This section includes 7 InterviewSolutions, each offering curated multiple-choice questions to sharpen your Current Affairs knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Simplify:(i) (x – y) (x + y) (x2 + y2) (x4 + y4)(ii) (2x – 1) (2x + 1) (4x2 + 1) (16x4 + 1) |
|
Answer» (i) (x – y) (x + y) (x2 + y2) (x4 + y4) = (x2 – y2) (x2 + y2) (x4 + y4) = [(x2)2 – (y2)2] (x4 + y4) = (x4 – y4) (x4 – y4) = [(x4)2 – (y4)2] = x8 – y8 (ii) (2x – 1) (2x + 1) (4x2 + 1) (16x4 + 1) = [(2x)2 – (1)2] (4x2 + 1) (16x4 + 1) = (4x2 – 1) (4x2 + 1) (16x4 + 1) 1 = [(4x2)2 – (1)2] (16x4 + 1) 1 = (16x4 – 1) (16x4 + 1) 1 = [(16x4)2 – (1)2] 1 = 256x8 – 1 |
|
| 2. |
Simplify:(m2 – n2m)2 + 2m3n2 |
|
Answer» (m2 – n2m)2 + 2m3n2 = (m2)2 – 2 (m2) (n2) (m) + (n2m)2 + 2m3n2 = m4 – 2m3n2 + (n2m)2 + 2m3n2 = m4+ n4m2 – 2m3n2 + 2m3n2 = m4+ m2n4 |
|
| 3. |
Subtract the sum of 3l – 4m – 7n2 and 2l + 3m – 4n2 from the sum of 9l + 2m – 3n2 and -3l + m + 4n2…. |
|
Answer» Sum of 3l – 4m – 7n2 and 2l + 5m – 4n2 = 3l – 4m – 7n2 + 2l + 3m – 4n2 = 3l + 2l – 4m + 3m – 7n2 – 4n2 = 5l – m – 11n2 ……………………..equation (1) Sum of 9l + 2m – 3n2 and -3l + m + 4n2 = 9l + 2m – 3n2 + (-3l + m + 4n2) = 9l – 3l + 2m + m – 3n2 + 4n2 = 6l + 3m + n2 ……………………….equation (2) Let us subtract equation (i) from (ii), we get = 6l + 3m + n2 – (5l – m – 11n2) = 6l – 5l + 3m + m + n2 + 11n2 = l + 4m + 12n2 |
|
| 4. |
Find the following products:(i) 2a3 (3a + 5b)(ii) -11a (3a + 2b)(iii) -5a (7a – 2b)(iv) -11y2 (3y + 7) |
|
Answer» (i) 2a3 (3a + 5b) = 2a3 (3a + 5b) = (2a3 × 3a) + (2a3 × 5b) = 6a4 + 10a3b (ii) -11a (3a + 2b) = -11a (3a + 2b) = (-11a × 3a) + (-11a × 2b) = -33a2 – 22ab (iii) -5a (7a – 2b) = -5a (7a – 2b) = (-5a × 7a) – (-5a × 2b) = -35a2 + 10ab (iv) -11y2 (3y + 7) = -11y2 (3y + 7) = (-11y2 × 3y) + (-11y2 × 7) = -33y3 – 77y2 |
|
| 5. |
Evaluate each of the following when x = 2, y = -1. (3/5x2y) × (-15/4xy2) × (7/9x2y2) |
|
Answer» Let us simplify the given expression = 3/5 × -15/4 × 7/9 × x2 × x × x2 × y × y2 × y2 = -7/4 × x2+1+2 × y1+2+2 = 7/4x5y5 Now let us substitute when, x = 2 and y = -1 For -7/4x5y5 = -7/4 × (2)5 (-1)5 = -7/4 × 32 × -1 = 56 |
|
| 6. |
Find the product of the following binomials:(i) (2x + y) (2x + y)(ii) (a + 2b) (a – 2b)(iii) (a2 + bc) (a2 – bc) |
|
Answer» (i) (2x + y) (2x + y) = 2x(2x + y) + y(2x + y) = 4x2 + 2xy + 2xy + y2 = 4x2 + 4xy + y2 (ii) (a + 2b) (a – 2b) = a(a – 2b) + 2b (a – 2b) = a2 – 2ab + 2ab – 4b2 = a2 – 4b2 (iii) (a2 + bc) (a2 – bc) = a2 (a2 – bc) + bc (a2 – bc) = a4 – a2bc + bca2 – b2c2 = a4 – b2c2 |
|
| 7. |
Find the following products: 4/3a (a2 + b2 – 3c2) |
|
Answer» Given, 4/3a (a2 + b2 – 3c2) = 4/3a (a2 + b2 – 3c2) = (4/3a × a2) + (4/3a × b2) – (4/3a × 3c2) = 4/3a3 + 4/3ab2 – 4ac2 |
|
| 8. |
Find the product of the binomials: (x3 + 1/x3) (x3 – 1/x3) |
|
Answer» Given, (x3 + 1/x3) (x3 – 1/x3) = x3 (x3 – 1/x3) + 1/x3 (x3 – 1/x3) = x6 – 1 + 1 – 1/x6 = x6 – 1/x6 |
|
| 9. |
If x + 1/x = 9 find the value of x4 + 1/ x4. |
|
Answer» We know that x + 1/x = 9 So when squaring both sides, we get (x + 1/x)2 = (9)2 x2 + 2 × x × 1/x + (1/x)2 = 81 x2 + 2 + 1/x2 = 81 x2 + 1/x2 = 81 – 2 x2 + 1/x2 = 79 Now again when we square on both sides we get, (x2 + 1/x2)2 = (79)2 x4 + 2 × x2 × 1/x2 + (1/x2)2 = 6241 x4 + 2 + 1/x4 = 6241 x4 + 1/x4 = 6241- 2 x4 + 1/x4 = 6239 ∴ x4 – 1/x4 = 6239 |
|
| 10. |
Find the product of the binomials:(x4 + 2/x2) (x4 – 2/x2) |
|
Answer» Given, (x4 + 2/x2) (x4 – 2/x2) = x4 (x4 – 2/x2) + 2/x2 (x4 – 2/x2) = x8 – 2x2 + 2x2 – 4/x4 = (x8 – 4/x4) |
|
| 11. |
Find the product 24x2 (1-2x) and evaluate its value for x = 3 |
|
Answer» Let we solve, = 24x2 (1 – 2x) = (24x2× 1) – (24x2× 2x) = 24x2 – 48x3 Now let us evaluate the expression when x = 3 = 24x2 – 48x3 = 24 × (3)2 – 48 × (3)3 = 24 × (9) – 48 × (27) = 216 – 1296 = -1080 |
|
| 12. |
Find the product of the following binomials:(i) (4x/5 – 3y/4) (4x/5 + 3y/4)(ii) (2x + 3/y) (2x – 3/y)(iii) (2a3 + b3) (2a3 – b3) |
|
Answer» (i) (4x/5 – 3y/4) (4x/5 + 3y/4) = 4x/5 (4x/5 + 3y/4) – 3y/4 (4x/5 + 3y/4) = 16/25x2 + 12/20yx – 12/20xy – 9y2/16 = 16/25x2 – 9/16y2 (ii) (2x + 3/y) (2x – 3/y) = 2x (2x – 3/y) + 3/y (2x – 3/y) = 4x2 – 6x/y + 6x/y – 9/y2 = 4x2 – 9/y2 (iii) (2a3 + b3) (2a3 – b3) = 2a3 (2a3 – b3) + b3 (2a3 – b3) = 4a6 – 2a3b3 + 2a3b3 – b6 = 4a6 – b6 |
|
| 13. |
Evaluate the following:994 × 1006 |
|
Answer» Given, 994 × 1006 We can express 994 as 1000 – 6 and 1006 as 1000 + 6 = 994 × 1006 = (1000 – 6) (1000 + 6) = 1000 (1000 + 6) – 6 (1000 + 6) = 1000000 + 6000 – 6000 – 36 = 999964 |
|
| 14. |
If x + 1/x = 12 find the value of x – 1/x. |
|
Answer» We know that x + 1/x = 12 So when squaring both sides, we get (x + 1/x)2 = (12)2 x2 + 2 × x × 1/x + (1/x)2 = 144 x2 + 2 + 1/x2 = 144 x2 + 1/x2 = 144 – 2 x2 + 1/x2 = 142 When subtracting 2 from both sides, we get x2 + 1/x2 – 2 × x × 1/x = 142 – 2 (x – 1/x)2 = 140 x – 1/x = √140 |
|
| 15. |
If x2 + y2 = 29 and xy = 2, find the value of x + y |
|
Answer» Given, x + y We know that x2 + y2 = 29 x2 + y2 + 2xy – 2xy = 29 (x + y)2 – 2 (2) = 29 (x + y)2 = 29 + 4 x + y = ± √33 |
|
| 16. |
If x2 + y2 = 29 and xy = 2, find the value ofx4 + y4 |
|
Answer» We know that x2 + y2 = 29 Squaring both sides, we get (x2 + y2)2 = (29)2 x4 + y4 + 2x2y2 = 841 x4 + y4 + 2 (2)2 = 841 x4 + y4 = 841 – 8 x4 + y4 = 833 |
|
| 17. |
Find the product -3y (xy+y2) and evaluate its value for x = 4 and y = 5 |
|
Answer» Let us we solve, = -3y (xy+y2) = (-3y × xy) + (-3y × y2) = -3xy2 – 3y3 Now let us evaluate the expression when x = 4 and y = 5 = -3xy2 – 3y3 = -3 × (4) × (5)2 – 3 × (5)3 = -300 – 375 = -675 |
|
| 18. |
Evaluate the following:(i) 35 × 37(ii) 53 × 55(iii) 103 × 96 |
|
Answer» (i) 35 × 37 We can express 35 as 30 + 5 and 37 as 30 + 7 = 35 × 37 = (30 + 5) (30 + 7) = 30 (30 + 7) + 5 (30 + 7) = 900 + 210 + 150 + 35 = 1295 (ii) 53 × 55 We can express 53 as 50 + 3 and 55 as 50 + 5 = 53 × 55 = (50 + 3) (50 + 5) = 50(50 + 5) + 3 (50 + 5) = 2500 + 250 + 150 + 15 = 2915 (iii) 103 × 96 We can express 103 as 100 + 3 and 96 as 100 – 4 = 103 × 96 = (100 + 3) (100 – 4) = 100 (100 – 4) + 3 (100 – 4) = 10000 – 400 + 300 – 12 = 10000 – 112 = 9888 |
|
| 19. |
If \((x^2 + \frac{1}{x^2}) = 51\), find the value of \(x^3 - \frac{1}{x^3}\). |
|
Answer» We know that: (x – y)2 = x2 + y2 – 2xy Replace y with \(\frac{1}{x}\), we get \((x - \frac{1}{x})^2\) = x2 + \(\frac{1}{x^2}\) – 2 Since \((x^2 + \frac{1}{x^2}) = 51\) \((x - \frac{1}{x})^2\) = 51-2 = 49 \((x - \frac{1}{x})\) = ±7 Now, Find \(x^3 - \frac{1}{x^3}\) We know that, x3 – y3 = (x – y)(x2 + y2 + xy) Replace y with \(\frac{1}{x}\) , we get x3 – \(\frac{1}{x^3}\) = (x – \(\frac{1}{x}\))(x2 + \(\frac{1}{x^2}\) + 1) Use (x – \(\frac{1}{x}\)) = 7 and (x2 + \(\frac{1}{x^2}\)) = 51 x3 – \(\frac{1}{x^3}\) = 7 x 52 x3 – \(\frac{1}{x^3}\) = 364 |
|
| 20. |
If 2x + 3y = 14 and 2x – 3y = 2, find value of xy. |
|
Answer» We know that the given equations are 2x + 3y = 14… equation (i) 2x – 3y = 2… equation (ii) Now, let us square both the equations and subtract equation (ii) from equation (i), we get, (2x + 3y)2 – (2x – 3y)2 = (14)2 – (2)2 4x2 + 9y2 + 12xy – 4x2 – 9y2 + 12xy = 196 – 4 24xy = 192 xy = 8 ∴ The value of xy is 8. |
|
| 21. |
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 27y3. |
|
Answer» Given: 2x + 3y = 13, xy = 6 Cubing 2x + 3y = 13 both sides, we get (2x + 3y)3 = (13)3 (2x)3 + (3y)3 + 3(2x )(3y) (2x + 3y) = 2197 8x3 + 27y3 + 18xy(2x + 3y) = 2197 8x3 + 27y3 + 18 x 6 x 13 = 2197 8x3 + 27y3 + 1404 = 2197 8x3 + 27y3 = 2197 – 1404 8x3 + 27y3 = 793 |
|
| 22. |
Evaluate the following:(i) 102 × 106(ii) 109 × 107 |
|
Answer» (i) 102 × 106 We can express 102 as 100 + 2 and 106 as 100 + 6 = 102 × 106 = (100 + 2) (100 + 6) = 100 (100 + 6) + 2 (100 + 6) = 10000 + 600 + 200 + 12 = 10812 (ii) 109 × 107 We can express 109 as 100 + 9 and 107 as 100 + 7 = 109 × 107 = (100 + 9) (100 + 7) = 100 (100 + 7) + 9 (100 + 7) = 10000 + 700 + 900 + 63 = 11663 |
|
| 23. |
If a – b = 4 and ab = 21, find the value of a3 – b3. |
|
Answer» Given, a – b = 4, ab = 21 Choose a – b = 4 Cubing both sides, (a – b)3 = (4)3 a3 – b3 – 3ab (a – b) = 64 a3 – b3 – 3 × 21 x 4 = 64 a3 – b3 – 252 = 64 a3 – b3 = 64 + 252 a3 – b3 = 316 |
|
| 24. |
If \(x + \frac{1}{x} = 3\), then find the value of \(x^2 + \frac{1}{x^2}\). |
|
Answer» \(x + \frac{1}{x} = 3\) Squaring both sides, \((x + \frac{1}{x})^2 = 3^2\) \(x^2 + \frac{1}{x^2} + 2 = 9\) \(x^2 + \frac{1}{x^2} = 9 -2 \) \(x^2 + \frac{1}{x^2} = 7\) |
|
| 25. |
If a\(\frac{1}{3}\)+b\(\frac{1}{3}\) + c\(\frac{1}{3}\) = 0, thenA. a+b+ c =0B. (a+b+ c)3 = 27abcC. a+b+ c = 3abcD. a3+b3+ c3 = 0 |
|
Answer» a\(\frac{1}{3}\) + b\(\frac{1}{3}\) + c\(\frac{1}{3}\) = 0 ⇒ a\(\frac{1}{3}\) + b\(\frac{1}{3}\) = c\(\frac{1}{3}\) ---------(i) ⇒ (a\(\frac{1}{3}\))3 + (b\(\frac{1}{3}\))3 = (-c\(\frac{1}{3}\))3 ⇒ a + b + 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\)( a\(\frac{1}{3}\) + b\(\frac{1}{3}\)) = -c ⇒ a + b + 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\)(-c)\(\frac{1}{3}\) = -c ⇒ a + b + c = 3.a\(\frac{1}{3}\).b\(\frac{1}{3}\).c\(\frac{1}{3}\) ⇒ (a + b + c)3 = (3.a\(\frac{1}{3}\).b\(\frac{1}{3}\).c\(\frac{1}{3}\))3 ⇒ (a + b + c)3 = 27abc |
|
| 26. |
If a + b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc. |
|
Answer» a + b + c = 9, ab + bc + ca = 26 Squaring, a + b + c = 9 both sides, we get (a + b + c)2 = (9)2 a2 + b2 + c2 + 2(ab + bc + ca) = 81 a2 + b2 + c2 + 2 x 26 = 81 a2 + b2 + c2 + 52 = 81 a2 + b2 + c2 = 29 Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)] = 9[29 – 26] = 9 x 3 = 27 ⇒ a3 + b3 + c3 – 3abc = 27 |
|
| 27. |
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca. |
|
Answer» Given, a + b + c = 0 and a2 + b2 + c2 = 16 Choose a + b + c = 0 Squaring both sides, (a + b + c)2 = 0 a2 + b2 + c2 + 2(ab + bc + ca) = 0 16 + 2(ab + bc + c) = 0 2(ab + bc + ca) = -16 ab + bc + ca = \(\frac{-16}{2}\) ab + bc + ca = -8 |
|
| 28. |
If 9x2 + 25y2 = 181 and xy = - 6, find the value of 3x +5y |
|
Answer» Here, we will use (a+b)2 = a2 + b2 + 2ab Given: 9x2 + 25y2 = 181 and xy = - 6 We write, (3x + 5y)2 = (3x)2 + (5y)2 + 2 x 3x x x 5y = 181 + 30xy = 181 + 30(- 6) = 1 (3x + 5y)2 = 1 (3x + 5y) = √1 = ±1 |
|
| 29. |
Using a2 − b2 = (a + b) (a − b), find(i)1532 − 1472 (ii) 12.12 − 7.92 |
|
Answer» (i) 1532 − 1472 = (153 + 147) (153 − 147) = (300) (6) = 1800 (iv) 12.12 − 7.92 = (12.1 + 7.9) (12.1 − 7.9) = (20.0) (4.2) = 84 |
|
| 30. |
Using the formula for squaring a binomial, evaluate the following:(i) (102)2(ii) (99)2 |
|
Answer» (i) (102)2 So, = (102)2 = (100 + 2)2 = (100)2 + 2 (100) (2) + 22 = 10000 + 400 + 4 = 10404 (ii) (99)2 So, = (99)2 = (100 – 1)2 = (100)2 – 2 (100) (1) + 12 = 10000 – 200 + 1 = 9801 |
|
| 31. |
Using the formula for squaring a binomial, evaluate the following:(703)2 |
|
Answer» Given, (703)2 We can express 700 as 700 + 3 So, = (703)2 = (700 + 3)2 = (700)2 + 2 (700) (3) + 32 = 490000 + 4200 + 9 = 494209 |
|
| 32. |
Simplify the following using the formula: (a – b) (a + b) = a2 – b2 :(1.8 × 2.2) |
|
Answer» Given , 1.8 × 2.2 We can express 1.8 as 2 – 0.2 and 2.2 as 2 + 0.2 Using formula (a – b) (a + b) = a2 – b2 We get, 1.8 × 2.2 = (2 – 0.2) ( 2 + 0.2) = (2)2 – (0.2)2 = 4 – 0.04 = 3.96 |
|
| 33. |
Simplify the following using the formula: (a – b) (a + b) = a2 – b2 :(i) (82)2 – (18)2(ii) (467)2 – (33)2(iii) (79)2 – (69)2 |
|
Answer» (i) (82)2 – (18)2 Using formula (a – b) (a + b) = a2 – b2 We get, (82)2 – (18)2 = (82 – 18) (82 + 18) = 64 × 100 = 6400 (ii) (467)2 – (33)2 Using formula (a – b) (a + b) = a2 – b2 We get, (467)2 – (33)2 = (467 – 33) (467 + 33) = (434) (500) = 217000 (iii) (79)2 – (69)2 Using formula (a – b) (a + b) = a2 – b2 We get, (79)2 – (69)2 = (79 + 69) (79 – 69) = (148) (10) = 1480 |
|
| 34. |
Simplify the following using the formula: (a – b) (a + b)= a2 – b2 :(i) 197 × 203(ii) 113 × 87(iii) 95 × 105 |
|
Answer» (i) 197 × 203 We can express 203 as 200 + 3 and 197 as 200 – 3 Using formula (a – b) (a + b) = a2 – b2 We get, 197 × 203 = (200 – 3) (200 + 3) = (200)2 – (3)2 = 40000 – 9 = 39991 (ii) 113 × 87 We can express 113 as 100 + 13 and 87 as 100 – 13 Using formula (a – b) (a + b) = a2 – b2 We get, 113 × 87 = (100 – 13) (100 + 13) = (100)2 – (13)2 = 10000 – 169 = 9831 (iii) 95 × 105 We can express 95 as 100 – 5 and 105 as 100 + 5 Using formula (a – b) (a + b) = a2 – b2 We get, 95 × 105 = (100 – 5) (100 + 5) = (100)2 – (5)2 = 10000 – 25 = 9975 |
|
| 35. |
Write the following squares of binomials as trinomials:(i) (9a + 1/6)2(ii) (x + x2/2)2(iii) (x/4 – y/3)2 |
|
Answer» (i) (9a + 1/6)2 = (9a)2 + 2 (9a) (1/6) + (1/6)2 = 81a2 + 3a + 1/36 (ii) (x + x2/2)2 = (x)2 + 2 (x) (x2/2) + (x2/2)2 = x2 + x3 + 1/4x4 (iii) (x/4 – y/3)2 (x/4)2 – 2 (x/4) (y/3) + (y/3)2 = 1/16x2 – xy/6 + 1/9y2 |
|
| 36. |
Write the following squares of binomials as trinomials:(i) (x + 2)2(ii) (8a + 3b)2(iii) (2m + 1)2 |
|
Answer» (i) (x + 2)2 = x2 + 2 (x) (2) + 22 = x2 + 4x + 4 (ii) (8a + 3b)2 = (8a)2 + 2 (8a) (3b) + (3b)2 = 64a2 + 48ab + 9b2 (iii) (2m + 1)2 = (2m)2 + 2(2m) (1) + 12 = 4m2 + 4m + 1 |
|
| 37. |
Write the following squares of binomials as trinomials: (x2 – ay)2 |
|
Answer» Now, (x2 – ay)2 = (x2)2 – 2 (x2) (ay) + (ay)2 = x4 – 2x2ay + a2y2 |
|
| 38. |
Write the following squares of binomials as trinomials:(i) (3x – 1/3x)2(ii) (x/y – y/x)2(iii) (3a/2 – 5b/4)2(iv) (a2b – bc2)2 |
|
Answer» (i) (3x – 1/3x)2 = (3x)2 – 2 (3x) (1/3x) + (1/3x)2 = 9x2 – 2 + 1/9x2 (ii) (x/y – y/x)2 = (x/y)2 – 2 (x/y) (y/x) + (y/x)2 = x2/y2 – 2 + y2/x2 (iii) (3a/2 – 5b/4)2 = (3a/2)2 – 2 (3a/2) (5b/4) + (5b/4)2 = 9/4a2 – 15/4ab + 25/16b2 (iv) (a2b – bc2)2 = (a2b)2 – 2 (a2b) (bc2) + (bc2)2 = a4b2 – 2a2b2c2 + b2c4 |
|
| 39. |
Evaluate:(i) \(({2x-1\over x})^2\)(ii) (2x + y) (2x – y)(iii) (a2b – b2a)2(iv) (a – 0.1) (a + 0.1) (v) (1.5.x2 – 0.3y2) (1.5x2 + 0.3y2) |
|
Answer» (i) \(({2x-1\over x})^2\) \(= ({2x-1\over x})^2\) = (2x)2 + (\(1\over x\))2 – 2 (2x)(\(1\over x\)) [(a – b)2 = a2 + b2 – 2ab] = \(4x^2 + 1 \over x^2 - 4\) (ii) (2x + y) (2x – y) (2x + y) (2x – y) [(a – b)(a + b) = a2 – b2] = (2x )2 – (y)2 = 4x2 – y2 (iii) (a2b – b2a)2 (a2b – b2a)2 [(a – b)2 = a2 + b2 – 2ab] = (a2b)2 + (b2a)2 – 2 (a2b)( b2a) = a4b2 + b4a2 – 2a3b3 (iv) (a – 0.1) (a + 0.1) (a – 0.1) (a + 0.1) [(a – b)(a + b) = a2 – b2 ] = (a)2 – (0.1)2 = (a)2 – 0.01 (v) (1.5 x2 – 0.3y2) (1.5 x2 + 0.3y2) (1.5 x2 – 0.3y2) (1.5x2 + 0.3y2) [(a – b)(a + b) = a2 – b2 ] = (1.5 x2)2 – (0.3y2)2 = 2.25 x4 – 0.09y4 |
|
| 40. |
Evaluate each of the following using identities:(i) (399)2(ii) (0.98)2(iii) 991×1009(iv) 117×83 |
|
Answer» (i) We will use the identity, (a - b)2 = a2 + b2 – 2ab (399)2 = (400 - 1)2 = (400)2 + (1)2 - 2 x 400.1 = 16000 + 1 - 800 = 159201 (ii) We will use the identity, (a - b)2 = a2 + b2 – 2ab (0.98)2 = (1 - 0.02)2 = (1)2 + (0.02)2 - 2 x 0.02 x 1 = 1 + 0.004 - 0.04 = 0.9604 (iii) We will use the identity, (a - b)(a + b)= a2 - b2 991 x 1009 = (1000 - 9)(1000 + 9) = (1000)2 - (9)2 = 1000000 - 81 = 999919 (iv) We will use the identity, (a - b) (a + b)= a2 - b2 117 x 83 = (100 + 17)(100 - 17) = (100)2 + (17)2 = 10000 - 289 = 9711 |
|
| 41. |
If x - \(\frac{1}{x}\) = -1, find the value of x2 + \(\frac{1}{x^2}\) |
|
Answer» Here, we will use (a - b)2 = a2 + b2 - 2ab (x - \(\frac{1}{x}\)) = (-1) (x - \(\frac{1}{x}\))2 = (-1)2 (x)2 + (\(\frac{1}{x}\))2 - 2 x x x \(\frac{1}{x}\) = 1 x2 + \(\frac{1}{x^2}\) = 1 + 2 x2 + \(\frac{1}{x^2}\) = 3 |
|
| 42. |
If x + \(\frac{1}{x}\) = 11, find the value of x2 + \(\frac{1}{x^2}\) |
|
Answer» Here, we will use (a+b)2 = a2 + b2 +2ab (x + \(\frac{1}{x}\)) = (11) (x + \(\frac{1}{x}\))2 = (11)2 (x)2 + (\(\frac{1}{x}\))2 + 2 x x x \(\frac{1}{x}\) = 121 (x)2 + (\(\frac{1}{x^2}\)) = 121 - 2 (x)2 + (\(\frac{1}{x^2}\)) = 119 |
|
| 43. |
Subtract :(x – y + 3z) from (2z – x – 3y) |
|
Answer» (x – y + 3z) from (2z – x – 3y) The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms. We have, = (2z – x – 3y) – (x – y + 3z) Change the sign of each term of the expression to be subtracted and then add. = 2z – x – 3y – x + y – 3z = (2z – 3z) + (– x – x) + (- 3y + y) = (2 – 3)z + (– 1 – 1)x + (- 3 +1)y = -1z – 2x – 2y |
|
| 44. |
If a – b = 5 and ab = 12, find the value of a2 + b2. |
|
Answer» a – b = 5, ab = 12 Squaring, a – b = 5, both sides, (a – b)2 = (5)2 a2 + b2 – 2ab = 25 a2 + b2 – 2 x 12 = 25 a2 + b2 – 24 = 25 a2 + b2 = 25 + 24 a2 + b2 = 49 |
|
| 45. |
If a + b = 8 and ab = 15, find : a3 + b3. |
|
Answer» a3 + b3 = (a + b)3 - 3ab (a + b) = (8)3 - 3(15)(8) = 512 - 360 = 152 |
|
| 46. |
Simplify:(i) (a + b + c)2 + (a − b + c)2 (ii) (a + b + c)2 − (a − b + c)2 (iii) (a + b + c)2 + (a – b + c)2 + (a + b − c)2 (iv) (2x + p − c)2 − (2x − p + c)2 (v) (x2 + y2 − z2)2 − (x2 − y2 + z2)2 |
|
Answer» (i) (a + b + c)2 + (a − b + c)2 = (a2 + b2 + c2 + 2ab+2bc+2ca) + (a2 + (−b)2 + c2 −2ab−2bc+2ca) = 2a2 + 2b2 + 2c2 + 4ca (ii) (a + b + c)2 − (a − b + c)2 = (a2 + b2 + c2 + 2ab + 2bc + 2ca) − (a2 + (−b)2 + c2 − 2ab − 2bc + 2ca) = a2 + b2 + c2 + 2ab + 2bc + 2ca − a2 − b2 − c2 + 2ab + 2bc − 2ca = 4ab + 4bc (iii) (a + b + c)2 + (a – b + c)2 + (a + b − c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca + (a2 + b2 + (c)2 − 2bc − 2cb + 2ca) + (a2 + b2 + c2 + 2ab − 2bc – 2ab) = 3a2 + 3b2 + 3c2 + 2ab − 2bc + 2ca (iv) (2x + p − c)2 − (2x − p + c)2 = [4x2 + p2 + c2 + 4xp − 2pc − 4xc] − [4x2 + p2 + c2 − 4xp− 2pc + 4xc] = 4x2 + p2 + c2 + 4xp − 2pc − 4cx − 4x2 − p2 − c2 + 4xp + 2pc− 4cx = 8xp − 8xc = 8(xp − xc) (v) (x2 + y2 − z2)2 − (x2 − y2 + z2)2 = (x2 + y2 + (−z)2)2 − (x2 − y2 + z2)2 = [x4 + y4 + z4 + 2x2y2 + 2y2z2 + 2x2z2 − [x4 + y4 + z4 − 2x2y2 − 2y2z2 + 2x2z2] = 4x2y2 – 4z2x2 |
|
| 47. |
If a + b = 7 and ab = 12, find the value of a2 + b2. |
|
Answer» a + b = 7, ab = 12 Squaring, a + b = 7, both sides, (a + b)2 = (7)2 a2 + b2 + 2ab = 49 a2 + b2 + 2 x 12 = 49 a2 + b2 + 24 = 49 a2 + b2 = 49 - 24 a2 + b2 = 25 |
|
| 48. |
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3. |
|
Answer» Given: 3x – 2y = 11 and xy = 12 Cubing 3x – 2y = 11 both sides, we get (3x – 2y)3 = (11)3 (3x)3 – (2y)3 – 3(3x)(2y) (3x – 2y) =1331 27x3 – 8y3 – 18xy(3x -2y) =1331 27x3 – 8y3 – 18 x 12 x 11 = 1331 27x3 – 8y3 – 2376 = 1331 27x3 – 8y3 = 1331 + 2376 27x3 – 8y3 = 3707 |
|
| 49. |
If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3 |
|
Answer» 27x3 + 8y3 = (3x)3 + (2y)3 = (2x + 2y)3 - 3. 3x . 2y (3x + 2y) (3x - 2y)3 - 18xy (3x + 2y) = (9)3 - 18(3) (9) = 729 - 486 = 243 |
|
| 50. |
Find the following products:(p2 + 16) (p2 – 1/4) |
|
Answer» Given that, (p2 + 16) (p2 – 1/4) = p2 (p2 – 1/4) + 16 (p2 – 1/4) = p4 – 1/4p2 + 16p2 – 4 = p4 + 63/4p2 – 4 |
|