Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

751.

ABCD is parallelogram and E is a point on BC. If the diagonal BD intersects AE at F, prove that AF × FB = EF × FD.

Answer»

We have: 

∠AFD = ∠EFB (vertically opposite angles) 

∵ DA || BC ∴ ∠DAF = ∠BEF (alternative angles) 

∆ DAF ~ ∆ BEF (AA similarity theorem) 

⇒ AF/EF = FD/FB

Or, AF × FB = FD × EF 

This completes the proof.

752.

In the figure CD = DA, and EF || BD, CF then CF/FB = …….(A) CD/DA(B) CE/DA(C) CE/ED(D) CD/CA

Answer»

Correct option is (C) CE/ED

In \(\triangle BCD,\) EF || DB

\(\therefore\) \(\triangle CEF\sim\triangle CDB\)    (Corresponding angles are equal as EF ||DB)

\(\therefore\) \(\frac{CE}{CD}=\frac{CF}{CB}\)                 (By properties of similar triangles)

\(\Rightarrow\) \(\frac{CE}{CD-CE}=\frac{CF}{CB-CF}\)    \((If\,\frac ab=\frac cd\,then\,\frac a{b-a}=\frac c{d-c})\)

\(\Rightarrow\) \(\frac{CE}{ED}=\frac{CF}{FB}\)

Hence, \(\frac{CF}{FB}\) = \(\frac{CE}{ED}\)

Correct option is: (C) \(\frac{CE}{ED}\)

753.

In given figure,l`abs()`m and liner segments AB, CD and EF are concurrent at point P. Prove that `(AE)/(BF)=(AC)/(BD)=(CE)/(FD)`

Answer» Given l`abs()`m and line segments AB, CD and EF are concurrent at point P
To prove `(AE)/(BF)=(AC)/(BD)=(CE)/(FD)`
Proof In `DeltaAPC and DeltaBPD, angleAPC=angleBPD` [vertically opposite angle]
`anglePAC=anglePBD` [alternate angle]
`therefore DeltaAPC~DeltaBPD` [by AAA similarity criterion]
Then, `(AP)/(PB)=(AC)/(BD)=(PC)/(PD)`
In `DeltaAPE` and `DeltaBPF, angleAPE=angleBPF` [vertically opposite angles]
`anglePAE=anglePBF` [alternate angles]
`therefore DeltaAPE~DeltaBPF` [by AAA similarity criterion]
Then, `(AP)/(PB)=(AE)/(BF)=(PE)/(PF)`....(ii)
In `DeltaPEC and DeltaPFD, angleEPC=angleFPD` [vertically opposite angle]
`anglePCE=anglePDF` [alternate angles]
`therefore DeltaPEC~DeltaPFD` [by AAA similarity criterion]
Then, `(PE)/(PF)=(PC)/(PD)=(EC)/(FD)`....(iii)
From Eqs. (i) ,(ii) and (iii),
`(AP)/(PB)=(AC)/(BD)=(AE)/(BF)=(PE)/(PF)=(EC)/(FD)`
`therefore (AE)/(BF)=(AC)/(BD)=(CE)/(FD)` Hence proved
754.

In Fig., AB and CD are parallel lines and transversal EF intersects them at P and Q respectively. If ∠APR = 25°, ∠RQC = 30° and ∠CQF = 65°, thenA. x = 55°, y = 40°B. x = 50°, y = 45°C. x = 60°, y = 35°D. x = 35°, y = 60°

Answer»

Given,

AB ‖ CD

And, EF cuts them

So,

30° + 65° + ∠PQR = 180°

95° + ∠PQR = 180°

∠PQR = 85°

∠APQ + ∠PQC = 180°(Co. interior angle)

25° + y + 85° + 30° = 180°

y = 40°

In ΔPQR

∠PQR + ∠PRQ + ∠QPR = 180°

85° + x + y = 180°

x = 55°

Thus,

x = 55° and y = 40°

755.

14 In Fig. 6.21, PA, QB Rc and SD are all perpendiculars to a line l, AB 6 cm, Bc 9 cm, CD g cm and SP 36 om Find PO, QR an RS. Fig. 6.21

Answer» Given,AB=6 cm, BC= 9 cm, CD= 12 cm and SP = 36 cm
Also, PA. QB,RC and SD are alll perpendiculars to line l
`therefore PAabs()QBabs()RCabs()SD`
By basic proportionality theorem,
PQ : QR : RS = AB : BC : CD
=6 : 9 : 12
Let PQ=6x,QR=9x and RS=12 x
Since length of PS = 36 km
`thereforePQ+QR+RS=36`
`rArr6x+9x+12x=36`
`rArr 27x = 36`
`therefore x=36/27=4/3`
Now, PQ=`6x=6xx4/3=8cm`
QR=`9x=9xx4/3=12 cm`
and RS=12 x =`12xx4/3=16 cm`
756.

Which is not Pythagorean triplet in the followingA) (3, 4, 5) B) (1, 2, 3) C) (6, 8, 10)D) (5, 12, 13)

Answer»

B) (1, 2, 3)

The correct answer is B.

We have to check all the options by using the Pythagoras theorem.

ex: in the first option 

32+42=52

this condition satisfies all the options except 2 and option.

757.

In Fig., if AB || CD, then,(a) ∠ 2 = ∠ 3 (b) ∠ 1 = ∠ 4(c) ∠ 4 = ∠ 1 + ∠ 2 (d) ∠ 1 + ∠ 2 = ∠ 3 + ∠ 4

Answer»

(d) ∠ 1 + ∠ 2 = ∠ 3 + ∠ 4

As we know that, exterior angle is equal to the sum of opposite interior angles

Consider, Δ ABC

As BC is extended

∠A + ∠B = ∠3 + ∠4

Therefore, ∠1 + ∠2 = ∠3 + ∠4

758.

Choose the correct one. In ΔABC, ∠A = 100°, AD bisects ∠A and AD⊥BC. Then, ∠B is equal to(a) 80° (b) 20° (c) 40° (d) 30°

Answer»

Correct answer is (c) 40°

759.

In Δ ABC, if ∠A = 100° AD bisects ∠A and AD⊥BC. Then, ∠B =A. 50°B. 90°C. 40°D. 100°

Answer»

Given,

AD perpendicular to BC

∠A = 100°

In ΔADB

∠ADB + ∠B + ∠DAC = 180°

90° + ∠B + \(\frac{1}{2}\)∠A = 180°

∠B + \(\frac{1}{2}\) x 100° = 180° – 90°

∠B + 50° = 90°

∠B = 40°

760.

In the given figure, AB || CD, ∠BAE = 65° and ∠OEC = 20°. Find ∠ECO.

Answer»

We know that AB || CD and AE is a transversal

From the figure we know that ∠BAE and ∠DOE are corresponding angles

So we get

∠BAE = ∠DOE = 65o

From the figure we know that ∠DOE and ∠COE form a linear pair of angles

So we get

∠DOE + ∠COE = 180o

By substituting the values

65o + ∠COE = 180o

On further calculation

∠COE = 180o – 65o

By subtraction

∠COE = 115o

We know that the sum of all the angles in triangle OCE is 180o.

∠OEC + ∠ECO + ∠COE = 180o

By substituting the values we get

20o + ∠ECO + 115o = 180o

On further calculation

∠ECO = 180o – 20o – 115o

By subtraction

∠ECO = 45o

Therefore, ∠ECO = 45o

761.

In the adjoining figure, ∠ACD is an exterior angle of ∆ABC. ∠B = 40°, ∠A = 70°. Find the measure of ∠ACD.

Answer»

∠A = 70° , ∠B = 40° [Given] 

∠ACD is an exterior angle of ∆ABC. [Given] 

∴ ∠ACD = ∠A + ∠B 

= 70° + 40° 

∴ ∠ACD = 110°

762.

In Fig., the sides BC, CA and AB of a Δ ABC have been produced to D, E and F respectively. If ∠ACD = 105° and ∠EAF = 45°, find all the angles of the Δ ABC.

Answer»

Given,

∠ACD = 105°

∠EAF = 45°

∠EAF = ∠BAC (Vertically opposite angle)

∠BAC = 45°

∠ACD + ∠ACB = 180°(Linear pair)

105° + ∠ACB = 180°

∠ACB = 180° – 105°

= 75°

In ΔABC

∠BAC + ∠ABC + ∠ACB = 180°

45° + ∠ABC + 75° = 180°

∠ABC = 180° – 120°

= 60°

Thus, all three angles of a triangle are 45°, 60° and 75°

763.

In Fig., AB || DE. Find ∠ACD.

Answer»

Since,

AB ‖ DE

∠ABC = ∠CDE (Alternate angles)

∠ABC = 40°

In ΔABC

∠A + ∠B + ∠ACB = 180°

30° + 40° + ∠ACB = 180°

∠ACB = 180° – 70°

= 110° (i)

Now,

∠ACD + ∠ACB = 180°(Linear pair)

∠ACD + 110° = 180°[From (i)]

∠ACD = 180° – 110°

= 70°

Hence, ∠ACD = 70°.

764.

In ΔABC, D, E are the mid points of \(\overline{AB}\) ,\(\overline{AC}\) . F, G are the mid-points of \(\overline{AD}\), \(\overline{AE}\)  If  \(\overline{FG}\) = 2 cm, then BC = A) 10 cm B) 4 cm C) 6 cmD) 8 cm

Answer»

Correct option is  D) 8 cm

765.

Find the values of x and y using the information shown in the given figure. Find the measures of ∠ABD and ∠ACD

Answer»

i. ∠ACB = 50° [Given]

 In ∆ABC, seg AC ≅ seg AB [Given] 

∴ ∠ABC ≅ ∠ACB [Isosceles triangle theorem] 

∴ x = 50°

ii. ∠DBC = 60° [Given] 

In ABDC, seg BD ≅ seg DC [Given] 

∴ ∠DCB ≅ ∠DBC [Isosceles triangle theorem] 

∴ y = 60°

iii. ∠ABD = ∠ABC + ∠DBC [Angle addition property] 

= 50° + 60° 

∴ ∠ABD = 110° 

iv. ∠ACD = ∠ACB + ∠DCB [Angle addition property] 

= 50° + 60° 

∴ ∠ACD = 110° 

∴ x = 50°, y = 60°,

 ∠ABD = 110°, ∠ACD = 110°

766.

ABC and DBC are two isosceles triangles on the same base BC. Show that ∠ABD = ∠ACD.

Answer»

Data: ABC and DBC are two isosceles triangles on the same base BC. 

To Prove: 

∠ABD = ∠ACD 

Proof: 

In ∆ABC, AB = AC, 

∴ Opposite angle 

∠ABC = ∠ACB …………. (i) 

Similarly in ∆BDC, BD = DC. 

Opposite angle 

∠DBC = ∠DCB ………….. (ii) 

From (i) and (ii), 

∠ABC = ∠ACB 

Adding ∠DBC and ∠DCB on both sides, 

∠ABC + ∠DBC = ∠ABD 

∠ACB + ∠DCB = ∠ACD 

Equals are added to equal angles. 

∴ ∠ABD = ∠ACD.

767.

In the given figure, it is given that LM = ON and NL = MO.(a) State the three pairs of equal parts in the ∆NOM and ∆MLN.(b) Is ∆NOM ≅ ∆MLN? Give reason.

Answer»

(a) In ∆NOM and ∆MLN

LM = ON    [given]

MN = MN   [common side]

LN = OM    [given]

(b) Yes, by SSS congruence criterion,

∆NOM ≅ ∆MLN

768.

Observe Fig. 6.54 and state the three pairs of equal parts in triangles ABC and DBC.(i) Is Δ ABC ≅ Δ DCB? Why?(ii) Is AB = DC? Why?(iii) Is AC = DB? Why?

Answer»

Correct answer is 

(i) Yes, (ASA)

(ii) Yes, CPCT

(iii) Yes, CPCT

769.

In Fig. 6.49, it is given that LM = ON and NL = MO(a) State the three pairs of equal parts in the triangles NOM and MLN.(b) Is ΔNOM ≅ ΔMLN. Give reason?

Answer»

Correct answer is 

(a) LM = ON, LN = OM, MN = NM

(b) Yes, (SSS)

770.

In a triangle, the perpendicular from the vertex to the base bisects the base. The triangle is (a) right-angled (b) isosceles (c) scalene (d) obtuse-angled

Answer»

(b) Isosceles 

In an isosceles triangle, the perpendicular from the vertex to the base bisects the base.

771.

In a triangle, the perpendicular from the vertex to the base bisects the base. The triangle is (a) right-angled (b) isosceles (c) scalene (d) obtuse-angled

Answer»

(b) Isosceles 

In an isosceles triangle, the perpendicular from the vertex to the base bisects the base.

CORRECT OPTION :-

(b) Isosceles 

772.

In a ∆ABC, it is given that AD is the internal bisector of ∠A. If AB = 10cm, AC = 14cm and BC = 6cm, then CD = ? (a) 4.8cm (b) 3.5cm (c) 7cm (d) 10.5cm

Answer»

By using angle bisector in ∆ABC, we have 

AB/AC = BD/DC 

⇒ 10/14 = 6 − x/x

⇒ 10x = 84 – 14x 

⇒ 24x = 84 

⇒ x = 3.5 

Hence, the correct answer is option (b).

773.

In ∆ABC, it is given that AD is the internal bisector of ∠A. If BD = 4cm, DC = 5cm and AB = 6cm, then AC = ? (a) 4.5cm (b) 8cm (c) 9cm (d) 7.5cm

Answer»

(d) 7.5 cm 

It is given that AD bisects angle A 

Therefore, applying angle bisector theorem, we get: 

BD/DC = AB/AC 

⇒ 4/5 = 6/x 

⇒ x = 5 × 6/4 = 7.5 

Hence, AC = 7.5 cm

774.

In the given figure, ABCD is trapezium whow diagonals AC and BD intersect at O such that `OA=(3x-1) cm, (OB=(2x+1) cm, OC=(5x-3) cm and OD =(6x-5)cm`. Then, x=?

Answer» We know that `AB||DC` in trapezium ABCD and its diagonal intersectst at O. Then, we have
`(AO)/(OC)=(BO)/(OD)=(3x-1)/(5x-1)=(2x+1)/(6x-5)`
`rArr (3x-1)(6x-5)=10x^(2)-x-3`
`rArr 18x^(2)-20x+8=0 rArr 2x^(2)-5x+2=0`
`rArr (x-2)(2x-1)=0`
`rArr x=2 or x=(1)/(2)`
But, `x=(1)/(2)`will make `OC=(5x-3) cm=(5xx(1)/(2)-3) cm =-(1)/(2) cm`
And the distance cannot be negative
`:. x ne(1)/(2)`
Hence, x=2
775.

In the given figure, ABCD is trapezium whow diagonals AC and BD intersect at O such that `OA=(3x-1) cm, (OB=(2x+1) cm, OC=(5x-3) cm and OD =(6x-5)cm`. Then, x=?

Answer» Correct Answer - A
We know that the diagonals of trapezium divide each other proportionally.
`:. (OA)/(OC)=(OB)/(OD)rArr (3x-1)/(5x-3)=(2x-1)/(6x-5)`
`rArr (3x-1)(6x-5)=(5x-3)(2x+1)`
`rArr 18x^(2)-21x+5=10x^(2)-x-3 rArr 8x^(2)-20x+8=0`
`rArr 2x^(2)-5x+2=0 rArr 2x^(2)-4x+2=0 rArr 2x(x-2)-(x-2)=0`
`rArr (x-2)(2x-1)=0 rArr x=2 or x =(1)/(2)`
But, `x=(1)/(2)` gives (`6x-5) lt 0` and the distance cannot be negative .
`:. x=2`
776.

In Δ ABC ∠B = ∠C and ray AX bisects the exterior angle ∠DAC. If ∠DAX =70°, then ∠ACB =A. 35°B. 90°C. 70°D. 55°

Answer»

AX bisects ∠DAC

∠CAD = 2 x ∠DAC

∠CAD = 2 x 70°

= 140°

By exterior angle theorem,

∠CAD = ∠B + ∠C

140° = ∠C + ∠C (Therefore, ∠B = ∠C)

140° = 2∠C

∠C = 70°

Therefore,

∠C = ∠ACB = 70°

777.

Choose the correct one.In Fig. 6.7, PQ = PS. Thevalue of x is(a) 35° (b) 45°(c) 55° (d) 70°

Answer»

Correct answer is  (b) 45°

778.

In Fig., PQ = PS. The value of x is (a) 35° (b) 45° (c) 55° (d) 70°

Answer»

(b) 45o

From the given figure,

In triangle PQS, ∠PSQ + ∠QPS = 110o … [from exterior angle property of a triangle]

We know that, sum of all angle of the triangle is equal to 180o.

So, ∠PSQ + ∠QPS + ∠PQS = 180o

110o + ∠PQS = 180o – 110o

∠PQS = 70o

Now, consider the triangle PRS,

∠PSQ = x + 25o … [from the exterior angle property of a triangle]

x = 70o – 25o

x = 45o

779.

In △ABC , AB = 6√3 , AC = 12 cm and BC = 6 cm. Then ∠B is

Answer»

AB = 6√3 cm

⇒ AB2 = 108 cm2 

AC = 12 cm 

⇒ AC2 = 144 cm2

BC = 6 cm 

⇒ BC2 = 36 cm 

∴ AC2 = AB2 + BC2 

Since, the square of the longest side is equal to the sum of two sides, so ∆ABC is a right angled triangle. 

∴ The angle opposite to ∠90° 

Hence, the correct answer is option (c)

780.

Find the value of ‘x’ in the following figures

Answer»

a)  From the figure, 

∠A = 35°, ∠B = x° and exterior angle at C = 70° 

Exterior angle of a triangle is equal to the sum of its opposite interior angles. 

Exterior angle at C = ∠A + ∠B = 70° 

⇒ 35° + x= 70° 

⇒ 35° + x – 35° 

= 70° – 35° 

∴ x = 35°

b) From the figure, ∠P = 4x, ∠Q = 3x and exterior angle at R = 119° 

Exterior angle of a triangle is equal to the sum of its opposite interior angles. 

Exterior angle at R = ∠P + ∠Q = 119° 

⇒ 4x + 3x = 119° 

⇒ 7x = 119°

⇒ 7x/7 = 119°/7

∴ x = 17°

781.

Find the exterior angles in each of the following triangles :

Answer»

a) From the figure 

∠A = 60°, ∠B = 73° 

Exterior angle of a triangle is equal to the sum of its opposite interior angles. 

Exterior angle at C = ∠A + ∠B 

= 600 + 730

= 133°

b) From the figure, 

∠D = 90°, ∠E = 30° 

Exterior angle of a triangle is equal to the sum of its opposite interior angles. 

Exterior angle at 

F = ∠D + ∠E 

= 90° +.30° 

= 120°

782.

Write the exterior angles of ∆XYZ.

Answer»

Exterior angles of ∆XYZ are ∠PXY, ∠ZYQ and ∠XZR. 

Exterior angle of X is ∠PXY. 

Exterior angle of Y is ∠QYZ. 

Exterior angle of Z is ∠XZR.

783.

In a right triangle ABC, AB = AC, then which of the following is FALSE ? A) (∠B + ∠C) > ∠A B) ∠A > ∠B, ∠A > ZC C) ∠A = ∠B + ∠C D) ∠A = 2∠B = 2∠C

Answer»

C) ∠A = ∠B + ∠C

784.

The angles of a triangle are in the ratio 2 : 4 : 3, then find the angles.

Answer»

Given the ratio of the angles of a ’ triangle are 2 : 4 : 3. 

2x : 4x : 3x 

Sum of the angles of a triangle is 180°. 

⇒ 2x + 4x + 3x = 180° 

⇒ 9x = 180°

⇒ 9x/9 = 180°/9

∴ x = 20° 

Angles are 

⇒ 2x : 4x :,3x 

2(20°) : 4(20°): 3(20°) 

40°: 80° : 60°

∴ Angles of a triangle are 40°, 80°, 60°.

785.

State TRUE or FALSE for each of the following statements and write the reasons for the FALSE statement. (i) A triangle can have two right angles.(ii) A triangle can have two acute angles.(iii) A triangle can have two obtuse angles.

Answer»

(i) FALSE. 

In triangle sum of three angles is 180°. In triangle, if two angles are two right angles (90° + 90° = 180°). Then, sum of three angles is greater than 180°.

(ii) TRUE.

(iii) FALSE. 

In triangle sum of three angles is 180°. In triangle, if two angles are two obtuse angles, then sum of three angles is greater than 180°.

786.

Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Answer»

Since the perimeters and two sides are proportional
Therefore, the third side is proportional to the corresponding third side.
i.e., The two triangles will be similar by SSS criterion.

787.

Measure the sides of the following triangles in centimeters, using a divider and ruler. Enter the lengths in the table below. What do you observe?In ∆ABCIn ∆PQRIn ∆XYZl (AB) =     cml (QR) =    cml (XY) =     cml (BC) =     cml (PQ) =    cml (YZ) =     cml (AC) =     cml (PR) =    cml (XZ) =     cm

Answer»
In ∆ABCIn ∆PQRIn ∆XYZ
l (AB) = 2.6 cml (QR) = 2.8 cml (XY) = 2.8 cm
l (BC) = 2.6 cml (PQ) = 3.8 cml (YZ) = 2.6 cm
l (AC) = 2.6 cml (PR) = 3.8 cml (XZ) = 4.3 cm

 We observe that,

1. ∆ABC is an equilateral triangle, 

2. ∆PQR is an isosceles triangle, and 

3. ∆XYZ is a scalene triangle.

788.

If D, E and F are respectively the midpoints of sides AB, BC and CA of ∆ABC then what is the ratio of the areas of ∆DEF and ∆ABC?

Answer»

The ratio of their areas will be 1 : 4.

789.

State whether the following quadrilaterals are similar or not:

Answer»

Here, two diagrams PQRS and ABCD are rhombus and square whose sides are in proportional. But the corresponding angle are not equal. Hence these are not similar.

790.

Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Answer» True
Here, the corresponding two sides and the perimeters of two triangles are proportional, then third side of both triangles will also in proportion.
791.

∆ABC has three sides. Line segment AB is one side. Write the names of the other two sides. ∆ABC has three angles. ∠ABC is one among them. Write the names of the other angles.

Answer»

The names of other two sides are: seg BC and seg AC 

The names of other angles are: ∠BCA and ∠CAB

792.

In the given figure , AB||CD . Prove that `triangleAOB~triangleDOC`.

Answer» `AB||CD` (given).
`:. angle OAB = angle ODC` (alternate angles)
`angle OBA= angle OCD` (alternate angles)
`angle AOB- angle DOC` (vertices opposite `angle`)
`:. Delta AOB ~ Delta DOC` [ bu AAA-similarity]
793.

If the three angles of a triangular signboard are 2x°, (x – 10)° and (x + 30)° respectively. Then find it’s angles.

Answer»

Given the three angles of a triangular signboard are 2x°, (x – 10)° and (x +30)°. 

We know that in a triangle, 

2x + (x – 10) + (x + 30) = 180°

⇒ 2x + x- 10° + x + 30 = 180° 

⇒ 4x + 20 = 180° 

⇒ 4x + 20 – 20 = 180° – 20° 

⇒ 4x = 160°

⇒ 4x/4 = 160°/4

∴ x = 40° 

Angles are 2x°, (x- 10)°, (x + 30)° 2(40°), 

40° – 10, 40 + 30 

Angles of signboard are : 80°, 30°, 70°.

794.

Find the missing angles in the triangle. 

Answer»

Given in ∆SKV, ∠K = 60°, ∠V = 70° 

We know that in ∆SKV, 

∠S + ∠K + ∠V = 180° 

⇒ ∠S + 60° + 70° = 180° 

⇒ ∠S + 130° = 180° 

⇒∠S + 130°- 130° = 180°- 130° 

⇒ ∠S = 50° 

∴ ∠S = 50°

795.

State whether the statement are True or False.It is possible to have a triangle in which each angle is less than 60°

Answer»

False

If all angles of a triangle are less than 60°, then their sum will be less than 180°. But in a triangle sum of all angles is 180°.

∴ Triangle is not possible.

796.

Is the following statement true? Why? "Two quadrilaterals are similar, if their corresponding angles are equal".

Answer» False
Two quadrilaterals are similar, if their corresponding angles are equal and corresponding sides must also be proportional.
797.

In figure BD and CE intersect each other at the point P. Is`DeltaPBC~DeltaPDE`? Why?

Answer» True
In `DeltaPBC and DeltaPDE`,
`angleBPC=angleEPD` [vertically opposite angle]
Now `(PB)/(PD)=5/10=1/2`
and `(PC)/(PE)=(6)/(12)=1/2`
From Eqs. (i) and (ii) `(PB)/(PD)=(PC)/(PE)`
Since. One angle of `DeltaPBC` is equal to one angle of `DeltaPDE` and the sides including these angles are proportional, so both triangles are similar.
Hence. `DeltaPBC~DeltaPDE`, by SAS similarity criterion.
798.

In the given figure , AB||CD . Prove that `triangleAOB~triangleDOC`.

Answer» `Delta AOB~ Delta DOC`.
So, the given triangles are equiangular.
`:. angleOAB = angle ODC`
But, these are alternate angels.
`:. AB||CD`.
799.

Find the value of ‘x’ in the given triangles.

Answer»

In ∆CUT, 

∠C = 64°, ∠U = 46° and exterior angle 

∠CTE = x =? ∠C + ∠U + ∠T= 180° 

⇒ 64° + 46° + ∠T = 180° 

⇒ 110° + ∠T= 180° 

⇒ 110° + ∠T – 110° = 180°- 110° 

∠UTC = ∠T = 70° 

∠UTC + ∠CTE = 180° (linear pair of angles) 

⇒ 70° + x° = 180° 

⇒ 70° + x° – 70° = 180°-70° 

∴ x = 110°

800.

Write the six elements (i.e., the three sides and three angles) of ∆ABC.

Answer»

The three sides \(\overline{AB}, \overline{BC}, \overline{CA}\) and the three angles ∠A, ∠B and ∠C are the six elements of ∆ABC.