Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

`( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x`

Answer» LHS `=(cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)`
`=(cos3x+(cos4x+cos2x))/(sin3x+(sin4x+sin2x))`
`=(cos3x+2cos(4x+2x)/(2)cos(4x-2x)/(2))/(sin3x+2sin(4x+2x)/(2)cos(4x-2x)/(2))`
`(cos3x+2cos3xcosx)/(sin3x+2sin3xcosx) = (cos3x(1+2cosx))/(sin3x(1+2cosx))`
`(cos3x)/(sin3x) = cot3x` = RHS. Hence Proved.
102.

`tanx=sqrt(3)`

Answer» `therefore tanx=sqrt(3)=tan60^(@)=tanpi/3`
`therefore x=pi/3`
Again, `tanx=sqrt(3)=tan(pi+pi/3)=tan(4pi)/(3)`
`x=(4pi)/(3)`
Therefore, for the equation `tanx=sqrt(3)`, principal solution is `x=pi/3` or `(4pi)/(3)`.
and general solutions is `x=npi+pi/3, n in Z` Ans.
103.

`cot4x(sin5x+sin3x)= cotx(sin5x-sin3x)`

Answer» LHS `=cot4x(sin5x+sin3x)`
`=(cos4x)/(sin4x)[2.sin(5x+3x)/(2) cos(5x-3x)/(2)]`
`=(cos4x)/(sin4x).2sin4x.cosx.=2cos4x.cosx`
`therefore cot4x(sin5x+sin3x)=2cos4xcosx`………………..(1)
`=(cosx)/(sinx)(2.cos(5x+3x)/(2)sin(5x-3x)(2))`
`=(cosx)/(sinx). 2cos4x.sinx=2cos4xcosx`
`therefore cotx(sinx-sin3x)=2cos4xcosx`............(2)
From equations, (1) and (2),
`cot4x(sin5x+sin3x)=cotx(sin5x-sin3x)`
LHS =RHS Hence proved.
104.

Prove that: `s in" "x" "+" "s in" "3x" "+" "s in" "5x" "+" "s in" "7x" "=" "4" "cos" "x" "cos" "2x" "s in" "4x`

Answer» LHS `=sinx+sin3x+sin5x+sin7x = (sin7x+sin5x)+(sin5x+sin3x)`
`=2sin(7x+x)/(2)cos(7x-x)/(2) + 2sin(5x+3x)/(2)cos(5x-3x)/(2)`
`=2sin4xcos3x+2sin4xcosx`
`=2sin4x(cos3x+cosx)`
`=2sin4x[2cos(3x+x)(2)cos(3x-x)/(2)]`
`=2sin4x[2cos2xcosx]`
`=4cosxcos2xsin4x`= RHS Hence Proved.
105.

Solve the equation `4cos^(2)theta+sqrt(3)=2(sqrt(3)+1)costheta`.

Answer» `4cos^(2)theta+sqrt(3)=2(sqrt(3)+1)costheta`
`rArr 4cos^(2)theta+sqrt(3)=2sqrt(3)costheta+2costheta`
`rArr 4cos^(2)theta-2costheta-2sqrt(3)costheta-2sqrt(3)costheta+sqrt(3)=0`
`rArr 2costheta(2costheta-1)-sqrt(3)(2costheta-1)=0`
`rArr (2costheta-1)(2costheta-sqrt(3))=0`
Now `2costheta-1=0`
`rArr costheta=1/2=cospi/3`
`rArr theta=2npi+-pi/3`. Ans.
and `2costheta-sqrt(3)=0`
`rArr costheta=sqrt(3)/2=cospi/6`
`rArr theta=2npi+-pi/6`.
106.

`sin2x+cosx=0`

Answer» Given equation:
`sin2x+cosx=0`,
or `2sinxcosx+cosx=0`,
or `cosx(2sinx+1)=0`
`rArr cosx=0` or `2sinx+1=0`
If `cosx=0` then `x=(2n+1)pi/2`, where `n in z`, and `2sinx+1=0, rArr sinx=-1/2=sin(pi+pi/6)`
`rArr sinx=sin(pi + pi/6)`
`rArr sinx=sin(7pi)/(6)`
`rArr x=npi+(-1)^(n)(7pi)/(6)`, where `n in Z`
Therefore, the general solution of given equation is
`x=npi+(-1)^(n)(7pi)/(6)` or `(2n+1)pi/2, n in Z` Ans.
107.

`(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)`

Answer» LHS, `therefore tan(pi/4+x) = (tanpi/4+tanx)/(1-tanpi/4.tanx)`
`therefore tan(pi/4+x) = (1+tanx)/(1-tanx)`………….(1)
Similarly, `tan(pi/4-x) = (1-tanx)/(1+tanx)`………..(2)
Divide equation (1) by equation (2),
`therefore (tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))/((1-tanx)/(1+tanx))`
`=(1+tanx)/(1-tanx) xx (1+tanx)/(1-tanx)`
`=(1+tanx)/(1-tanx)^(2)`= RHS Hence Proved.
108.

`sin2x+2sin4x+sin6x= 4cos^(2)xsin4x`

Answer» LHS `=sin2x+2sin4x+sin6x`
`=sin4x+[2sin(6x+2x)/(2)cos(6x-2x)/(2)]`
`=2sin4x+2sin4xcos2x=2sin4x[1+cos2x]`
`=2sin4x[1+2cos^(2)x-1]=2sin4x.2cos^(2)x`
`=4cos^(2)x.sin4x`=RHS Hence Proved.
109.

`sin^(2)6x-sin^(2)4x=sin2xsin10x`

Answer» LHS `=sin^(2)6x-sin^(2)4x`
`=1/2[2sin^(2)6x-2sin^(2)4x]`
`=1/2[(1-cos12x)=(1-cos8x)]`
`[therefore 2sin^(2)nx=(1-cos2nx)]`
`=1/2[cos8x-cos12x]`
`1/2[2sin(8x+12x)/(2) sin(12x-8x)/(2)]`
`=sin10xsin2x=sin2xsin10x` =R.H.S.
Hence Proved.
110.

`(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x`

Answer» LHS.
`=(cos(pi+x).cos(-x))/(sin(pi-x).cos(pi/2+x)) = (-cos x.cos x)/(sinx.(-sinx))`
`=(-cos^(2)x)/(-sin^(2)x)=cot^(2)x`= RHS Hence Proved.
111.

Prove that:`cos^2 2x-cos^2 6x=sin4xsin8x`

Answer» LHS `=cos^(2)2x-cos^(2)6x`
`=1/2[2cos^(2)2x-2cos^(2)6x]`
`=1/2[cos4x-cos12x]`
`=1/2[2sin(4x+12x)/(2)sin(12x-4x)/(2)]`
`=sin8xsin4x=sin4xsin8x` = R.H.S. Hence Proved.
112.

`cos((3pi)/(2) +x) cos(2pi+x)[cot(3pi)/(2)-x+cot(2pi+x)]=1`

Answer» LHS `=cos((3pi)/(2)+x)cos(2pi+x)[(cos(3pi)/(2)-x)+cot(2pi+x)]`
`=sinx.cosx[tanx+cotx]`
`sinx.cosx[(sinx)/(cosx)+(cosx)/(sinx)]`
`=sin^(2)x+cos^(2)x=1`= R.H.S Hence Proved.
113.

`cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx`

Answer» LHS `=cos((3pi)/(4)+x)-cos((3pi)/(4)-x)`
`=1/2[2sin^(2)6x-2sin^(2)4x]`
`[therefore 2sin^(2)nx=(1-cos2nx)]`
`=1/2[cos8x-cos12x]`
`=1/2[cos8x-cos12x)]`
`1/2[2sin(8x+12x)/(2)sin(12x-8x)/(2)]`
`=sin10xsin2x=sin2xsin10x`= RHS
114.

`sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx`

Answer» LHS `=cos(n+1)xcos(n+2)x+sin(n+1)xsin(n+2)x`
`=cos{(n+1)x-(n+2)x}`
`=cos(-x)=cosx` = R.H.S. Hence Proved.
115.

`cos3thetacos5theta-cos7thetacos9theta=0`

Answer» `theta=(npi)/(12), theta=(npi)/(4)`
116.

Find the area of `DeltaABC`, if a=10, `b=7sqrt(2)`m and `sqrt( c)=45^(@)`

Answer» `Delta=1/2absinC`
`=1/2 xx 10 xx 7sqrt(2) xx sin45^(@)`
`=5 xx 7sqrt(2) xx 1/sqrt(2)`
=35 sq. metre. Ans.
117.

Prove that: `sin(45^(@)-A)=1/2cos2A`

Answer» LHS `=sin(45^(@)+A).sin(45^(@)-A)`
`=1/2[2sin(45^(@)+A).sin(45^(@)-A)]`
`=1/2[cos(45^(@)+A)-(45^(@)-A)-cos(45^(@)+A)+(45^(@)-A)]`
`=1/2[cos2A-cos90^(@)]`
`=1/2(cos2A=0)`
`=1/2cos2A`= RHS Hence proved.
118.

If a=5, b=12 and c=13, find tanA.

Answer» Correct Answer - `5/12`
119.

Prove that: `cotAcot2A-cot2Acot3A-cot3AcotA=1`

Answer» `3A=2A+A`
`rArr cot3A=cot(2A+A)`
`rArr cot3A=(cot2AcotA-1)/(cotA+cot2A)`
`rArr cot3A cotA+cot2Acot3A=cotAcot2A-1`
`rArr 1= cotAcot2A-cot2Acot3A-cot3AcotA` Hence Proved.
120.

Prove that: `cot2A + tanA= cotA - cot 2A`

Answer» LHS `=cot2A+tanA`
`=(cos2A)(sin2A)+(sinA)/(cosA)`
`=(cos2AcosA+sin2AsinA)/(sin2AcosA)`
`(cos(2A-A))/(sin2AcosA)=(sin(2A-A))/(sin2AsinA)`
`=(sin2AcosA-cos2AsinA)/(sin2AsinA)`
`=(sin2AcosA)/(sin2AsinA)-(cos2AsinA)/(sin2AsinA)`
`=cotA-cot2A`= RHS Hence Proved.
121.

If `tanA=m/(m-1)` and `tan(B)=n`, find the values of `tan 2A` and `tan 2B`.

Answer» `tan2A=(m+n)/(1-mn)`, `tan2B=(m-n)/(1+mn)`
122.

In `DeltaABC, a=17,b=8,c=15`, find `sinB/2`.

Answer» Correct Answer - `1/sqrt(2)`
123.

Solve: `tan2thetacottheta=1`

Answer» Correct Answer - `theta=npi`
124.

In `DeltaABC`, a =125, b=62 and c=123, find the value of sinB.

Answer» a=125, b=62, c=123
`therefore 2s=a+b+c`
`=125+62+123`
`=310`
`rArr s=155`
Now `sinB/2=sqrt((s-a)(s-c))/(ac)`
`=sqrt((155-125)(155-123))/(125 xx 123)`
`=sqrt(30 xx 32)/(123 xx 123)`
and `cosB/2=sqrt(s(s-b))/(ac)= sqrt(155 xx (155-62))/(125 xx 123)`
`=sqrt((155 xx 93)/(125 xx 123))`
and `cosB/2=sqrt((s(s-b))/(ac)) = sqrt((155 xx(155-62))/(125 xx 123)`
`=sqrt((155 xx 93))/(125 xx 123)`
`therefore sinB=2sinB/2 cosB/2`
`=2sqrt((30 xx 32)/(125 xx 123) xx (155 xx 93)/(125 xx 123))`
`(2 xx 3720)/(125 xx 23) = 496/1025`
125.

Solve: `cot2theta=tantheta`

Answer» `theta=1/3(npi+pi2)`
126.

In `DeltaABC`, prove that: `cot A/2+cot B/2+cot C/2=((a+b+c)^(2))/(4Delta)`

Answer» LHS `=cotA/2+cotB/2+cotC/2`
`=sqrt((s(s-a))/((s-b)(s-c))+sqrt((s(s-b))/((s-a)(s-c)) + sqrt((s(s-c))/((s-a)(s-b))`
`=(sqrt(s)[(s-a)+(s-b)+(s-c)])/(sqrt((s-a)(s-b)(s-c)))`
`(sqrt(s)[(s-a)+(s-b)+(s-c)])/(sqrt((s-a)(s-b)(s-c)))`
`(sqrt(s).sqrt(s)[3s-(a+b+c)])/(sqrt(s)(s-a)(s-b)(s-c))`
`(s.(3s-2s))/(Delta)=s^(2)/Delta=(4s^(2))/(4Delta)`
`=(2s)^(2)/(4Delta)=(a+b+c)^(2)/(4Delta)`= RHS Hence Proved.
127.

If `secA=-2` and A lies in third quadrant, find the value of `(4 cot^(2)A-3sin^(2)A)`.

Answer» Correct Answer - `-11/12`
128.

In `DeltaABC`, prove that: `asinA-bsinB=csin(A-B`

Answer» Correct Answer - `7/25`
129.

`sintheta+sin7theta=sin4theta`

Answer» `theta=(npi).(4), theta=1/3(2npi+-pi/3)`
130.

In `DeltaABC`, a=16, b=12 and `angleB=30^(@)`, find sinA.

Answer» From sine rule
`a/(sinA)=b/(sinB)`
`rArr sinA=(asinB)/(b) = (16 sin30^(@))/(12)`
`=(16 xx 1)/(12 xx 2)=2/3`. Ans.
131.

In `DeltaABC`, a=4, b=6 and `angleB=30^(@)`, evaluate sinA.

Answer» Correct Answer - `1/3`
132.

`cosec (-1410^@)`

Answer» `cosec "(-1410^(@))`
`=-"cosec"1410^(@)`
`=-"cosec"(3 xx 360^(@) +330^(@))`
`=-"cosec"330^(@)`
`="cosec"(360^(@)-30^(@))`
`=-"cosec"30^(@)`
=2 Ans.
133.

If `sinA=-3/5` and A lies in third quadrant, find the remaining trignometric ratios.

Answer» `cosA=-4/5, tanA=3/4, "cosec"A=-5/3, secA=-5/4, cotA=4/3`
134.

Evaluate: `"cosec"(-1410)^(@)`

Answer» `=-"cosec"1410^(@)`
`=-"cosec"(3 xx 360^(@) + 330^(@))`
`=-"cosec"330^(@)`
`=-"cosec"(360^(@)-30^(@))`
`="cosec"30^(@)=2` Ans.
135.

Find the values of the following : i) `tan (19pi)/3` ii) `sec(-22pi)/3`

Answer» i) `tan(19pi)/3= tan(19 xx 180^(@))/(3)`
`=tan(1140^(@))`
`=tan(3 xx 360^(@) +60^(@))`
`=tan60^(@)=sqrt(3)`
ii) `sec(-22pi)/(3)=sec(22pi)/(3)=sec(22 xx 180^(@))/(3)`
`=sec1320^(@)`
`=sec(3 xx 360^(@) + 240^(@))`
`=sec240^(@)=sec(180^(@)+60^(@))`
`=-sec60^(@)=-2` Ans.
136.

`cosx=-1/3`, x in quadrant III. Find the values of other five trignometric functions

Answer» `therefore cosx=-1/3`
`therefore 2cos^(2)x/2-1=-1/3`
or `2cos^(2)x/2=1-1/3=2/3`,
or `cos^(2)x/2=1/3`
or `cosx/2=+-1/sqrt(3)=+-sqrt(3)/3`
Again, `cosx=-1/3`
`rArr 1-2sin^(2)x/2=-1/3` or `2sin^(2)x/2=1+1/3=4/3`
or `sin^(2)x/2=2/3`,
or `sinx/2=+sqrt(2)/(3)`,
or `sinx/2=+-sqrt(6)/3`
`therefore` x lies in III quadrant.
`rArr` The value of x will be lie between `pi` and `(3pi)/(2)`
i.e., `pi lt x lt (3pi)/(2)`
Then the value of `x/2` will lie between `pi/2` and `(3pi)/(4)` i.e., `pi/2 lt x/2 lt (3pi)/(4)`
Then `x/2`, lies in 2nd quadrant in which `sinx/2` is positive while `cosx/2` and `tanx/2` are negative.
`therefore sinx/2=sqrt(6)/(3)`, then `cosx/2=-sqrt(3)/3`
and `tanx/2=(sqrt(6)//3)/(-sqrt(3)//3)=-sqrt(2)`
Therefore, `sinx/2=sqrt(6)/(3), cosx/2=-sqrt(3)/3` and `tanx/2=-sqrt(2)`
137.

If `sinA+cosA=0` and A lies in 4th quadrant, find the values of `sinA` and `cosA.`

Answer» `sinA+cosA=0`
`rArr sinA=-cosA`
`rArr (sinA)/(cosA)=-1`
`rArr sec^(2)A=1+tan^(2)A`
`=1+(-1)^(2)=2`
secA`=sqrt(2)`,
(sec is positive in 4th quadrant)
`rArr cosA=1/(secA)=1/sqrt(12)` Ans.
`rArr cosA=1/(secA)=1/sqrt(2)`.
and `sinA=(sinA)/(cosA). cosA=tanA.cosA`
`=(-1).1/sqrt(2)=-1/sqrt(2)` Ans. and sinA`=(sinA)/(cosA).cosA=tanA. cosA`
138.

If `"cosec"A=5/4` and A lies in first quadrant, find the remaining trignometric ratios.

Answer» `sinA=4/5, cosA=3/5, tanA=4/3, secA=5/3, cotA=3/4`
139.

Find `sin``x/2``,cos``x/2`and `tan``x/2`of the following : `tanx=-4/3,x`in quadrant II

Answer» `therefore tanx=-4/3`
`therefore (2tanx/2)/(1-tan^(2)x/2)=-4/3`
or `-4+4tan^(2)x/2=6tanx/2`
or `2tan^(2)x/2-3tanx/2-2=0`
or `2tanx/2(tanx/2-2)+1(tanx/2-2)=0`
then `(2tanx/2+1=0)` or `(tanx/2-2)=0`
If `2tanx/2+1=0`, then `tanx/2=-1/2`,
and if `tanx/2-1=0`, then `tanx/2=2`
But x lies in second quadrant from which sin x positive, so the value `-1/2` of `tanx/2` is not acceptable.
Then `tanx/2=2`
So, `cosx=(1-tan^(2)x/2)/(1+tan^(2)x/2) = (1-(2)^(2))/(1+(2)^(2))=-3/5`
`therefore cosx=-3/5`
`rArr 1-2sin^(2)x/2 = -3/5` or `2cos^(2)x/2-1=-3/5`
If `1-2sin^(2)x/2=-3/5`
`2sin^(2)x/2=1+3/5=8/5` or `sin^(2)x/2=4/5`
or `sinx/2=2/sqrt(5)`
If `2cos^(2)x/2-1=-3/5`
then `2cos^(2)x/2-1=-3/5`
then `2cos^(2)x/2=1-3/5=2/5` or `cos^(2)x/2=1/5`
or `cosx/2=1/sqrt(5)`
Therefore, `sinx/2=2/sqrt(5), cosx/2=1/5`
and `tanx/2=2` Ans.
140.

Find the value of other five trigonometric function `tanx=-5/(12)`, x lies in second quadrant.

Answer» Given, that `tanx=-5/12`, and x lies in second quadrant.
`therefore tanx=-5/12 rArr cotx=1/(tanx)`
`rArr cotx=1/(-5/12) = 1 xx -12/5 = -12/5`
`(therefore` x lies in second quadrant, therefore, sin and "cosec" ratio willl be positive and the remaining ratio tan, cot and sec will be negative.) then `sec^(2)x=-13/12`
`therefore cos=1/(secx)`
`rArr cosx=1/(-13/12) = 1 xx (-12/13)`
`rArr cosx=-12/13`
`therefore "cosec"^(2)x=cot^(2)x`
`therefore "cosec"^(2)x=1+(-12/5)^(2)= 1+144/25=169/25=(13/5)^(2)`
`rArr "cosec"x=13/5`
`therefore sinx=1/("cosec"x) rArr sinx=1/(13/5) = 1 xx 5/13`
`therefore sinx=5/13`
Therefore, `sinx=5/13`, `"cosec"x=13/5, cosx=-12/13`
`cotx=-12/5, secx=-13/12`. Ans.
141.

Find the value of other five trigonometric function `sinx=3/5`, x lies in second quadrant.

Answer» Correct Answer - c
Given that `sinx=3/5` and x lies in second quadrant.
`sinx=3/5`
`therefore "cosec"x = 1/(sinx) = 1/(3//5)=1 xx 5/3=5/3`
`therefore "cosec"x=5/3`.
`(therefore` x lies in second quadrant, so sin ratio will be positive and the remaining ratio tan, cot, cos and sec will be negative).
`therefore sin^(2)x+cos^(2)=1 rArr (3/5)^(2) + cos^(2)x=1`
`rArr 9/25 + cos^(2)x=1`
`cos^(2)x=1-9/25 rArr cos^(2)x=16/25`
`rArr cosx =+-4/5`
`therefore secx=1/(cosx)`
`rArr tanx=(sinx)/(cosx) = (3//5)/(-4//5) = 3/5 xx (-5/4) = -3/4`
`therefore cotx=(cosx)/(sinx)`
`therefore cotx = (-4//5)/(3//5) = -4/5 xx 5/3 =-4/3`
Therefore, `"cosec"x=5/3, cosx=-4/5`,
`secx=-5/4, tanx=-3/4`
and `cotx=-4/3` Ans.
142.

Find the value of other five trigonometric function `secx=(13)/5`, x lies in fourth quadrant.

Answer» Given that `secx=13/5` and x lies in fourth quadrant.
`therefore secx=13/5` and x lies n fourth quadrant.
`therefore secx=13/5` and `cosx=1/(secx) rArr cosx=5/13`
`(therefore` x lies in fourth quadrant, therefore sec and cos ratio will be positive and remaining all ratio will be negative.)
`therefore sin^(2)x+cos^(2)=1`
`therefore sin^(2)x+(5/13)^(2)=1 rArr sin^(2)x=1-25/169 = 144/169`
`rArr sinx=-12/13`
`therefore "cosec"x=-1/(sinx)`
`rArr "cosec"x=1/(-12//13) = 1 xx (-13/12) = -13/12`
`therefore tanx=(sinx)/(cosx) = (-12//13)/(5//13) = -12/5`
`therefore cotx=1/(tanx) rArr cotx=1/(-12//5)`
`cotx=-5/12` Ans.
Therefore, `cosx=5/13, sinx=-12/13, "cosec "x=-13/12`,
`tanx=-12/5, cotx=-5/12` Ans.
143.

In a triangle `A B C ,/_C=60^0,`then prove that: `1/(a+c)+1/(b+c)=3/(a+b+c)dot`

Answer» Let `1/(a+b)+1/(b+c)=3/(a+b+c)`
`rArr (b+c+a+b)/((a+b)(b+c))=3/(a+b+c)`
`rArr (a+2b+c)(a+b+c)=3(a+b)(b+c)`
`rArr a^(2)+2b^(2)+c^(2)+3ab+3bc+2ac = 3ab + 3b^(2)+3ac+3bc`
`rArr a^(2)+c^(2)-b^(2)=ac`
`rArr (a^(2)+c^(2)-b^(2))/(2ac)=1/2`
`rArr cosB=cos60^(@)`
`rArr B=60^(2)`
`therefore` In `DeltaABC, angleB=60^(@)`
`rArr 1/(a+b)+1/(b+c)=3/(a+b+c)`. Hence Proved.
144.

Convert `60^(@)` angle into radian.

Answer» `60^(@) = 60 xx pi/180` radian
`=pi/3` radian.
145.

Convert 11 radian into degree.

Answer» 11 radian `=(11 xx 180^(@)/pi)^(@)`
`=(11 xx (180 xx 7)/(22))^(@)`
`=630^(@)`
146.

Prove that: `cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)`

Answer» LHS `=cos^(2)48^(@)-sin^(2)12^(@)`
`=cos(48^(@)+12^(@))cos(48^(@)-12^(@))`
`=cos60^(@)cos36^(@)`
`=1/2 xx (sqrt(5)+1)/(8)=`RHS Hence Proved.
147.

Prove that: `sin12^(@)sin48^(@)sin54^(@)=1/8`

Answer» LHS `=sin12^(@)sin48^(@)sin54^(@)`
`=1/2.(2sin48^(@)sin12^(@)).sin(90^(@)-36^(@))`
`=1/2[cos(48^(@)-12^(@))-cos(48^(@)+12^(@))].cos36^(@)`
`=1/2[cos(48^(@)-12^(@))-cos(48^(@)+12^(@))].cos36^(@)`
`=1/2[cos36^(@)-cos60^(@)].cos36^(@)`
`=1/2[(sqrt(5)+1)/(4)-1/2].((sqrt(5)+1)/(3))`
`=1/2(sqrt(5)+1-2)/(4).(sqrt(5)+1)/(4)`
`=((sqrt(5)-1)(sqrt(5)+1))/(32)`
`=(5-1)/(32)=4/(32)=1/8` = RHS Hence Proved.
148.

Prove that: `sin6^(@)sin42^(@)sin66^(@)sin78^(@)=1/16`

Answer» LHS `=sin6^(@)sin42^(@)sin66^(@)sin78^(@)`
`=1/4(2sin66^(@)sin6^(@)).(2sin78^(@)sin42^(@))`
`=1/4[cos(66^(@)-6^(@))-cos(66^(@)+6^(@))] [cos(78^(@)-42^(@))-cos(78^(@)+42^(@))]`
`=1/4[cos60^(@)-cos72^(@)][cos36^(@)-cos120^(@)]`
`=1/4[1/2-cos(90^(@)-18^(@))][cos36^(@)-cos(90^(@)+30^(@))]`
`=1/4[1/2-sin18^(@)][cos36^(@)+sin30^(@)]`
`=1/4[1/2-(sqrt(5)-1)/(4)][(sqrt(5)+1)/(4)+1/2]`
`=1/4[(2-sqrt(5)+1)/(4)][(sqrt(5)+1+2)/(4)]`
`=3-sqrt(5)(3+sqrt(5))/(64)=(9-5)/(64)`
`=4/64=1/16`= RHS Hence Proved.
149.

In `DeltaABC`, prove that: `sin2A+sin2B+sin2C=4sinAsinBsinC`

Answer» LHS=`sin2A+sin2B+sin2C`
`=2sin(180^(@)-C)cos(A-B)+2sinC).cos{180^(@)-A(A+B)}(therefore A+B+C-180^(@))`
`=2sinC.cos(A-B)-2sinC.cos(A+B)`
`=2sinc[cos(A-B)-cos(A+B)]`
`=2sinC.2sinAsinB`
`=4sinAsinBsinC`=RHS Hence Proved.
150.

If `tanA=xtanB`, prove that: `(x+1)sin(A-B)=(x-1)sin(A+B)`

Answer» `tanA= xtanB`
`rArr x=(tanA)/(tanB)=((sinA)/(cosA))/((sinB)/(cosB))=(sinAcosB)/(sinBcosB)`
Now `(x+1)/(x-1)=((sinAcosB)/(sinBcosA)+1)/((sinAcosB)/(sinBcosA)-1)`
`=(sinAcosB+sinBcosA)/(sinAcosB-sinBcosA)`
`=(sin(A+B))(sin(A-B))`
`rArr (x+1)sin(A-B)=(x-1)sin(A+B)` Hence Proved.