Explore topic-wise InterviewSolutions in Current Affairs.

This section includes 7 InterviewSolutions, each offering curated multiple-choice questions to sharpen your Current Affairs knowledge and support exam preparation. Choose a topic below to get started.

1.

Simplify:(i) (x – y) (x + y) (x2 + y2) (x4 + y4)(ii) (2x – 1) (2x + 1) (4x2 + 1) (16x4 + 1)

Answer»

(i) (x – y) (x + y) (x2 + y2) (x4 + y4)

= (x2 – y2) (x2 + y2) (x4 + y4)

= [(x2)2 – (y2)2] (x4 + y4)

= (x4 – y4) (x4 – y4)

= [(x4)2 – (y4)2]

= x8 – y8

(ii) (2x – 1) (2x + 1) (4x2 + 1) (16x4 + 1)

= [(2x)2 – (1)2] (4x2 + 1) (16x4 + 1)

= (4x2 – 1) (4x2 + 1) (16x4 + 1) 1

= [(4x2)2 – (1)2] (16x4 + 1) 1

= (16x4 – 1) (16x4 + 1) 1

= [(16x4)2 – (1)2] 1

= 256x8 – 1

2.

Simplify:(m2 – n2m)2 + 2m3n2

Answer»

 (m2 – n2m)2 + 2m3n2

= (m2)2 – 2 (m2) (n2) (m) + (n2m)2 + 2m3n2

= m4 – 2m3n2 + (n2m)2 + 2m3n2

= m4+ n4m2 – 2m3n2 + 2m3n2

= m4+ m2n4

3.

Subtract the sum of 3l – 4m – 7n2 and 2l + 3m – 4n2 from the sum of 9l + 2m – 3n2 and -3l + m + 4n2….

Answer»

Sum of 3l – 4m – 7n2 and 2l + 5m – 4n2

= 3l – 4m – 7n2 + 2l + 3m – 4n2

= 3l + 2l – 4m + 3m – 7n2 – 4n2

= 5l – m – 11n2 ……………………..equation (1)

Sum of 9l + 2m – 3n2 and -3l + m + 4n2

= 9l + 2m – 3n2 + (-3l + m + 4n2)

= 9l – 3l + 2m + m – 3n2 + 4n2

= 6l + 3m + n2 ……………………….equation (2)

Let us subtract equation (i) from (ii), we get

= 6l + 3m + n2 – (5l – m – 11n2)

= 6l – 5l + 3m + m + n2 + 11n2

= l + 4m + 12n2

4.

Find the following products:(i)  2a3 (3a + 5b)(ii) -11a (3a + 2b)(iii) -5a (7a – 2b)(iv) -11y2 (3y + 7)

Answer»

(i) 2a3 (3a + 5b)

= 2a3 (3a + 5b)

= (2a3 × 3a) + (2a3 × 5b)

= 6a4 + 10a3b

(ii) -11a (3a + 2b)

= -11a (3a + 2b)

= (-11a × 3a) + (-11a × 2b)

= -33a2 – 22ab

(iii) -5a (7a – 2b)

= -5a (7a – 2b)

= (-5a × 7a) – (-5a × 2b)

= -35a2 + 10ab

(iv) -11y2 (3y + 7)

= -11y2 (3y + 7)

= (-11y2 × 3y) + (-11y2 × 7)

= -33y3 – 77y2

5.

Evaluate each of the following when x = 2, y = -1. (3/5x2y) × (-15/4xy2) × (7/9x2y2)

Answer»

Let us simplify the given expression

= 3/5 × -15/4 × 7/9 × x2 × x × x2 × y × y2 × y2

= -7/4 × x2+1+2 × y1+2+2

= 7/4x5y5

Now let us substitute when, x = 2 and y = -1

For -7/4x5y5

= -7/4 × (2)5 (-1)5

= -7/4 × 32 × -1

= 56

6.

 Find the product of the following binomials:(i) (2x + y) (2x + y)(ii) (a + 2b) (a – 2b)(iii) (a2 + bc) (a2 – bc)

Answer»

(i) (2x + y) (2x + y)

= 2x(2x + y) + y(2x + y)

= 4x2 + 2xy + 2xy + y2

= 4x2 + 4xy + y2

(ii) (a + 2b) (a – 2b)

= a(a – 2b) + 2b (a – 2b)

= a2 – 2ab + 2ab – 4b2

= a2 – 4b2

(iii) (a2 + bc) (a2 – bc)

= a2 (a2 – bc) + bc (a2 – bc)

= a4 – a2bc + bca2 – b2c2

= a4 – b2c2

7.

Find the following products: 4/3a (a2 + b2 – 3c2)

Answer»

Given,

 4/3a (a2 + b2 – 3c2)

= 4/3a (a2 + b2 – 3c2)

= (4/3a × a2) + (4/3a × b2) – (4/3a × 3c2)

= 4/3a3 + 4/3ab2 – 4ac2

8.

Find the product of the binomials: (x3 + 1/x3) (x3 – 1/x3)

Answer»

Given,

(x3 + 1/x3) (x3 – 1/x3)

= x3 (x3 – 1/x3) + 1/x3 (x3 – 1/x3)

= x6 – 1 + 1 – 1/x6

= x6 – 1/x6

9.

If x + 1/x = 9 find the value of x4 + 1/ x4.

Answer»

We know that x + 1/x = 9

So when squaring both sides, we get

(x + 1/x)2 = (9)2

x2 + 2 × x × 1/x + (1/x)2 = 81

x2 + 2 + 1/x2 = 81

x2 + 1/x2 = 81 – 2

x2 + 1/x2 = 79

Now again when we square on both sides we get,

(x2 + 1/x2)2 = (79)2

x4 + 2 × x2 × 1/x2 + (1/x2)2 = 6241

x4 + 2 + 1/x4 = 6241

x4 + 1/x4 = 6241- 2

x4 + 1/x4 = 6239

∴ x4 – 1/x4 = 6239

10.

Find the product of the binomials:(x4 + 2/x2) (x4 – 2/x2) 

Answer»

Given,

(x4 + 2/x2) (x4 – 2/x2)

= x4 (x4 – 2/x2) + 2/x2 (x4 – 2/x2)

= x8 – 2x2 + 2x2 – 4/x4

= (x8 – 4/x4)

11.

 Find the product 24x2 (1-2x) and evaluate its value for x = 3

Answer»

Let we solve,

= 24x2 (1 – 2x)

= (24x2× 1) – (24x2× 2x)

= 24x2 – 48x3

Now let us evaluate the expression when x = 3

= 24x2 – 48x3

= 24 × (3)2 – 48 × (3)3

= 24 × (9) – 48 × (27)

= 216 – 1296

= -1080

12.

 Find the product of the following binomials:(i) (4x/5 – 3y/4) (4x/5 + 3y/4)(ii) (2x + 3/y) (2x – 3/y)(iii) (2a3 + b3) (2a3 – b3) 

Answer»

(i) (4x/5 – 3y/4) (4x/5 + 3y/4)

= 4x/5 (4x/5 + 3y/4) – 3y/4 (4x/5 + 3y/4)

= 16/25x2 + 12/20yx – 12/20xy – 9y2/16

= 16/25x2 – 9/16y2

(ii) (2x + 3/y) (2x – 3/y)

= 2x (2x – 3/y) + 3/y (2x – 3/y)

= 4x2 – 6x/y + 6x/y – 9/y2

= 4x2 – 9/y2

(iii) (2a3 + b3) (2a3 – b3)

= 2a3 (2a3 – b3) + b3 (2a3 – b3)

= 4a6 – 2a3b3 + 2a3b3 – b6

= 4a6 – b6

13.

Evaluate the following:994 × 1006

Answer»

Given,

 994 × 1006

We can express 994 as 1000 – 6 and 1006 as 1000 + 6

= 994 × 1006 

= (1000 – 6) (1000 + 6)

= 1000 (1000 + 6) – 6 (1000 + 6)

= 1000000 + 6000 – 6000 – 36

= 999964

14.

If x + 1/x = 12 find the value of x – 1/x.

Answer»

We know that x + 1/x = 12

So when squaring both sides, we get

(x + 1/x)2 = (12)2

x2 + 2 × x × 1/x + (1/x)2 = 144

x2 + 2 + 1/x2 = 144

x2 + 1/x2 = 144 – 2

x2 + 1/x2 = 142

When subtracting 2 from both sides, we get

x2 + 1/x2 – 2 × x × 1/x = 142 – 2

(x – 1/x)2 = 140

x – 1/x = √140

15.

If x2 + y2 = 29 and xy = 2, find the value of x + y

Answer»

Given,

x + y

We know that

x2 + y2 = 29

x2 + y2 + 2xy – 2xy = 29

(x + y)2 – 2 (2) = 29

(x + y)2 = 29 + 4

x + y = ± √33

16.

If x2 + y2 = 29 and xy = 2, find the value ofx4 + y4

Answer»

We know that

x2 + y2 = 29

Squaring both sides, we get

(x2 + y2)2 = (29)2

x4 + y4 + 2x2y2 = 841

x4 + y4 + 2 (2)2 = 841

x4 + y4 = 841 – 8

x4 + y4 = 833

17.

 Find the product -3y (xy+y2) and evaluate its value for x = 4 and y = 5

Answer»

Let us we solve,

= -3y (xy+y2)

= (-3y × xy) + (-3y × y2)

= -3xy2 – 3y3

Now let us evaluate the expression when x = 4 and y = 5

= -3xy2 – 3y3

= -3 × (4) × (5)2 – 3 × (5)3

= -300 – 375

= -675

18.

Evaluate the following:(i) 35 × 37(ii) 53 × 55(iii) 103 × 96

Answer»

(i) 35 × 37

We can express 35 as 30 + 5 and 37 as 30 + 7

= 35 × 37 

= (30 + 5) (30 + 7)

= 30 (30 + 7) + 5 (30 + 7)

= 900 + 210 + 150 + 35

= 1295

(ii) 53 × 55

We can express 53 as 50 + 3 and 55 as 50 + 5

= 53 × 55 

= (50 + 3) (50 + 5)

= 50(50 + 5) + 3 (50 + 5)

= 2500 + 250 + 150 + 15

= 2915

(iii) 103 × 96

We can express 103 as 100 + 3 and 96 as 100 – 4

= 103 × 96 

= (100 + 3) (100 – 4)

= 100 (100 – 4) + 3 (100 – 4)

= 10000 – 400 + 300 – 12

= 10000 – 112

= 9888

19.

If \((x^2 + \frac{1}{x^2}) = 51\), find the value of \(x^3 - \frac{1}{x^3}\).

Answer»

We know that: (x – y)2 = x2 + y2 – 2xy 

Replace y with \(\frac{1}{x}\), we get 

\((x - \frac{1}{x})^2\) = x2 + \(\frac{1}{x^2}\) – 2 

Since \((x^2 + \frac{1}{x^2}) = 51\)

\((x - \frac{1}{x})^2\) = 51-2 = 49

\((x - \frac{1}{x})\) = ±7 

Now, Find  \(x^3 - \frac{1}{x^3}\)

We know that, x3 – y3 = (x – y)(x2 + y2 + xy)

Replace y with \(\frac{1}{x}\) , we get 

x3\(\frac{1}{x^3}\) = (x – \(\frac{1}{x}\))(x2 + \(\frac{1}{x^2}\) + 1) 

Use (x – \(\frac{1}{x}\)) = 7 and (x2 + \(\frac{1}{x^2}\)) = 51 

 x3\(\frac{1}{x^3}\) = 7 x 52

x3\(\frac{1}{x^3}\) = 364

20.

If 2x + 3y = 14 and 2x – 3y = 2, find value of xy.

Answer»

We know that the given equations are

2x + 3y = 14… equation (i)

2x – 3y = 2… equation (ii)

Now, let us square both the equations and subtract equation (ii) from equation (i), we get,

(2x + 3y)2 – (2x – 3y)2 = (14)2 – (2)2

4x2 + 9y2 + 12xy – 4x2 – 9y2 + 12xy = 196 – 4

24xy = 192

xy = 8

The value of xy is 8.

21.

If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 27y3.

Answer»

Given: 2x + 3y = 13, xy = 6 

Cubing 2x + 3y = 13 both sides, we get 

(2x + 3y)3 = (13)3 

(2x)3 + (3y)3 + 3(2x )(3y) (2x + 3y) = 2197 

8x3 + 27y3 + 18xy(2x + 3y) = 2197 

8x3 + 27y3 + 18 x 6 x 13 = 2197 

8x3 + 27y3 + 1404 = 2197 

8x3 + 27y3 = 2197 – 1404 

8x3 + 27y3 = 793

22.

 Evaluate the following:(i) 102 × 106(ii) 109 × 107

Answer»

(i) 102 × 106

We can express 102 as 100 + 2 and 106 as 100 + 6

= 102 × 106

 = (100 + 2) (100 + 6)

= 100 (100 + 6) + 2 (100 + 6)

= 10000 + 600 + 200 + 12

= 10812

(ii) 109 × 107

We can express 109 as 100 + 9 and 107 as 100 + 7

= 109 × 107 

= (100 + 9) (100 + 7)

= 100 (100 + 7) + 9 (100 + 7)

= 10000 + 700 + 900 + 63

= 11663

23.

If a – b = 4 and ab = 21, find the value of a3 – b3.

Answer»

Given,

a – b = 4, ab = 21

Choose a – b = 4 

Cubing both sides, 

(a – b)3 = (4)3 

a3 – b3 – 3ab (a – b) = 64 

a3 – b3 – 3 × 21 x 4 = 64 

a3 – b3 – 252 = 64 

a3 – b3 = 64 + 252 

a3 – b3 = 316

24.

If \(x + \frac{1}{x} = 3\), then find the value of \(x^2 + \frac{1}{x^2}\).

Answer»

\(x + \frac{1}{x} = 3\)

Squaring both sides,

\((x + \frac{1}{x})^2 = 3^2\)

\(x^2 + \frac{1}{x^2} + 2 = 9\)

\(x^2 + \frac{1}{x^2} = 9 -2 \)

\(x^2 + \frac{1}{x^2} = 7\)

25.

If a\(\frac{1}{3}\)+b\(\frac{1}{3}\) + c\(\frac{1}{3}\) = 0, thenA. a+b+ c =0B. (a+b+ c)3 = 27abcC. a+b+ c = 3abcD. a3+b3+ c3 = 0

Answer»

a\(\frac{1}{3}\) + b\(\frac{1}{3}\) + c\(\frac{1}{3}\) = 0

⇒ a\(\frac{1}{3}\) + b\(\frac{1}{3}\) = c\(\frac{1}{3}\) ---------(i)

⇒ (a\(\frac{1}{3}\))3 + (b\(\frac{1}{3}\))3 = (-c\(\frac{1}{3}\))3

⇒ a + b + 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\)( a\(\frac{1}{3}\) + b\(\frac{1}{3}\)) = -c

⇒  a + b + 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\)(-c)\(\frac{1}{3}\) = -c

⇒ a + b + c = 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\).c\(\frac{1}{3}\)

⇒  (a + b + c)3 = (3.a\(\frac{1}{3}\).b\(\frac{1}{3}\).c\(\frac{1}{3}\))3

⇒ (a + b + c)3 = 27abc

26.

If a + b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.

Answer»

a + b + c = 9, ab + bc + ca = 26 

Squaring, a + b + c = 9 both sides, we get 

(a + b + c)2 = (9)2 

a2 + b2 + c2 + 2(ab + bc + ca) = 81

a2 + b2 + c2 + 2 x 26 = 81 

a2 + b2 + c2 + 52 = 81 

a2 + b2 + c2 = 29 

Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)] 

= 9[29 – 26] 

= 9 x 3 

= 27 

⇒ a3 + b3 + c3 – 3abc = 27

27.

If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.

Answer»

Given,

a + b + c = 0 and a2 + b2 + c2 = 16

Choose a + b + c = 0 

Squaring both sides,

(a + b + c)2 = 0 

a2 + b2 + c2 + 2(ab + bc + ca) 

= 0 

16 + 2(ab + bc + c) = 0 

2(ab + bc + ca) = -16 

ab + bc + ca = \(\frac{-16}{2}\)

ab + bc + ca = -8

28.

If 9x2 + 25y2 = 181 and xy = - 6, find the value of 3x +5y

Answer»

Here, we will use (a+b)2 = a2 + b2 + 2ab

Given: 9x2 + 25y2 = 181 and xy = - 6

We write, (3x + 5y)2 = (3x)2 + (5y)2 + 2 x 3x x x 5y

= 181 + 30xy

= 181 + 30(- 6) = 1

(3x + 5y)2 = 1

(3x + 5y) = √1 = ±1

29.

Using a2 − b2 = (a + b) (a − b), find(i)1532 − 1472 (ii) 12.12 − 7.92

Answer»

(i) 1532 − 1472 = (153 + 147) (153 − 147)

= (300) (6) = 1800

(iv) 12.12 − 7.92 = (12.1 + 7.9) (12.1 − 7.9) = (20.0) (4.2) = 84

30.

Using the formula for squaring a binomial, evaluate the following:(i) (102)2(ii) (99)2

Answer»

(i) (102)2

So, 

= (102)2 

= (100 + 2)2

= (100)2 + 2 (100) (2) + 22

= 10000 + 400 + 4

= 10404

(ii) (99)2

So, 

= (99)2 

= (100 – 1)2

= (100)2 – 2 (100) (1) + 12

= 10000 – 200 + 1

= 9801

31.

Using the formula for squaring a binomial, evaluate the following:(703)2

Answer»

Given,

(703)2

We can express 700 as 700 + 3

So, 

= (703)2 

= (700 + 3)2

= (700)2 + 2 (700) (3) + 32

= 490000 + 4200 + 9

= 494209

32.

Simplify the following using the formula: (a – b) (a + b) = a2 – b2 :(1.8 × 2.2)

Answer»

Given ,

1.8 × 2.2

We can express 1.8 as 2 – 0.2 and 2.2 as 2 + 0.2

Using formula (a – b) (a + b) = a2 – b2

We get,

1.8 × 2.2 

= (2 – 0.2) ( 2 + 0.2)

= (2)2 – (0.2)2

= 4 – 0.04

= 3.96

33.

Simplify the following using the formula: (a – b) (a + b) = a2 – b2 :(i) (82)2 – (18)2(ii) (467)2 – (33)2(iii) (79)2 – (69)2

Answer»

(i) (82)2 – (18)2

 Using formula (a – b) (a + b) = a2 – b2

We get,

(82)2 – (18)2 

= (82 – 18) (82 + 18)

= 64 × 100

= 6400

(ii) (467)2 – (33)2

 Using formula (a – b) (a + b) = a2 – b2

We get,

(467)2 – (33)2 

= (467 – 33) (467 + 33)

= (434) (500)

= 217000

(iii) (79)2 – (69)2

Using formula (a – b) (a + b) = a2 – b2

We get,

(79)2 – (69)2 

= (79 + 69) (79 – 69)

= (148) (10)

= 1480

34.

Simplify the following using the formula: (a – b) (a + b)= a2 – b2 :(i) 197 × 203(ii) 113 × 87(iii) 95 × 105

Answer»

(i) 197 × 203

We can express 203 as 200 + 3 and 197 as 200 – 3

Using formula (a – b) (a + b) = a2 – b2

We get,

197 × 203 

= (200 – 3) (200 + 3)

= (200)2 – (3)2

= 40000 – 9

= 39991

(ii) 113 × 87

We can express 113 as 100 + 13 and 87 as 100 – 13

Using formula (a – b) (a + b) = a2 – b2

We get,

113 × 87 

= (100 – 13) (100 + 13)

= (100)2 – (13)2

= 10000 – 169

= 9831

(iii) 95 × 105

We can express 95 as 100 – 5 and 105 as 100 + 5

Using formula (a – b) (a + b) = a2 – b2

We get,

95 × 105 

= (100 – 5) (100 + 5)

= (100)2 – (5)2

= 10000 – 25

= 9975

35.

Write the following squares of binomials as trinomials:(i) (9a + 1/6)2(ii)  (x + x2/2)2(iii)  (x/4 – y/3)2

Answer»

 (i) (9a + 1/6)2

= (9a)2 + 2 (9a) (1/6) + (1/6)2

= 81a2 + 3a + 1/36

(ii) (x + x2/2)2

= (x)2 + 2 (x) (x2/2) + (x2/2)2

= x2 + x3 + 1/4x4

(iii) (x/4 – y/3)2

(x/4)2 – 2 (x/4) (y/3) + (y/3)2

= 1/16x2 – xy/6 + 1/9y2

36.

Write the following squares of binomials as trinomials:(i) (x + 2)2(ii) (8a + 3b)2(iii) (2m + 1)2

Answer»

(i) (x + 2)2

= x2 + 2 (x) (2) + 22

= x2 + 4x + 4

(ii) (8a + 3b)2

= (8a)2 + 2 (8a) (3b) + (3b)2

= 64a2 + 48ab + 9b2

(iii) (2m + 1)2

= (2m)2 + 2(2m) (1) + 12

= 4m2 + 4m + 1

37.

Write the following squares of binomials as trinomials: (x2 – ay)2

Answer»

Now,

(x2 – ay)2

= (x2)2 – 2 (x2) (ay) + (ay)2

= x4 – 2x2ay + a2y2

38.

Write the following squares of binomials as trinomials:(i) (3x – 1/3x)2(ii) (x/y – y/x)2(iii) (3a/2 – 5b/4)2(iv) (a2b – bc2)2

Answer»

(i) (3x – 1/3x)2

= (3x)2 – 2 (3x) (1/3x) + (1/3x)2

= 9x2 – 2 + 1/9x2

(ii) (x/y – y/x)2

= (x/y)2 – 2 (x/y) (y/x) + (y/x)2

= x2/y2 – 2 + y2/x2

(iii) (3a/2 – 5b/4)2

= (3a/2)2 – 2 (3a/2) (5b/4) + (5b/4)2

= 9/4a2 – 15/4ab + 25/16b2

(iv) (a2b – bc2)2

= (a2b)2 – 2 (a2b) (bc2) + (bc2)2

= a4b2 – 2a2b2c2 + b2c4

39.

Evaluate:(i) \(({2x-1\over x})^2\)(ii) (2x + y) (2x – y)(iii) (a2b – b2a)2(iv) (a – 0.1) (a + 0.1) (v) (1.5.x2 – 0.3y2) (1.5x2 + 0.3y2)

Answer»

(i) \(({2x-1\over x})^2\)

\(= ({2x-1\over x})^2\)

= (2x)2 + (\(1\over x\))2 – 2 (2x)(\(1\over x\))   [(a – b)2 = a2 + b2 – 2ab]

\(4x^2 + 1 \over x^2 - 4\)

(ii) (2x + y) (2x – y)  

(2x + y) (2x – y) [(a – b)(a + b) = a2 – b2

= (2x )2 – (y)2 

= 4x2 – y2

(iii) (a2b – b2a)2 

(a2b – b2a)2 [(a – b)2 = a2 + b2 – 2ab]

= (a2b)2 + (b2a)2 – 2 (a2b)( b2a) 

= a4b2 + b4a2 – 2a3b3 

(iv) (a – 0.1) (a + 0.1)  

(a – 0.1) (a + 0.1) [(a – b)(a + b) = a2 – b2 ]

= (a)2 – (0.1)2 

= (a)2 – 0.01 

(v) (1.5 x2 – 0.3y2) (1.5 x2 + 0.3y2)

(1.5 x2 – 0.3y2) (1.5x2 + 0.3y2) [(a – b)(a + b) = a2 – b2

= (1.5 x2)2 – (0.3y2)2 

= 2.25 x4 – 0.09y4

40.

Evaluate each of the following using identities:(i) (399)2(ii) (0.98)2(iii) 991×1009(iv) 117×83

Answer»

(i) We will use the identity, (a - b)2 = a2 + b2 – 2ab

(399)2 = (400 - 1)2

= (400)2 + (1)2 - 2 x 400.1

= 16000 + 1 - 800

= 159201

(ii) We will use the identity, (a - b)2 = a2 + b2 – 2ab

(0.98)2 = (1 - 0.02)2

 = (1)2 + (0.02)2 - 2 x 0.02 x 1

= 1 + 0.004 - 0.04

= 0.9604

(iii) We will use the identity, (a - b)(a + b)= a2 - b2

991 x 1009 = (1000 - 9)(1000 + 9)

= (1000)2 - (9)2

= 1000000 - 81

= 999919

(iv) We will use the identity, (a - b) (a + b)= a2 - b2

117 x 83 = (100 + 17)(100 - 17)

= (100)2 + (17)2

= 10000 - 289

= 9711

41.

If x - \(\frac{1}{x}\) = -1, find the value of x2 + \(\frac{1}{x^2}\)

Answer»

Here, we will use (a - b)2 = a2 + b2 - 2ab

(x - \(\frac{1}{x}\)) = (-1)

(x - \(\frac{1}{x}\))2 = (-1)2

(x)2 + (\(\frac{1}{x}\))2 - 2 x x\(\frac{1}{x}\) = 1

x2\(\frac{1}{x^2}\) = 1 + 2

x2\(\frac{1}{x^2}\) = 3

42.

If x + \(\frac{1}{x}\) = 11, find the value of x2 + \(\frac{1}{x^2}\)

Answer»

Here, we will use (a+b)2 = a2 + b2 +2ab

(x + \(\frac{1}{x}\)) = (11)

(x + \(\frac{1}{x}\))2 = (11)2

(x)2 + (\(\frac{1}{x}\))2 + 2 x x \(\frac{1}{x}\) = 121

(x)2 + (\(\frac{1}{x^2}\)) = 121 - 2

(x)2 + (\(\frac{1}{x^2}\)) = 119

43.

Subtract :(x – y + 3z) from (2z – x – 3y)

Answer»

 (x – y + 3z) from (2z – x – 3y)

The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms.

We have,

= (2z – x – 3y) – (x – y + 3z)

Change the sign of each term of the expression to be subtracted and then add.

= 2z – x – 3y – x + y – 3z

= (2z – 3z) + (– x – x) + (- 3y + y)

= (2 – 3)z + (– 1 – 1)x + (- 3 +1)y

= -1z – 2x – 2y

44.

If a – b = 5 and ab = 12, find the value of a2 + b2.

Answer»

a – b = 5, ab = 12 

Squaring, a – b = 5, both sides, 

(a – b)2 = (5)2 

a2 + b2 – 2ab = 25 

a2 + b2 – 2 x 12 = 25 

a2 + b2 – 24 = 25 

a2 + b2 = 25 + 24

a2 + b2 = 49

45.

If a + b = 8 and ab = 15, find : a3 + b3.

Answer»

a3 + b3 = (a + b)3 - 3ab (a + b)

= (8)3 - 3(15)(8) = 512 - 360 = 152

46.

Simplify:(i) (a + b + c)2 + (a − b + c)2 (ii) (a + b + c)2 − (a − b + c)2 (iii) (a + b + c)2 + (a – b + c)2 + (a + b − c)2 (iv) (2x + p − c)2 − (2x − p + c)2 (v) (x2 + y2 − z2)2 − (x2 − y2 + z2)2

Answer»

(i) (a + b + c)2 + (a − b + c)2 

= (a2 + b2 + c2 + 2ab+2bc+2ca) + (a2 + (−b)2 + c2 −2ab−2bc+2ca) 

= 2a2 + 2b2 + 2c2 + 4ca 

(ii) (a + b + c)2 − (a − b + c)2 

= (a2 + b2 + c2 + 2ab + 2bc + 2ca) − (a2 + (−b)2 + c2 − 2ab − 2bc + 2ca) 

= a2 + b2 + c2 + 2ab + 2bc + 2ca − a2 − b2 − c2 + 2ab + 2bc − 2ca 

= 4ab + 4bc 

(iii) (a + b + c)2 + (a – b + c)2 + (a + b − c)2 

= a2 + b2 + c2 + 2ab + 2bc + 2ca + (a2 + b2 + (c)2 − 2bc − 2cb + 2ca) + (a2 + b2 + c2 + 2ab − 2bc – 2ab) 

= 3a2 + 3b2 + 3c2 + 2ab − 2bc + 2ca 

(iv) (2x + p − c)2 − (2x − p + c)2 

= [4x2 + p2 + c2 + 4xp − 2pc − 4xc] − [4x2 + p2 + c2 − 4xp− 2pc + 4xc] 

= 4x2 + p2 + c2 + 4xp − 2pc − 4cx − 4x2 − p2 − c2 + 4xp + 2pc− 4cx

= 8xp − 8xc 

= 8(xp − xc)

(v) (x2 + y2 − z2)2 − (x2 − y2 + z2)2 

= (x2 + y2 + (−z)2)2 − (x2 − y2 + z2)2 

= [x4 + y4 + z4 + 2x2y2 + 2y2z2 + 2x2z2 − [x4 + y4 + z4 − 2x2y2 − 2y2z2 + 2x2z2

= 4x2y2 – 4z2x2

47.

If a + b = 7 and ab = 12, find the value of a2 + b2.

Answer»

a + b = 7, ab = 12 

Squaring, a + b = 7, both sides, 

(a + b)2 = (7)2 

a2 + b2 + 2ab = 49

a2 + b2 + 2 x 12 = 49 

a2 + b2 + 24 = 49 

a2 + b2 = 49 - 24

a2 + b2 = 25

48.

If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.

Answer»

Given: 3x – 2y = 11 and xy = 12 

Cubing 3x – 2y = 11 both sides, we get

(3x – 2y)3 = (11)3 

(3x)3 – (2y)3 – 3(3x)(2y) (3x – 2y) =1331 

27x3 – 8y3 – 18xy(3x -2y) =1331 

27x3 – 8y3 – 18 x 12 x 11 = 1331 

27x3 – 8y3 – 2376 = 1331 

27x3 – 8y3 = 1331 + 2376

27x3 – 8y3 = 3707

49.

If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3 

Answer»

27x3 + 8y3 = (3x)3 + (2y)3 = (2x + 2y)3 - 3. 3x . 2y (3x + 2y)

(3x - 2y)3 - 18xy (3x + 2y)

= (9)3 - 18(3) (9) = 729 - 486 = 243

50.

Find the following products:(p2 + 16) (p2 – 1/4)

Answer»

Given that,

(p2 + 16) (p2 – 1/4)

= p2 (p2 – 1/4) + 16 (p2 – 1/4)

= p4 – 1/4p2 + 16p2 – 4

= p4 + 63/4p2 – 4

Previous Next