Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

`"cosec"theta+cottheta=sqrt(3)`

Answer» `theta=2npi+pi/3, theta=(2n-1)pi`
2.

`3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(6)theta)=?`

Answer» Correct Answer - d
3.

`sqrt(3)costheta+sintheta=2`

Answer» `theta=2npi+pi/6`
4.

Prove that : `(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta`

Answer» LHS
`=(sintheta)/(1+ costheta) + (1+costheta)/(sintheta)= (sin^(2)theta + (1+costheta)^(2))/((1+costheta).sintheta)`
`=(sin^(2)theta+1+cos^(2)theta+2 costheta)/((1+costheta). Sintheta)`
`=(sin^(2)theta+ cos^(2)theta)+1+2costheta/((1+costheta).sintheta)`
`=(1+1 + 2 costheta)/((1+costheta).sintheta)`
`=(2(1+costheta))/((1+costheta)sintheta)= 2/sintheta`
`=2"cosec"theta`= R.H.S Hence proved.
5.

`sintheta=-1/2` and `costheta=-sqrt(3)/2`

Answer» `theta=2npi+(5pi)/(12), theta=2npi-(13pi)/(12)`
6.

The number of solutions of the equation `sintheta+costheta=2` are:A. 1B. 2C. 0D. infinite

Answer» Correct Answer - c
7.

Find the general values of `theta` from the following equations: i) `sin3theta=cos3theta` ii) `2cos^(2)theta=1-2sinthetacostheta` iii) `"cosec"^(2)theta+2"cosec"theta-3=0`

Answer» i) `theta=1/3(npi+pi/4)`, ii) `theta=1/2(npi-pi/4)`
iii) `theta=npi+(-1)^(n)pi/2, theta=npi+(-1)^(n), alpha` where `sinalpha=-1/3`
8.

If `sintheta-3sin2theta+sin3theta=costheta-3cos2theta+cos3theta`, then one of the general value is:A. `(npi)/(2)+pi/8`B. `npi+pi/8`C. `npi-pi/8`D. `(npi)/(2)-pi/8`

Answer» Correct Answer - a
9.

Find the general values of `theta` from the following equations: i) `sintheta=-sqrt(3)/(2)` ii) `sectheta=-sqrt(2)` iii) `cottheta=-1/sqrt(3)`, iv) `"cosec"theta=-2`

Answer» i) `theta=npi-(-1)^(n)pi/3`, ii) `theta=2npi+-(3pi)/(4)` , iii)` theta=npi-pi/3`, iv) `theta=npi-(-1)^(n).pi/6`
10.

If `(2+sqrt(3))costheta=1-sintheta`, then one general value is:A. `2npi+pi/2`B. `npi+pi/2`C. `npi+pi/3`D. None of these

Answer» Correct Answer - a
11.

Solve: `sinmtheta+sinntheta=0`

Answer» `theta=(2rpi)/(m+n), theta=((2r+1)pi)/(m-n), r in I`
12.

Find the geneal values of `theta` from the following equations: i) `sintheta=sqrt(3)/2`, ii) `costheta=1/sqrt(2)`, iii) `tantheta=sqrt(3)`, iv) `sectheta=2/sqrt(3)`, v) `cottheta=1/sqrt(3)`, vi) `"cosec"theta=sqrt(2)`

Answer» (I) `theta=npi+(-1)^(n).pi/3`, ii) `theta=2npi+-pi/4`
iii) `theta=npi+pi/3`, iv) `theta=2npi+-pi/6`
v) `theta=npi+pi/3`, vi) `theta=npi+(-1)^(n)pi/4`.
13.

Solve: `tanptheta+cotqtheta=0`

Answer» `theta=(2n+1)/(2(p-q))pi`
14.

Evaluate the following: i) `sin pi/12` ii) `sin pi/8`, iii) `cos pi/8`, iv) `cos pi/(24`

Answer» i) `(sqrt(3)-1)/(2sqrt(2)`, ii) `sqrt(2-sqrt(2))/(2)`, iii) `sqrt(2+sqrt(2))` , iv) `sqrt(4+sqrt(6)+sqrt(2))/(8)`
15.

In `DeltaABC`, a=3,b=4,c=2, then prove that: `cosA/2 = (3sqrt(6))/(8)`

Answer» `s=(a+b+c)/(2)=(3+4+2)/(2)=9/2`
and `cosA/2 = sqrt(s(s-a))/(bc)`
`=sqrt((9/2(9/2-3))/(4 xx2))`
`=sqrt((9 xx 3))/sqrt(4 xx 4 xx 2)=(3sqrt(6))/(8)` Hence Proved.
16.

Find the general value of `theta` from the equaion `sqrt(3)sintheta+costheta=1`

Answer» `sqrt(3)sintheta+costheta=1`
Divide both sides by `sqrt((sqrt(3))^(2)+1^(2))=2`
`sqrt(3)/2sintheta+1/2costheta=1/2`
`rArr sinpi/3sintheta+cospi/3= cospi/3`
`rArr cos(theta-pi/3)=cospi/3`
`rArr theta-pi/3=2npi+-pi/3`
`rArr theta=2npi+-pi/3+pi/3`
`rArr theta=2npi+(2pi)/(3)` or `theta=2npi`. Ans.
17.

Find the general values of `theta` which satisfy the following equations: i) `sintheta=1/sqrt(2)` , ii) `costheta=1/2` , (iii) `tantheta=sqrt(3)`, iv) `cottheta=1` , v) `sectheta=2/sqrt(3)`, vi) `"cosec"theta=sqrt(2)`

Answer» i) `sintheta=1/sqrt(2)=sinpi/4`
`therefore theta=npi+(-n)^(n).pi/4`. Ans.
ii) `costheta=1/2=cospi/3`
`therefore theta=2npi+-pi/3`. Ans.
iii) `tantheta=sqrt(3)=tanpi/3`
`rArr theta=npi+pi/3`
iv) `cottheta=1`
`rArr tantheta=1=tanpi/4`
`therefore theta=npi+pi/4`.
v) `sectheta=2/sqrt(3)`
`rArr costheta=sqrt(3)/2=cospi/6`
vi) `"cosec"theta=sqrt(2)`
`rArr sintheta=1/sqrt(2)=sinpi/4`
`rArr theta=npi+(-1)^(n)pi/4`. Ans.
18.

If `"cosec"A=-sqrt(2)` and `(3pi)/(2) lt A lt 2pi`, find the value of `(tanA+"cosec"A+1)/(cotA-"cosecA"+1)`.

Answer» Correct Answer - `-1`
19.

If `tanA = 12/5` and `pi lt A lt (3pi)/(2)`, find the values of the following: i) `sin2A` ii) `cos2A` iii) `tan2A`

Answer» i) `120/169`, ii) `-119/169`, iii) `-120/119`
20.

In `DeltaABC`, `a:b:c=15:7:13`, find cosA.

Answer» Correct Answer - `-1/26`
21.

A triangle side are few `7 cm, 4sqrt3 cm` and` sqrt(13) cm` then the smallest angle is

Answer» `angleC=30^(@)`
22.

The solution set of the equation `4 sintheta.costheta-2costheta-2sqrt(3)sintheta +sqrt(3)=0` in the interval (0, 2T)ist (B) 13, 3 j (A) 4 4 (C) 4 3, 3 (D) All solutions of the equation 2 sino tann 0 ere obtained by taking a integral valuessof m and n inA. `(3pi)/(4),(7pi)/(4)`B. `(pi/3), (5pi)/(3)`C. `(3pi)/(4), (7pi)/(4), (pi)/(3), (5pi)/(3)`D. None of these

Answer» Correct Answer - d
23.

Prove that: `sqrt((1-sinA)/(1+sinA))={(secA-tanA,if -pi/2 lt A lt pi/2),(tanA-secA ,if pi/2 lt A lt (3pi)/2):}`

Answer» LHS`=sqrt((1-sinA)/(1+sinA))=sqrt((1-sinA,1-sinA)/(1+sinA)), (1-sinA)(1-sinA)`
`=sqrt((1-sinA)^(2)/(1-sin^(2)A))= sqrt((1-sinA)^(2)/(cos^(2)A))=(1-sinA)/(|cosA|)`
`{{:((1-sinA)/(cosA)"," if -pi/2 lt "A" lt pi/2),((1-sinA)/(-cosA)"," if pi/2 lt Alt (3pi)/2):}`
`{{:(1/(cosA)-(sinA)/(cosA),if-pi/2ltAltpi/2),(-1/(cosA)+(sinA)/(cosA),if pi/2ltAlt(3pi)/2):}`
`{{:(secA-tanA,if-pi/2ltAltpi/2),(-secA+tanA,ifpi/2ltAlt(3pi)/2):}`
=RHS
24.

If `tanA=2, secB=-5/3`, where `pi lt A lt (3pi)/(2)`, `pi/2 lt B lt pi`, then i) Find the value of `tan(A+B)`, ii) find the quadrant in which (A+B) terminates.

Answer» i) `2/11` ii) First quadrant
25.

Prove that `tan 56^@ = (cos11^@ + sin11^@)/(cos11^@ - sin11^@) `

Answer» LHS `=(cos11^(@)+sin11^(@))/(cos11^(@)-sin11^(@))`
`=(1+tan11^(@))/(1-tan11^(@))`(Divide `N^(r )` and `D^(r ) "by" cos x)`
`=(tan45^(@)+tan11^(@))/(1-tan45^(@)tan11^(@))`
`=tan(45^(@)+11^(@))=tan56^(@)`
`tan(90-34^(@))=cot34^(@)=`RHS Hence Proved.
26.

Prove that: `t a n 70^0=t a n 20^0+2t a n 50^0dot`

Answer» `70^(@)=20^(@)+50^(@)`
`rArr tan70^(@)=tan(20^(@)+50^(@))`
`rArr tan70^(@)-tan70^(@)tan20^(@)tan50^(@)=tan20^(@)+tan50^(@)=tan20^(@)+tan50^(@)`
`tan70^(@)-cot20^(@).1/(cot20^(@))tan50^(@)=tan20^(@)+tan50^(@)`
`rArr tan70^(@)-tan50^(@)=tan20^(2)+tan50^(@)`
`rArr tan70^(@)=tan20^(@)+2tan50^(2)` Hence proved.
27.

Prove that: `tan(pi/4+A). Tan((3pi)/4)+A=-1`

Answer» LHS `=tan(pi/4+A).tan((3pi)/4+A)`
`=tan(pi/4+A).tan{pi/2+(pi/4+A)}`
`tan(pi/4+A).{-cot(pi/4+A)}`
`=-tan(pi/4+A).1/(tan(pi/4+A))`
`=-1`=RHS Hence proved.
28.

`cosA+cos(12 0^(@)+A)+cos(12 0^(@)-A)=`

Answer» LHS`=cosA+cos(120^(@)+A)+cos(120^(@)-A)`
`=cosA+(cos120^(@)cosA-sin120^(@)sinA) + cos120^(@)cosA+sin120^(@)sinA`
`=cosA+2cos120^(@)cosA`
`=cosA+2cos(180^(@)-60^(@))cosA`
`cosA-2(1/2)cosA`
`=cosA-cosA=0=` RHS Hence proved
29.

Prove that: `cos175^(@)+cos65^(@)+cos55^(@)=0`

Answer» LHS `=cos175^(@)+cos65^(@)+cos55^(@)`
`=2cos120^(@)cos55^(@)+cos55^(@)`
`=2cos(180^(@)-60^(@))cos55^(@)+cos55^(@)`
`=-2cos60^(@)+cos55^(@)`
`=-2(1/2)cos55^(@)+cos55^(@)`
`-cos55^(@)+cos55^(@)=0`
=RHS Hence Proved.
30.

Prove that: `sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)`

Answer» LHS. `=sin(A+2B)sinA-sin(2A+B)sinB`
`=1/2[{cos(A+2B-A)-cos(A+2B+A)}-{cos(2A+B-B)-cos(2A+B+B)}]`
`=1/2[cos2B-cos(2A+2B)-cos2A+cos(2A+2B)]`
`=1/2(cos2B-cos2A)`
and RHS. `=sin(A+B)sin(A-B)`
`=1/2.2sin(A+B)sin(A-B)`
`=1/2[cos{(A+B)-(A-B)}-cos{(A+B)+(A-B)}]`
`1/2(cos2B-cos2A)`
`therefore` L.H.S=R.H.S Hence Proved.
31.

In `DeltaABC`, prove that: `(b-c)/(a)=(tanB/2-tanC/2)/(tanB/2+tanC/2)`

Answer» LHS `=(b-c)/a=(ksinB-ksinC)/(ksinA)`
`=(sinB-sinC)/(sinA)=(2cos(B+C)/(2).sin(B-C)/(2))/(2sinA/2.cosA/2)`
`=(cos(B+C)/(2).sin(B-C)/(2))/(sin(180^(@)-(B+C))/(2).cos(180^(@)-(B+C))/(2))`
`(cos(B+C)/(2).sin(B-C)/(2))/(sin{90^(@)-(B+C)/(2)}.cos{90^(@)-(B+C)/(2)}`
`=(cos(B+C)/(2).sin(B-C)/(2))/(cos(B+C)/(2).sin(B+C)/(2))=(sin(B/2-C/2)/(sin(B/2+C/2)`
`=sinB/2cosC/2-cosB/2sinC/2)/(sinB/2cosC/2+cosB/2sinC/2)`
`=(tanB/2-tanC/2)/(tanB/2+tanC/2)` (Divide `N^(r)` and `D^(r)` by `cosB/2cosC/2`)
=RHS Hence Proved.
32.

If n. `sin(A+2B)=sinA`, then prove that: `tan(A+B)=(1+n)/(1-n).tanB`

Answer» `nsin(A+2B)=sinA`
`rArr n=(sinA)/(sin(A+2B))`
`therefore` RHS `=(1+n)/(1-n).tanB=(1+(sinA)/(sin(A+2B)))/(1-(sinA)/(sin(A+2B))).tanB`
`(sin(A+2B)+sinA)/(sin(A+2B)-sinA).tanB`
`=(2sinA(A+2B+A)/(2)cos(A+2B-A)/(2))/(2cos(A+2B+A)/(2)sin(A+2B-A)/(2)).tanB`
`=(sin(A+B)cosBsinB)/(cos(A+B)sinBcosB)`
`=tan(A+B)`=LHS Hence Proved.
33.

In `DeltaABC`, a=9,b=8 and c=4, prove that: `cosB-2cosC=-4/3`

Answer» `cosB=(c^(2)+a^(2)-b^(2))/(2ca)=(4^(2)+9^(2)-8^(2))/(2 xx 4 xx 9)`
`=(16+81-64)/(72)=33/72`
and `cosC=(a^(2)+b^(2)-c^(2))/(2ab)`
`=(9^(2)+8^(2)-4^(2))/(2 xx 9 xx 8)`
`=(81 +64-16)/(144)=129/144`
Now `cosB-2cosC=33/72-(2 xx 129)/(144)`
`=33/72-129/72=-96/72=-4/3`.
Hence Proved.
34.

In `DeltaABC`, if `(2cosA)/(a)+(cosB)/(b)+(2cosC)/(2)=a/(bc)+b/(ca)`, then `angleA=?`A. `30^(@)`B. `45^(@)`C. `60^(@)`D. `90^(@)`

Answer» Correct Answer - D
35.

Find the value of x: i) `xcot(90^(@)+theta)+tan(90^(@)+theta)sintheta+"cosec"(90^(@)+theta)=0` ii) `"cosec"(90^(@)+theta)+x costhetacot(90^(@)+theta)=sin(90^(@)+theta)`

Answer» i) `x=sintheta`, ii) `x=tantheta`
36.

If in `DeltaABC, a=4,b=6,c=8` then `2cosA+4cosB+cosC=`

Answer» Correct Answer - `17/4`
37.

In `DeltaABC`, prove that: `(a-b)/c=(sin(A-B)/(2))/(cosC/2)`

Answer» LHS `=(a-b)/c`
`=(ksinA-ksinB)/(ksinC)=(sinA-sinB)/(sinC)`
`=(2cos(A+B)/2.sin(A-B)/(2))/(2sinC/2.cosC/2)`
`=(cos(180^(2)-C)/(2)sin(A-B)/2)/(sinC/2cosC/2)` `(therefore A+B+C=180^(@))`
`=(cos(90^(2)-C/2)sin(A-B)/(2))/(sinC/2cosC/2)=(sinC/2.sin(A-B)/(2))/(sinC/2.cosC/2)`
`=(sin(A-B)/(2))/(cosC/2) = RHS` Hence Proved.
38.

Convert the following angles into radians: a) `30^(@)` b) `135^(@)` c) `90^(@)`

Answer» a) `pi/6`, b) `(3i)/(4)`, (c ) `pi/2`, d) `(5pi)/(6)`, e) `(25pi)/72`, f) `(pi)/(32)`
39.

`tantheta-tantheta/2=sectheta/2`

Answer» `theta=2/3(2npi+pi/2), theta=2(2npi-pi/2)`
40.

`2sin^(2)pi/6 +"cosec"(7pi)/(6)cos^(2)pi/3=3/2`

Answer» L.H.S. `2sin^(2)pi/2+"cosec"^(2)(7pi)/(6)cos^(2)pi/3`
`=2(sinpi/6)^(2)+["cosec"(7pi)/(6)cospi/3]^(2)`
`=2(sinpi/6)^(2)+["cosec"(pi+pi/6)cospi/3]^(2)`
`=2(sin180^(@))/(6))^(2) + ["cosec"(180^(@)+180^(@)/6)cos180^(@)/3]^(2)`
`=2(sin 30^(@))^(2) + [-"cosec"30^(@)cos60^(@)]^(2)`
`=2(1/2)^(2) + [-2 xx 1/2]^(2)`
`=1/2 +1=3/2`= RHS Hence proved.
41.

Solve: `tantheta+sectheta=2costheta`

Answer» `theta=npi+(-1)^(n)(-pi/2),theta=npi+(-1)^(n)pi/6`
42.

`sqrt(2)sectheta+tantheta=1`

Answer» `theta=2npi-pi/4`
43.

`tantheta+sectheta=sqrt(3)`

Answer» `theta=2npi+pi/6,theta=2npi-pi/2`
44.

Prove that: `(sec4A-1)/(sec8A-1)=tan2A. cot8A`

Answer» LHS= `(sec4A-1)/(sec8A-1)`
`=(1/(cos4A)-1)/(cos8A)=((1-cos4A)/(cos4A))/((1-cos8A)/(cos8A))`
`(1-cos4A)/(1-cos8A).(cos8A)/(cos4A) (therefore 1-cos2theta=2sin^(2)theta)`
`(2sin^(2)2A)/(2sin^(2)4A).(cos8A)/(cos4A)`
`=(2sin^(2)2A.cos8A)/(sin4A.(2sin4Acos4A))`
`=(2sin^(2)2A.cos8A)/((2sin2Acos2A)sin8A)`
`(sin2A)/(cos2A).(cos8A)/(sin8A)`
`=tan2A.cot8A`
=RHS Hence Proved
45.

Prove that: `(1+sinA-cosA)/(1+sinA+cosA)=tanA/2`

Answer» LHS `=(1+sinA-cosA)/(1+sinA+cosA)=((1-cosA)+sinA)/((1+cosA)+sinA)`
`=(2sin^(2)A/2+2sinA/2cosA/2)/(2cos^(2)A/2+2sinA/2cosA/2)`
`=(sinA/2(sinA/2cosA/2))/(cosA/2(cosA/2+sinA/2))`
`=(sinA/2)/(cosA/2)=tanA/2`= RHS Hence proved.
46.

`cot^(2)pi/6+"cosec"(5pi)/(6) + 3tan^(2)pi/6=6`

Answer» LHS `=cot^(2)pi/6 + "cosec"(5pi)/(6)+3tan^(2)pi/6`
`=cot^(2)pi/6+"cosec"(pi/6)+3(tanpi/6)^(2)`
`=(cot30^(@))^(2) + ("cosec"30^(@))+3(tan 30^(@))^(2)`
`=(sqrt(3))^(2)+2+3(1/sqrt(3))^(2)=3+2+1=6`
RHS Hence Proved.
47.

Solve: `tan^(3)theta-3tantheta=0`

Answer» `tan^(3)theta-3tantheta=0`
`rArr tantheta(tan^(2)theta-3)=0`
`rArr tantheta=0`
or `tan^(2)theta-3=0`
if `tantheta=0`, then `theta=npi`.
If `tan^(2)theta-3=0`, then
`tan^(2)theta=3`
`=(sqrt(3))^(2)=tan^(2)pi/3`
`rArr theta=npi+-pi/3`. Ans.
48.

Solve: `sectheta-1=(sqrt(2)-1)tantheta`

Answer» `sectheta-1=(sqrt(2)-1)tantheta`
`rArr (sectheta-1)^(2)=(sqrt(2)-1)^(2).tan^(2)theta`
`=(2+1-2sqrt(2))(sec^(2)theta-1)`
`=(3-2sqrt(2))(sec^(2)theta-1)`
`rArr (sectheta-1)^(2)=3-2sqrt(2))(sectheta-1)(sectheta+1)`
`rArr (3-2sqrt(2)(sectheta-1)(sectheta+1)-(sectheta-1)^(2)=0`
`rArr (sectheta-1)[(3-2sqrt(2))(sectheta+1)-(sectheta-1)]=0`
`rArr (sectheta-1)[(2-2sqrt(2))sectheta+(4-2sqrt(2))]=0`
`rArr (sectheta-1)[(2-2sqrt(2))sectheta-sqrt(2)(-2sqrt(2)+2)]=0`
`rArr (sectheta-1)(2-sqrt(2))(sectheta-sqrt(2))=0`
`rArr sectheta-1=0` or `sectheta-sqrt(2)=0`
Now `sectheta-1=0`
`rArr sectheta=1`
`rArr costheta=1`
`rArr costheta=cos0^(@)`
`rArr theta=2npi+-0=2npi` Ans.
and `sectheta-sqrt(2)=0`
`rArr sectheta=sqrt(2)`
`rArr costheta=1/sqrt(2)`
`rArr costheta=cosi/4`
`rArr theta=2npi+-pi/4`
But the given equation is not satisfied by `theta=2npi-pi/4`, so
`theta=2npi+pi/4`. Ans.
49.

Maximum value of `(3sintheta+4costheta)` is:

Answer» Correct Answer - b
50.

Maximum value of `(3sintheta+4costheta)` is:A. 5B. `-5`C. 1D. None of these

Answer» Correct Answer - A