(x-1)^(2)=0`
`impliesx=1` is a unique solution of the original equation.
113.

Solve the equatioin `|x-|4-x||-2x=4`

Answer» The equation is equivalent to the collection of systems
`{(|x-(4-x)|-2x=4, "if"4-xge0),(|x+(4-x)|-2x=4, "if"4-xlt0):}`
`implies {(|2x-4|-2x=4, "if"xle4),(4-2x=4,"if"xgt4):}`……I
The second system of this collection gives `x=0`
but `xgt4`
Hence, second system has no solution.
The first system of collection Eq. (i) is equivalent to the system of collection
`{(2x-4-2x=4, "if"2xge4),(-2x+4-2x=4,"if"2xlt4):}`
`implies{(-4=4,"if"xge2),(-4x=0,"if"xlt2):}`
The first system is failed and second system gives `x=0`.
Hence `x=0` is unique solution of the give equation.
114.

Solve `6x^(3)-11x^(2)+6x-1=0`, roots of the equatioin are in HP.

Answer» Put `x=1/y` in the given equation then
`6/(y^(3))-11/(y^(2))+6/y-1=0`
`impliesy^(3)-6y^(2)+11y-6=0`……..i
Now, roots of Eq. (i) are in AP.
Let the roots be `alpha-beta, alpha, alpha +beta`
The, sum of roots `=alpha-beta+alpha+beta=6`
`implies3 alpha=6`
`:.alpha=2`
Product of roots `=(alpha-beta).alpha.(alpha+beta)=6`
`implies(2-beta)2(2+beta)=6implies4-beta^(2)=3`
`:.beta=+-1`
`:.` Roots of Eqs (i) are 1,2,3 or 3,2,1.
Hence roots of the given equation are `1,1/2,1/3` or `1/3, 1/2, 1`.
115.

Given that the expression `2x^3+3p x^2-4x+p`hs a remainder of 5 when divided by `x+2`, find the value of `pdot`

Answer» Correct Answer - `p = 1`
Let `f(x) = 2x^(3) + 3px^(2) - 4x + p` Given
`f(-2) = 2 (-2)^(3) + 3 (-2)^(2)p - 4 (-2)+ p = 5`
or ` 13 p - 8 = 5 `
or ` p = 1`
116.

If `(a^2-1)x^2+(a-1)x+a^2-4a+3=0`is identity in `x`, then find the value of `a`.A. `-1`B. `1`C. `3`D. `-1,1,3`

Answer» Correct Answer - B
117.

If `a^(3)-3a^(2)+5a-17=0` and `b^(3)-3b^(2)+5b+11=0` are such that `a+b` is a real number, then the value of `a+b` isA. `-1`B. `1`C. `2`D. `-2`

Answer» Correct Answer - C
`(c )` Let `a+b=lambdaimpliesb=lambda-a`
So `(lambda-a)^(3)-3(lambda-a)^(2)+5(lambda-a)+11=0`
`lambda^(3)-a^(3)-3lambda^(2)a+3lambdaa^(2)-3lambda^(2)+6lambda a-3a^(2)+5lambda-5a+11=0` ,brgt `implies a^(3)+(3-3lambda)a^(2)+(3lambda^(2)-6lambda+5)a-(lambda^(3)-3lambda^(2)+5lambda+11)=0`
Comparing it with the equation `a^(3)-3a^(2)+5a-17=0`, we get `lambda=2`
118.

If `a ,b ,c`are non-zero real numbers, then the minimum value of the expression`(((a^4 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2))`is not divisible by prime number.

Answer» Correct Answer - 315
We have `((a^(4)+3a^(2)+1)/a^(2))((b^(2)+5b^(2)+1)/(b^(2)))((c^(4)+7c^(2)+1)/(c^(2)))`
`=(a^(2)+(1)/(a^(2))+3)(b^(2)+(1)/(b^(2))+5)(c^(2)+(1)/(c^(2))+7)`
`=((a-(1)/(a))^(2)+5)((b-(1)/(b))^(2)+7)((c-(1)/(c))^(2)+9)`
So, minimum value is `5xx7xx9=315`.
119.

If roots of an equation `x^n-1=0` are `1,a_1,a_2,........,a_(n-1)` then the value of `(1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1))` will be (a) `n` (b) `n^2` (c) `n^n` (d) `0`A. nB. `n^(2)`C. `n^(n)`D. 0

Answer» Correct Answer - 1
Clearly,
`x^(n) - 1= (x - 1)(x - a_(1)) (x - a_(2)) .. (x - a_(n - 1))`
`rArr (x^(n) - 1)/(x - 1) = (x - a_(1))(x - a_(2)) .. (x - a_(n - 1)`
`rArr 1 + x + x^(2) + .. + x^(n - 1) = (x - a_(1))(x - a_(2))..(x - a_(n - 1))`
`rArr n = (1 - a_(1))(1 - a_(2))..(1 - a_(n - 1))` [putting x = 1]
120.

If `alpha,beta,gamma,sigma`are the roots of the equation `x^4+4x^3-6x^3+7x-9=0,`then he value of `(1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2)`is`9`b. `11`c. `13`d. 5A. 9B. 11C. 13D. 5

Answer» Correct Answer - 3
Since `alpha, beta, gamma, sigma` are the roots of the given equation, we have
`x^(4) + 4x^(3) - 6x^(2) + 7x - 9 = (x - alpha)(x - beta)(x - gamma)(x - sigma)`
Putting x = I and then x = -I, we get
`1 - 4i + 6 + 7i - 9 = (I - alpha) (I - beta)(i - gamma) (i - sigma)`
and `1 + 4i + 6 - 7i - 9 = (-i - alpha)(-i -beta)(-i -gamma)(-i - sigma)`
Multiplying these two equations, we get
`(-2 + 3i)(-2 - 3i) = (1 + alpha^(2))(1 + beta^(2))(1 + gamma^(2))(1 + sigma^(2))`
or `13 = (1 + alpha^(2))(1 + beta^(2))(1 + gamma^(2))(1 + sigma^(2))`
121.

Find the condition that the expressions `a x^2-b x y+c y^2a n da_1x^2+b_1x y+c_1y^2`may have factors `y-m xa n dm y-x ,`respectively.

Answer» y = mx is a factor of ` ax^(2) + bxy + c^(2)`
Hence, ` ax^(2) + bxy + cy^(2)` will be zero when y - mx = 0 or y = mx
`rArr ax^(2) + bx *mx + cm^(2) x^(2) = 0`
or `cm^(2) + bm + a = 0` (1)
Since my - x is a factor of ` a_(1)x^(2) + b_(1)xy + C_(1) y^(2) = 0` when my - x = 0
`rArr a_(1) m^(2) y^(2) + b_(1)*my* + c_(1)y^(2) = 0` [Putting x = my]
`rArr a_(1) m^(2) + b_(1) m + c_(1) = 0` (2)
Eliminating m from (1) and (2) , we get
`(bc_(1) - ab_(1)) (cb_(1) - ba_(1)) = (aa_(1) - c c_(1))^(2)` .
122.

If `(m_r ,1//m_r),r=1,2,3,4,`are four pairs of values of `xa n dy`that satisfy the equation `x^2+y^2+2gx+2fy+c=0`, then the value of `m_1, m_2, m_3, m_4`is`0`b. `1`c. `-1`d. none of these

Answer» Correct Answer - 2
If `[m_(r), (1//m_(r))]` satisfy the given equation
`x^(2) + y^(2) + 2gx + 2fy + c = 0`, then
`m_(r)^(2) + 1/m_(r)^(2) + 2gm_(r) + (2f)/(m_(r)) + c = 0`
`rArr m_(r)^(4) + 2gm_(r)^(3) + cm_(r)^(2) + 2fm_(r) + 1 = 0`
Now, roots of given equation are `m_(1), m_(2), m_(3), m_(4)`. The product of roots
`m_(1)m_(2)m_(3)m_(4) = ("Constant term")/("Coefficient of " m_(r)^(4)) = 1/1 = 1`
123.

Prove that if the equation `x^2+9y^2-4x+3=0`is satisfied for real values of `xa n dy ,t h e nx`must lie between 1 and 3 and`y`must lie between-1/3 and 1/3.

Answer» Given equation is
`x^(2) + 9y^(2) - 4x + 3 =0` (1)
or `x^(2) - 4x + 9y^(2) + 3 = 0`
Since x is ral, we have
`(-4)^(2) - 4(9y^(2)+ 3) ge 0`
or `16 - 4 (9y^(2) + 3) ge 0`
or ` 4 - 9y^(2) - 3 ge 0`
or `9y^(2) - 1 le 0`
or ` 9y^(2) le 1`
or `y^(2)le (1)/(9)`
`rArr -(1)/(3) le y le (1)/(3)` (2)
Equation (1) can also be written as
`9y^(2) + 0y + x^(2) - 4x + 3 = 0` (3)
Since y is real, so
or `0^(2) - 4x + 3 le 0` (4)
or (x - 3) (x - 1) le 0`
or ` 1 le x le 3`
124.

If `a+b+c=24`, `a^(2)+b^(2)+c^(2)=210`, `abc=440`. Then the least value of `a-b-c` isA. `-2`B. `2`C. `8`D. `-14`

Answer» Correct Answer - D
`(d)` `ab+bc+ca=((a+b+c)^(2)-(a^(2)+b^(2)+c^(2)))/(2)=183`
Hence `a`, `b`, `c` are the roots of the equation.
`t^(3)-24t^(2)+183t-440=0`
`implies(t-5)(t-8)(t-11)=0`
Thus `{a,b,c}={5,8,11}`
125.

Find the condition on `a , b ,c ,d`such that equations `2a x^2+b^2+c x+d=0a n d2a x 62+3b x+4x=0`have a common root.

Answer» Let `alpha` be a common root of the given two equations. Thus
`2aalpha^(3) + balpha^(2) + calpha + d = 0` (1)
`2aalpha^(2) + 3balpha + 4c = 0` (2)
Multiplying (2) with `alpha` and then subtracting (1) from it, we get
`2balpha^(2) + 3calpha -d = 0` (3)
Now, Eqs. (2) and (3) re quadratic having a common root `alpha `, so
`(-2ad - 8bc)^(2) = (-3bd - 12c^(2)) (6ac - 6b^(2))`
`rArr (ad + 4 bc)^(2) = (9)/(2) (bd + 4c^(2) (b^(2) - ac)`
126.

If `alpha,beta,gamma` are the roots of the equation `x^3 + 4x +1=0` then `(alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=`

Answer» For the given equation `alpha + beta + gamma = 0`
`alpha beta + beta gamma + alpha gamma = 4, alpha beta gamma = -1`
Now, `(alpha + beta)^(-1)+(beta + gamma)^(-1) + (gamma + alpha)^(-1).=(-gamma)^(-1)+(-alpha)^(-1) +(-beta)^(-1)`
`=(alpha beta + beta gamma + alpha gamma)/(alpha beta gamma)`
= `-(4)/(-1)`
= 4.
127.

If the cubic `2x^3=9x^2+12 x+k=0`has two equal roots then minimum value of `|k|`is______.

Answer» Correct Answer - 5
We have `2x^(3)-9x^(2)+12x +k =0`
Let the roots are `alpha,alpha, beta`
`2alpha+beta=(9)/(2)" "(1)`
`alpha + 2alphabet=(12)/(2)=6" "(2)`
are `alpha^(2)beta=-(k)/(2)" "(3)`
putting `beta = ((9)/(2)-2alpha)` from (1) in (2), we have
`alpha^(2)+2alpha((9)/(2)-2alpha)=6`
or `alpha^(2)+9alpha-4alpha^(2)=6`
or `3alpha^(2)-9alpha+6=0`
or `alpha^(2)-3alpha+2=0`
or `(alpha-2)(alpha-1)=0rArralpha=2 or1`
`if alpha=2, "then "alpha=(1)/(2),`
`if alpha=1, " then " beta=(5)/(2)`
`therefore k=-2(2^(2))(1)/(2)=-4`
`or k=-2 (1^(2))((5)/(2))=-5`
128.

If the equation `x^(2)+2x+3=0 and ax^(2)+bx+c=0, a,b,c in R` have a common root, then `a:b:c` isA. `1:2:3`B. `3:2:1`C. `1:3:2`D. `3:1:2`

Answer» Correct Answer - A
Given equations are `x^(2)+2x+3=0" "…(i)`
and `ax^(2)+bx+c=0" "…(ii)`
Since, Eq. (i) has imaginary roots, so Eq. (ii) will alos have both same as Eq. (i).
Thus, `a/1=b/2=c/3`
Hence,` a:b:c: is 1:2:3.`
129.

The value of `b` for which the equation `x^2+bx-1=0 and x^2+x+b=0` have one root in common isA. `-sqrt2`B. `-isqrt3`C. `I sqrt5`D. `sqrt2`

Answer» Correct Answer - B
If `a_(1)x^(2)+b_(1)x+c_(2)=0`
have a common real roots, then
`implies(a_(1)c_(2)-a_(2)c_(1))^(2)=(b_(1)c_(2)-b_(2)c_(1))(a_(1)b_(2)-a_(2)b_(1))`
`therefore{:(x^(2)+bx-1=0),(x^(2)+x+b=0):}` have a common root.
`implies(a+b)^(2)=(b^(2)+1)(1-b)`
`implies b^(2)+2b+1=b^(2)-b^(3)+1-b`
`impliesb^(3)+3b=0`
`thereforeb(b^(2)+3)=0`
`impliesb=0, pmsqrt3i`
130.

The sum of the solutions of the equation `|sqrtx-2|+sqrtx(sqrtx-4)+2=(x gt0)` is equal toA. 9B. 12C. 4D. 10

Answer» Correct Answer - D
Key Idea Reduce the given equation into quadratic equation.
Given equation is
`|sqrtx-2|+sqrtx(sqrtx-4)+2=0 implies|sqrtx-2|+x-4sqrt+4=2`
`implies|sqrtx-2|+(sqrtx-2)^(2)=2`
`implies(|sqrtx-2|)^(2)+|sqrtx-2|-2=0`
Let `|sqrtx-2|=y,` then above equation reduced to `y^(2)+y-2=0impliesy^(2)+2y-y-2=0`
`impliesy(y+2)-1(y+2)=0implies(y+2)(y-1)=0`
`impliesy=1,-2`
`impliesthereforey=1" "[becausey="sqrtx-2|ge0]`
`implies|sqrtx-2"=1`
`impliessqrtx=pm1`
`impliessqrtx=3or 1`
`impliesx=9or1`
`therefore" Sum of roots"=9+1=10`
131.

Fill in the blanksIf the quadratic equations `x^2+a x+b=0a n dx^2+b x+a=0(a!=b)`have a common root, then the numerical value of `a+b`is ________.

Answer» Correct Answer - A
Given equations are `x^(2)+ax+b=0` and `x^(2)+bx+a=0` have common root
On subtracting above equations, we get
`(a-b)x+(b-a)=0`
`implies x=1`
`thereforex=1` is the common root.
`impliesa+a+b=0`
`impliesa+b=-1`
132.

If `alpha`is a real root of the quadratic equation `a x^2+b x+c=0a n dbeta`ils a real root of ` a x^2+b x+c=0,`then show that there is a root `gamma`of equation `(a//2)x^2+b x+c=0`whilch lies between `aa n dbetadot`

Answer» Let
`f(x) = (a)/(2) x^(2) + bx + c`
`rArr f(alpha) = (a)/(2) alpha^(2) + bx + c`
=` aalpha^(2) + balpha + c (a )/(2) alpha ^(2)`
` = -(a)/(2) alpha^(2) (becouse alpha` is root of `ax^(2) + bx + c = 0` )
and `f(beta) = (a)/(2) beta^(2) + b beta + c`
= - ` a beta^(2) + b beta + c + (3)/(2) a beta^(2)`
`= (3)/(2) a beta^(2) (becouse beta` is a root of `-ax^(2) + bx + c = 0 ) `
Now, `f(alpha)f(beta) = (-3)/(4) a^(2) alpha^(2) beta^(2) lt 0`
Hence, `f(x) = 0` has one real root between` alpha and beta` .
133.

Number of real solutions of `sqrt(2x-4)-sqrt(x+5)=1` isA. `0`B. `1`C. `2`D. infinite

Answer» Correct Answer - B
`(b)` We have `sqrt(2x-4)=1+sqrt(x+5)`
Squaring
`2x-4=1+(x+5)+2sqrt(x+5)`
`implies x-10=2sqrt(x+5)`
`implies x^(2)+100-20x=4x+20`
`impliesx^(2)-24x+80=0`
`impliesx=4,20`
Putting `x=4`, we get `sqrt(4)-sqrt(9)=1`, which is not possible
Putting `x=20`, we get `sqrt(36)-sqrt(25)=1`
Hence, `x=20` is the only solution.
134.

The number of solutions of `sqrt(3x^(2)+x+5)=x-3` is(A) `0`(B) `1`(C) `2`(D) `4`A. `0`B. `1`C. `2`D. `4`

Answer» Correct Answer - A
`(a)` We have `sqrt(3x^(2)+x+5)=x-3`
We must have `3x^(2)+x+5 ge 0` and `x-3 ge 0` or `x ge 3`
`sqrt(3x^(2)+x+3)=x-3` ……….`(i)`
Squaring both sides of `(i)`, we get
`3x^(2)+x+5=x^(2)-6x+9`
`implies 2x^(2)+7x-4=0`
`implies (2x-1)(x+4)=0`
`implies x=1//2,-4`
These values does not satisfy the inequality `x ge 3`.
Thus, `(i)` has no solution.
135.

The number of real or complex solutions of `x^(2)-6|x|+8=0` isA. `6`B. `7`C. `8`D. `9`

Answer» Correct Answer - A
`(a)` If `x` is real, `x^(2)-6|x|+8=0`
`implies |x|^(2)-6|x|+8=0`
`implies |x|=2,4`
`implies x=+-2,+-4`
If `x` is non-real, say `x=alpha+I beta`, then
`(alpha+I beta)^(2)-6sqrt(alpha^(2)+beta^(2))+8=0`
`:.alpha^(2)-beta^(2)+8-6sqrt(alpha^(2)+beta^(2))+2i alpha beta=0`
Comparing real and imaginary parts,
`alpha beta=0 implies alpha=0` (if `beta=0`, then `x` is real)
and `-beta^(2)+8-66sqrt(beta^(2))=0`
`:. beta+-6beta-8=0`
`implies beta=(overset(-)(+)6overset(-)(+)sqrt(68))/(2)`
`implies beta=+-(3-sqrt(17))`
Hence, `+-(3-sqrt(17))i` are non-real roots.
136.

Number of real solutions of `sqrt(x)+sqrt(x-sqrt(1-x))=1` isA. `0`B. `1`C. `2`D. infinite

Answer» Correct Answer - B
`(b)` We have `sqrt(x)+sqrt(x-sqrt(1-x))=1`
`impliessqrt(x-sqrt(1-x))=1-sqrt(x)`
Squaring
`x-sqrt(1-x)=1+x-2sqrt(x)`
`implies2sqrt(x)-sqrt(1-x)=1` ..........`(i)`
`implies (2sqrt(x)-sqrt(1-x))(2sqrt(x)+sqrt(1-x))=(2sqrt(x)+sqrt(1-x))`
`implies4x-(1-x)=2sqrt(x)+sqrt(1-x)`
`implies 2sqrt(x)+sqrt(1-x)=5x-1` ................`(ii)`
Adding `(i)` and `(ii)`,
`4sqrt(x)=5x`
`implies 16x=25x^(2)`
`implies x=0,(16)/(25)`
Clearly `x=0` does not satisfy the equation.
Putting `x=(16)/(25)` in equation
`L.H.S=(4)/(3)+sqrt((16)/(25)-(3)/(5))=(4)/(5)+(1)/(5)=1`
So `x=(16)/(25)` is the only solution.
137.

Let `a ,b ,c`be real numbers `a!=0.`If `alpha`is a root of `a^2x^2+b x+c=0.beta`is the root of `a^2x^2-b x-c=0a n d0A. `gamma=(alpha+beta)/(2)`B. `gamma=alpha+(beta)/(2)`C. `gamma=alpha`D. `alphaltgammalt beta`

Answer» Correct Answer - D
Since, `alpha` is a root of `a^(2)x^(2)+bx+c=0`
`impliesa^(1)alpha^(2)+balpha+c=0" "...(i)`
`and beta"is a root of"a^(2)x^(2)-bx-c=0`
`impliesa^(2)beta^(2)-b beta-c=0" "...(ii)`
Let `f(x)=a^(2)alpha^(2)+2bx+2c`
`therefore f(alpha)a^(2)alpha^(2)+2balpha+2c`
`=a^(2)alpha^(2)-2a^(2)alpha^(2)=-a^(2)alpha^(2)" "["from Eq."(i)]`
and `f(beta)=alpha^(2)beta^(2)+2b beta+2c`
`= a^(2)beta^(2)+2a^(2)beta^(2)=3a^(2)beta^(2)" "["from Eq."(ii).]`
`implies f(alpha) f(beta)lt0`
f(x) must have a root laying in the open interval `(alpha, beta).`
`therefore alpha lt gamma lt beta`
138.

Let `a ,b ,c`be real numbers with `a!=0a n dl e talpha,beta`be the roots of the equation `a x^2+b x+c=0.`Express the roots of `a^3x^2+a b c x+c^3=0`in terms of `alpha,betadot`

Answer» Correct Answer - `x=alpha^(2)beta,alphabeta^(2)`
Since, `ax^(2)+bx+c=0` has roots `alpha and beta.`
`impliesalpha+beta=-b//a`
and ` alphabeta=c//a`
`Now, a^(3)x^(2)+abcx+c^(3)=0" "...(i)`
On dividing the equation by `c^(2),` we get
`(a^(3))/(c^(2))x^(2)(abcx)/(c^(2))+(c^(3))/(c^(2))=0`
`impliesa((ax)/(c))^(2)+b((ax)/(c))+c=0`
`impliesx=c/aalpha,c/abeta` are the roots
`implies x=alphabeta, alpha beta beta` are the roots
`impliesx=alpha^(2)beta,alphabeta^(2)` are teh roots
Divide the Eq. (i) by `a^(3),` we get
`x^(2)+b/c.c/ax+((c)/(a))^(3)=0`
`impliesx^(2)-(alpha+beta)(alphabeta)x+(alphabeta)^(3)=0`
`impliesx^(2)-alpha^(2)betax-alpha beta ^(2)x+(alphabeta)^(2)=0`
`impliesx(x-alpha^(2)beta)-alphabeta^(2)(x-alphabeta^(2))=0`
`implies (x-alpha^(2)beta)(x-alphabeta^(2))=0`
`impliesx=alpha^(2)beta,alpha beta^(2)` which is the required answer.
Alternate Solution
Since, `a^(3)x^(2)+abcx+c^(3)=0`
`impliesx=(-abcpmsqrt((abc)^(2)-4.a^(3).c^(3)))/(2a^(3))`
`impliesx=(-(b//a)(c//a)pmsqrt((b//c)^(2)(c//a)^(2)-4(c//a)^(3)))/(2)`
`impliesx=((alpha+beta)(alphabeta)pmsqrt((alpha+beta)^(2)(alphabeta)^(2)-4(alphabeta)^(3)))/(2)`
`impliesx=((alpha+beta)(alphabeta)pmalphabetasqrt((alpha+beta)^(2)-4alphabeta))/(2)`
`impliesx=alphabeta[((alpha+beta)pmsqrt((alpha-beta)^(2)))/(2)]`
`impliesx=alphabeta[((alpha+beta)pmsqrt((alpha-beta)))/(2)]`
`impliesx=alphabeta[(alpha+beta+alpha-beta)/(2),(alpha+beta-alpha+beta)/(2)]`
`impliesx=alpha beta[(2alpha)/(2),(2 beta)/(2)]`
`impliesx=alpha^(2)beta, alpha beta^(2)` which is the required answer.
139.

The largest interval for which`x^(12)+x^9+x^4-x+1>0``-4A. `-4ltx le0`B. `0ltx lt1`C. `-100 lt x lt100`D. `-ooltxltoo`

Answer» Correct Answer - D
Given, `x^(12)-x^(9)+x^(4)-x+1gt0`
here, three cases arises:
Case I When `x le0impliesx^(12)gt0,-x^(9)gt0,x^(4)gt0,-xgt0`
`thereforex^(12)-x^(9)+x^(4)-x+1 gt 0,AA x le0" "...(i)`
Case II When `0 lt x le 1`
`x^(9)lt x^(4)and x lt1implies-x^(9)+x^(4)gt0and a-xgt0`
`thereforex^(12)-x^(9)+x^(4)-x+1gt0 ltx le1`
Case III When `x gt 1 implies x^(12)gtx^(9)and x^(4)gtx`
`thereforex^(12)-x^(9)+x^(4)-x+1gt0,AAxgt1" "...(iii)`
From Eqs. (i), (ii), (iii), the above equation holds for all ` x in R.`
140.

Consider the polynomial f`(x)= 1+2x+3x^2+4x^3`. Let s be the sum of all distinct real roots of `f(x)`and let `t= |s|`.A. `(-(1)/(4),0)`B. `(-11,-(3)/(4))`C. `(-(3)/(4),(1)/(2))`D. `(0,(1)/(4))`

Answer» Correct Answer - C
Given, `f(x)4x^(3)+3x^(2)+2x+1`
`f(x)=2(6x^(2)+3x+1)`
`impliesD=9-24lt0`
Hence, `f(x)=0` has only one real root.
`f(-(1)/(2))=1-1+3/4-4/8gt0`
`f(-(3)/(4))=1-6/4+27/16-108/64`
`=(64-96+108-108)/(64)lt0`
f(x) changes its sign in `(-(3)/(4),-(1)/(2))`
Hence, f(x)=0 has a root in `(-(3)/(4),-(1)/(2)).`
141.

If the equations `x^(2)+2lambdax+lambda^(2)+1=0`, `lambda in R` and `ax^(2)+bx+c=0` , where `a`, `b`, `c` are lengths of sides of triangle have a common root, then the possible range of values of `lambda` isA. `(0,2)`B. `(sqrt(3),3)`C. `(2sqrt(2),3sqrt(2))`D. `(0,oo)`

Answer» Correct Answer - A
`(a)` `(x+lambda)^(2)+1=0` has clearly imaginery roots
So, both roots of the equations are common
`:. (a)/(1)=(b)/(2lambda)=(c )/(lambda^(2)+1)=k`(Say)
Then `a=k`, `b=2lambdak`, `c=(lambda^(2)+1)k`
As `a`, `b`, `c` are sides of triangle
`a+b gt implies 2lambda+1 gt lambda^(2)+1implieslambda^(2)-2lambda lt 0`
`implies lambda in (0,2)`
The other conditions also imply same relation.
142.

`4 x^2-2 x+a=0,` has two roots lies in`(-1,1)` then ?

Answer» Let `f(x)=4x^(2)-2x+a` as both roots of the equation `f(x)=0` are lie between `(-1,1)` we can take `D ge0`
`af(-1)gt0,af(1)gt0` and `-1lt1/4lt1`
(i) Consider `Dge0`
`(-2)^(2)-4.4.age0impliesale1/4`…….i
(ii) Consider `af(-1)gt0`
`4(4+2+a)gt0`
`impliesage-6impliesa epsilon(-6,oo)`.............ii
(iii) Consider `af(1)gt0`
`4(4-2+a)gt0impliesagt-2`
`impliesa epsilon(-2,oo)`.........iii
Hence the values of `a` satisfying Eqs. (i), (ii) and (iii) at the same time are `a epsilon(-2,1/4]`
143.

The number of real solutions of `|x|+2sqrt(5-4x-x^2)=16`is/area. 6b. 1 c.0 d. 4A. 6B. 1C. 0D. 4

Answer» Correct Answer - 3
We have
`2sqrt(5 - 4x - x^(2)) = 16 - |x|`
`rArr 4(5 - 4x - x^(2)) = 256 - 32|x| + x^(2)`
`rArr 5x^(2) - 32|x| + 16x + 236 = 0`
`rArr 5x^(2) - 16x + 236 = 0`, when `x ge 0`
and `5x^(2) + 48x + 236 = 0`, when `x lt 0`.
In both cases, equation has non-real roots.
144.

If `x^2+a x-3x-(a+2)=0`has real and distinct roots, then the minimum value of `(a^2+1)/(a^2+2)`isA. 1B. 0C. `1/2`D. `1/4`

Answer» Correct Answer - 3
`D gt 0`
`rArr (a - 3)^(2) + 4(a + 2) gt 0`
or `a^(2) - 6a + 9 + 4a + 8 gt 0`
or `a^(2) - 2a + 17 gt 0`
`rArr a in R`
`therefore (a^(2) + 1)/(a^(2) + 2) = 1 - (1)/(a^(2) + 2) ge 1/2`
145.

If `x`is real, then `x//(x^2-5x+9)`lies between`-1a n d-1//11`b. `1a n d-1//11`c. `1a n d1//11`d. none of theseA. `-1 and -1//11`B. `1 and -1//11`C. `1 and 1//11`D. none of these

Answer» Correct Answer - 2
Let `(x)/(x^(2) - 5x + 9) = y`
or `yx^(2) - 5yx + 9y = x`
or `yx^(2) - (5y + 1)x + 9y = 0`
Now, x is real, so
`D ge 0`
`rArr (-(5y + 1))^(2) - 4 * y *(9y) ge 0`
or `-11y^(2) + 10y + 1 ge 0`
or `11y^(2) - 10y - 1 le 0`
or `(11y + 1) (y - 1) le 0`
or `-1/11 le y le 1`
146.

Find the range of `f(x)=x^2-x-3.`

Answer» Correct Answer - `[-13//4, infty)`
`f(x) = x^(2) - x - 3 (x - (1)/(2))^(2) - (1)/(4) - 3 = (x - (1)/(2))^(2)-(13)/(4)`
` (x - (1)/(2))^(2 )ge 0, AA x in` R
` (x - (1)/(2))^(2 )-(13)/(4)ge (-13)/(4), AA x in`R
Hence, the range is `[13//4. infty)`.
147.

In the given figure, vertices of `Delta ABC` lie on `y = f(x) = ax^2 + bx + c.` The `DeltaABC` is right angled isosceles triangle whose hypotenuse `AC = 4sqrt2` units. Number of integral values of `k` for which one root of `f(x) = 0` is more than `k` and other less than `k`A. 6B. 4C. 5D. 7

Answer» Correct Answer - 3
`f(x) = 0`
`rArr x^(2)//(2sqrt(2)) - 2sqrt(2) = 0` or `x = pm 2sqrt(2)`
Therefore, number of integral values of K for which for which k lies in `(-2sqrt(2), 2sqrt(2))` is 5.
148.

The interval of `a`for which the equation `t a n^2x-(a-4)tanx+4-2a=0`has at least one solution `AAx in [0,pi//4]``a in (2,3)`b. `a in [2,3]`c. `a in (1,4)`d. `a in [1,4]`A. ` a in (2,3)`B. `a in [2, 3]`C. ` a in (1, 4)`D. ` a in [1 ,4]`

Answer» Correct Answer - 2
`tan x = (a - 4 pm sqrt(a - 4)^(2) - 4 (4 - 2a))/(2)`
` = (a - 4 pm a)/(2) = a - 2 , - 2`
`therefore tan x = a- 2 ( because tan x ne - 2)`
` because a in [ 0 , (pi)/(4)]`
`because 0 le a - 2 le `
`rArr 2 le a le 3`
149.

Find the least value of `n`such that `(n-2)x^2+x+n+4>0,AAx in R ,w h e r en in Ndot`

Answer» `(n-2)x^(2) + 8 x + n + 4 gt 0, AA x in `R
`rArr D = 64 - 4 (n- 2) (n + 4) lt 0 and n - 2 gt 0`
`rArr 16 - (n^(2) + 2n - 8) lt 0 and n gt 2`
`rArr n^(2) + 2n - 24 gt 0 and n gt 2`
`rArr (n + 6) (n - 4) gt 0 and n gt 2`
`rArr n gt 4 as n in N and n gt 2`
`rArr n ge 5`
Hence, the least value of n is 5.
150.

Find the values of `k`for which`|(x^2+k x+1)/(x^2+x+1)|

Answer» We have
`|x| lt a `rArr - a lt x lt + a`
Therefore, the given inequality implies
`-2lt(x^(2) + kx + 1)/(x^(2) + x + 1) lt 2` (2)
Now, `x^(2) + x +1 = (x+ 1//x)^(2) + (3//4)` is positive for all values of x.
Multiplying (1) by `x^(2) + x + 1,` we get
` -2(x^(2) + x+1) lt x^(2) + kx + 1 lt 2(x^(2) + x + 1)`
This yields two inequalities, viz.,
`3x^(2) + (2+k)x + 3) gt`0
and `x^(2) + (2-k) x + 1 lt 0`
For above inequalities to be. ture for all values of x, their discrimainats must be negative . Hence,
`(2+k)^(2) - 36 lt 0 and (2 - k)^(2) - 4 lt 0` (2)
`rArr (k+ 8) (k - 4) lt 0 and k (k - 4) lt 0` (3)
`rArr - 8 lt k lt 4 and 0 lt k lt 4`
Therefore, `0lt k lt 4`