Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Differentiate (log x) with repect to tan x.

Answer» Correct Answer - ` cot x `
102.

differentiate: log(logx)

Answer» Let `y="log"("log"x)`
`implies(dy)/(dx)=(d)/(dx)"log"("log"x)`
`=(1)/("log"x)(d)/(dx)("log"x)`
`=(1)/(x"log"x)=(x log x)^(-1)`
`implies(d^(2)y)/(dx^(2))=(d)/(dx)(x log x)^(-1)`
`= -1* (x logx)^(-2)(d)/(dx)(x logx)`
`=([x*(d)/(dx)logx+"log"x(d)/(dx)x])/((xlogx)^(2))`
`=([x*(1)/(x)+"log"x])/((xlogx)^(2))`
`=((1+"log"x))/((xlogx)^(2))`
103.

Differentiate `(log x)^(cos x)` with respect to x.

Answer» `"Let " y = ("log "x)^("cos "x)`
`rArr "log " y = "log "{("log "x)^("cos "x)}`
`= "cos "x * "log "("log "x)`
Diffenentiate both sides w.r.t.x
`(1)/(y) (dy)/(dx) = "cos "x * (d)/(dx)"log" ("log " x) + "log"("log " x)(d)/(dx)"cos"x`
`rArr (dy)/(dx) = y {("cos"x)/("log"x)*(d)/(dx)("log"x)+"log"("log" x)(-"sin"x)}`
`rArr (dy)/(dx) =("log" x)^("cos"x){("cos"x)/(x*"log"x)-"sin"x * "log" x ("log"x)}`
104.

Differentiate log x with respect to sin x

Answer» Correct Answer - `1/ x cot x `
105.

Differentiate `log(secx+tanx)`with respect to `x`:

Answer» Let y=log (sec x + tan x)
`rArr (dy)/(dx)log (sec x +tan x) `
`1/(sec x+tan x ).(d)/(dx)(sec x tan x )`
`1/(sec x+tan x ).(d)/(dx)(sec x tan x +sec ^2 x )`
`=(sec x(tan x+ sec x))/(secx + tan x )=sec x.`
106.

Differentiate the following w.r.t. x:`log(cose^x)`

Answer» `"Let"y = "log" ("cos" e^(x))`
`(dy)/(dx) = (d)/(dx) " log" ("cos" e^(x))`
`= (1)/("cos"e^(x)) (d)/(dx) "cos"e^(x)`
`= (1)/("cos"e^(x))* (-"sin"e^(x))*(d)/(dx)e^(x)`
`= - e^(x)*"tan"e^(x)`
107.

If `y=A e^(m x)+B e^(n x)`, show that `(d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0`.

Answer» `y=Ae^(mx)+Be^(nx)`
`implies(dy)/(dx)=Ame^(mx)+"Bne"^(nx)`
`implies(d^(2)y)/(dx^(2))=Am^(2)e^(mx)+"Bn"^(2)e^(nx)`
`L.H.S.=(d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny`
`=[Am^(2)e^(mx)+Bn^(2)e^(nx)]-(m+n)[Ame^(mx)+"Bn"e^(nx)]+mn[Ae^(mx)+Be^(nx)]`
`=Am^(2)e^(mx)+Bn^(2)e^(nx)-"Am"^(2)e^(mx)-"Bmn"e^(nx)-"Amn"e^(mx)-"Bn"^(2)e^(nx)+"Amn"e^(mx)+"Bmn"e^(nx)`
`=0=R.H.S. " " `Hence Proved.
108.

x=a cos t, y=b sin t

Answer» Correct Answer - `-b/a cot t`
109.

log cos x

Answer» Correct Answer - `-tan x`
110.

`sin^@`

Answer» Correct Answer - `pi/(180)cos( (pi x)/(180))`
111.

`sqrt(sin x)`

Answer» Correct Answer - `(cos x)/(2 sqrt(x))`
112.

If `y = 3 cos (log x) + 4 sin (log x)`, show that `x^2y_2+xy_1+y=0`

Answer» `y=3" cos"(log x)+4" sin"(log x) " "`...(1)
`impliesy_(1)=(d)/(dx)[3" cos"(log x) +4 sin (log x)]`
`= -(3" sin"(log x))/(x)+(4" cos"(log x))/(x) `
`impliesxy_(1)= -3 "sin"(log x)+4cos(log x)`
Again differentiate both sides w.r.t.x
`x*y_(2)+y_(1)*1=(3cos(logx))/(x)-(4sin(log x))/(x)`
`implies x^(2)y_(2)+xy_(1)= -[3cos(logx)+4sin(logx)]= -y`
` " " `from equation (1)
`implies x^(2)y_(2)+xy_(1)+y=0 " " ` Hence proved.
113.

`log(x^2+3)`

Answer» Correct Answer - `(2x)/(x^2+3)`
114.

If `y=cos^(-1)x`, find `(d^2y)/(dx^2)`in terms of `y`alone.

Answer» `y="cos"^(-1)x impliesx=cos y`
`implies(dy)/(dx)= -sin y`
`implies(dy)/(dx)= -(1)/("sin"y)= -"cosec " y`
`implies (d^(2)y)/(dx^(2))=(d)/(dx)(-"cosec " y)`
`="cosec "y" cot "y*(dy)/(dx)`
`="cosec "y" cot"y(-"cosec "y)`
`= -"cosec"^(2)y" cot "y`
115.

`e^(x^2+1)`

Answer» Correct Answer - `2x.e^(x^2+1)`
116.

Differentiate`sin^(-1)((2x)/(1+x^2))`with respectto `tan^(-1)((2x)/(1-x^2)),`if `-1A. 1B. 2C. -1D. 2

Answer» Correct Answer - A
117.

If `y=5" cos"x-3" sin"x`, prove that `(d^(2)y)/(dx^(2))+y=0.`

Answer» `y=5" cos"x-3" sin"x`
`implies(dy)/(dx)=(d)/(dx)(5" cos"x-3" sin"x)= -5sinx-3cos x`
`implies(d^(2)y)/(dx^(2))=(d)/(dx)(-5" sin"x-3 cos x)`
`= -5 cos x+3 sin x `
`= -(5 cos x-3 sin x)= -y`
`implies(d^(2)y)/(dx^(2))+y=0 " " `Hence Proved.
118.

`cot ^2 x`

Answer» Correct Answer - `-2 cos x .cosec^2 x`
119.

`e^(x/a)`

Answer» Correct Answer - `1/a.e^(x//a)`
120.

Find the derivatiive of `cos(tan x^3)`

Answer» Let y `=cos (tan x^3) `
`rArr (dy)/(dx)=d/(dx)cos (tan x^3)`
`=-sin (tan x^3)d/(dx)(tan x^3)`
`=-sin (tan x^3).sec^2 x^3.d/dx x^3`
`=-sin (tan x^3).sec^2 x^3.(3x^2)`
`=-3x^2sex^2x^3.sin(tan x^3).`
121.

the derivative of `sin(log x)` is

Answer» Let `y= "sin" (log x)`
`implies(dy)/(dx)=(d)/(dx)"sin"("log"x)`
`=(1)/("log"x)(d)/(dx)("log"x)`
`=cos(log x)(d)/(dx)log x=("cos"(log x))/(x)`
`implies(d^(2)y)/(dx^(2))=(d)/(dx)[("cos"(log x))/(x)]`
`=(x(d)/(dx)"cos"(log x)-"cos"(log x)(d)/(dx)x)/(x^(2))`
`=(x{-"sin"(log x)}*(1)/(x)-"cos"(log x))/(x^(2))`
`= -[("sin"(log x) +cos(log x))/(x^(2))]`
122.

`e^(5x)`

Answer» Correct Answer - `5.e^(5x)`
123.

If `x^(2//3)+y^(2//3)=a^(2//3)`, find `(dy)/(dx)`

Answer» Correct Answer - `(-y^(1//3))/(x^(1//3))`
124.

Let `f(x)={{:((alphacotx)/(x)+(beta)/(x^(2))",",0ltxle1),((1)/(3)",",x=0):}` If f(x) is continuous at x =0, then the value of `alpha^(2)+beta^(2)` isA. 1B. 2C. 5D. 9

Answer» Correct Answer - B
`underset(xrarr0)(lim)f(x)=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(x.alphacotx+beta)/(x^(2))=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(xalpha+betatanx)/(x^(2).tanx)=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(alphax+beta(x+(x^(3))/(3)+...oo))/(x^(3)((tanx)/(x)))=(1)/(3)`
`rArr" "underset(xrarr0)(lim)((alpha+beta)x+((beta)/(3))x^(3)+...oo)/(x^(3))=(1)/(3)`
So, `" "alpha+beta=0`
Also,`" "beta=1rArr alpha=-1`
125.

If y= `y=sqrt((1-sin 2x )/(1+sin 2 x))` prove that `(dy)/(dx)+sec^2(pi/4-x)=0.`

Answer» `y= sqrt((1-sin 2x)/(1+sin 2x))`
`=sqrt((cos^2 x+sin^2x-2sin x cos x)/(cos^2+sin^2x+2 sin x cos x ))`
`=sqrt(((cos x-sin x)^2)/(cos x +sin x )^2)`
`=(cos x - sin x)/(cosx+sinx)`
`=(1-tanx)/(1+tan x)=(tan"(pi)/(4)tanx)/(1+tanpi/2.tanx)=tan (pi/(4)=x)`
`rArr dy/dx=d/dxtan ((pi)/4-x)`
`=sec^2((pi)/(4)-x)d/dx(pi/4-x)`
`=-sec^2(pi/4-x)`
`rArr (dy)/(dx)+sec^2(pi/4-x)=0.`
126.

If `y=sin^(-1)((1-x^2)/(1+x^2))`, then `(dy)/(dx)=``-2/(1+x^2)`(b) `2/(1+x^2)`(c) `1/(2-x^2)`(d) `2/(2-x^2)`A. `2/(1+x^2)`B. `(-2)/(1+x^2)`C. `(-1)/(1+x^2)`D. None of these

Answer» Correct Answer - B
127.

Find the 2nd derivative if `x^3` log x with respect to x.

Answer» Correct Answer - `x(5+6logx)`
128.

Find the 2nd dervative of `e^(ax+b)` with respect to x.

Answer» Correct Answer - `a^2. e^(ax+b)`
129.

If `y=tan^(-1)x^3` then find `(d^2y)/(dx^(2))`.

Answer» Correct Answer - `(6x(1-2x^6))/((1+x^6)^2)`
130.

`cos^(-1)(sqrt(1+cos x)/2)`

Answer» Correct Answer - `1/2`
131.

If `y= tan^-1((1-x)/(1+x))+cot^-1((1-x)/(1+x))` then `dy/dx` ?A. -1B. 1C. 0D. None of these

Answer» Correct Answer - C
132.

Differentiate `sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`with respect to `x`

Answer» `"Let "y =sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
`rArr "log " y = "log" sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
`=(1)/(2)["log"(x-1) +"log" (x-2) - "log" (x-3)- "log" (x-4)- "log" (x-5)]`
Differentiate both sides w.r.t.x.
`(1)/(y)(dy)/(dx) = (1)/(2){(1)/(x-1)+ (1)/(x-2) - (1)/(x-3) - (1)/(x-4) - (1)/(x-5)}`
`rArr (dy)/(dx) = (1)/(2)sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))){(1)/(x-1)+ (1)/(x-2) - (1)/(x-3) - (1)/(x-4) - (1)/(x-5)}`
133.

If `x=at^2,y=2` at then find `(d^2y)/(dx^2)`.

Answer» Correct Answer - `(-1)/(2at^3)`
134.

`tan^(-1)((sin x)/(1+cos x))`

Answer» Correct Answer - `1/2`
135.

If `x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx`

Answer» `x=a cos ^3 t `
`dx/dt=a.d/dt(cos t)^3=-3a cos^2 t. d/dt(cos t )`
and `y=a sin^3 t`
`rArr dy/dt =a. d/dt(sin t )^3=a.3 sin ^2 t .d/dtsin t `
`= 3a sin ^2 t cos t`
`Now dy/dx=(dy//dt)/(dx//dt)=(3asin^2 tcost )/(-3 a cos^2 t.sin t)=-tan t `.
136.

`"cos" x *"cos" 2x* "cos" 3x` , find dy/dx

Answer» `"Let" y = "cos" x * "cos" 2x * "cos" 3x`
`rArr "log" y ="log" ("cos" x "cos" 2x "cos" 3x)`
`="log cos" x + "log cos" 2x + "log cos" 3x`
Differentiate both sides W.r.t.x
` (1)/(y) (dy)/(dx) = (1)/("cos" x)(d)/(dx)("cos" x)+(1)/("cos" 2x)(d)/(dx)("cos" 2x)+(1)/("cos" 3x)(d)/(dx)"cos" 3x`
`=-("sin" x)/("cos" x) + ((-"sin" 2x))/("cos" 2x)*(d)/(dx)(2x)+((-"sin" 3x))/("cos" 3x)(d)/(dx)3x`
`rArr (dy)/(dx)= -y("tan" x + 2"tan" 2x + 3"tan" 3x)`
`rArr (dy)/(dx) = "cos" x " cos" 2x " cos" 3x ("tan " x + 2"tan "2x + 3 "tan "3x)`
137.

`(x+(1)/(x))^(x) +x^((1+(1)/(x)))`

Answer» `"Let " y = (x+(1)/(x))^(x) +x^((1+(1)/(x)))`
`"Let " u =(x+(1)/(x))^(x) " and "v = x^(1+(1)/(x))`
`therefore y=u + v rArr (dy)/(dx) = (du)/(dx) + (dv)/(dx) " " ...(1)`
`"Now", u = (x+(1)/(x))^(x)`
`rArr "log " u = "log" (x+(1)/(x))^(x) = x" log"(x+(1)/(x))`
`rArr (1)/(u) (du)/(dx) = x* (d)/(dx) "log" (x+(1)/(x)) + "log"(x+(1)/(x))(d)/(dx) x`
`rArr (du)/(dx) = u [(x)/(x+(1)/(x))(1-(1)/x^(2))+"log" (x+(1)/(x))]`
`=(x + (1)/(x))^(x) [(x^(2)-1)/(x^(2)+1) + "log" (x+(1)/(x))]`
` "and "v = x^((1+(1)/(x))`
`rArr "log " v = "log" {x^((1+(1)/(x)))} = (1+(1)/(x))"log"x`
`rArr (1)/(v) (dv)/(dx) = (1+(1)/(x))(d)/(dx) "log"x + "log"x (d)/(dx) (1+(1)/(x))`
`rArr (dv)/(dx) = v[(1+(1)/(x))*(1)/(x)+"log"x (-(1)/(x^(2)))]`
`rArr (dv)/(dx) = x^((1+(1)/(x)))*(1)/(x^(2))[x+1-"log"x]`
`therefore "From equation (1)"`
`(dy)/(dx) = (x+(1)/(x))^(x)[(x^(2)-1)/(x^(2)+1)+ "log" (x+(1)/(x))] + x^((1+(1)/(x))) * (1)/(x^(2))[x+1-"log"x]`
138.

If x=a (t+sin t) and y=a(1-cos t ) then find `dy/dx`.

Answer» `x=a (t + sin t)`
`rArr dx/dy =a(1+cos t)`
and `y=a(1-cos t)`
`rArr dy/dx =a(0+ sin t)=a sin t `
`therefore dy/dx=(dy//dt)/(dx//dt)=(a sin t)/(a(1+cos t ))`
`=(2 sin""t/2 cos""t/2)/(2 cos^2""t/2)=tan""t/2`
139.

(i)` b tan ^(-1)(x/a+tan^(-1)"(x)/a)` (ii) `(sin ^(-1)x)^(2)-(cos^(-1)x)^2`

Answer» Correct Answer - `(b(2a^2+x)^2)/(a(a^2+x^2)[1+(x/a +tan^-1""x/a)^2] `
(ii) `pi/sqrt(1-x^2)`
140.

Find derivative of `cos(logx+e^x)`, `x >0`w.r.t. to `x`

Answer» `"Let" y = "cos" ("log" x +e^(x))`
`rArr (dy)/(dx) =(d)/(dx)"cos" ("log" x + e^(x))`
`=-"sin"("log" x + e^(x))(d)/(dx)("log" x +e^(x))`
`=-"sin"("log" x +e^(x))((1)/(x)+e^(x))`
`=(-"sin" ("log" x + e^(x))(1 + x * e^(x)))/(x)`
141.

The set of points of discontinuity of the function `f(x)=(1)/(log|x|),is`A. {0}B. {-1,1}C. {-1,0,1}D. none of these

Answer» Correct Answer - C
Clearly, f(x) is not defined at x=0, 1,-1
At all points f(x) is continuosu. Hence, required set is `{-1,0,1}`
142.

If `f(x)-{x^2}-({x})^2, `where (x) denotes the fractional part of x, thenA. `f (x) ` is continuous at ` x = 2 ` but not at ` x = - 2 `B. `f (x) ` is continuous at ` x = - 2 ` but not at ` x = 2 `C. ` f (x)` is continuous at ` x = 2 and x = - 2 `D. `f (x) ` is discontinuous at ` x = 2 and x = - 2 `

Answer» Correct Answer - A
We have, ` f (x) = {x^(2)} - ( {x}) ^(2)`
` therefore lim_( x to 2 ^(-)) f (x) = lim_(h to 0 ) f ( 2 - h ) `
` rArr lim_( x to 2^(-)) f (x) = lim _( h to 0 ){ (2 - h ) ^(2)} - ({ 2- h }) ^(2)`
` rArr lim _( x to 2 ^(-)) f (x) = lim_( h to 0 )[ ( 2 - h ) ^(2) - [(2 - h ) ^(2)] - (( 2 - h ) - [(2 - h)]) ^(2)]`
` rArr lim_( x to 2 ^(-)) f (x) = lim_( h to 0 )[ ( 2 - h) ^(2) - 3 - (2 - h - 1) ^(2)] `
` rArr lim_( x to 2 ^(-)) f (x) = lim_( h to 0 ) [ 4 - 4h + h ^(2) - 3 - (1 - 2h + h ^(2))] = 0 `
` lim_( x to 2 ^(+)) f (x) = lim_( h to 0 ) f ( 2 + h )`
`rArr lim_( x to 2 ^(+)) f (x) = lim_( h to 0 ) [ {(2 + h ^(2)) } - { 2+ h } ^(2)]`
` rArr lim_(x to 2 ^(+)) f (x) = lim_( x to 0 ) [ ( (2 + h ) ^(2) - [ (2 + h ) ^(2)] ) - ((2 + h ) - [ 2 + h ] ) ^(2)]`
` rArr lim_( x to 2 ^(+)) f (x) =lim_( h to 0 ) [ ( 4 + 4h + h ^(2) - 4) - ( 2 + h - 2 )^(2)]`
` rArr lim_(x to 2^(+)) f (x) = lim_( h to 0 )4h =0 `
and, ` f ( 2 ) = { 2 ^(2)} - ( {2}) ^(2) = 0 - 0 = 0 `
` therefore lim_( x to 2^(-)) f (x) = lim_( x to 2 ^(+)) f (x) = f (2) `
So, f (x) is continuous at ` x = 2`.
Now,
` " " lim_( x to - 2^( - )) f (x) = lim_( h to 0 ) f (-2 - h )`
` rArr lim _( x to - 2^( -)) f (x) = lim_( h to 0) [{(-2 - h )^(2) } - ({( - 2 - h )}) ^(2) ] `
` rArr lim_(x to - 2 ^(-))f (x) = lim_( h to 0 ) [ (( - 2 - h ) ^(2) - [ (-2 - h ) ^(2)] ) - (( - 2 - h ) - [ - 2 - h ] ) ^(2)]`
` rArr lim_( x to - 2 ^(-)) f (x) = lim _( h to 0) [ (-2 - h )^(2) - 4 - ( - 2 - h + 3 ) ^(2)]`
`rArr lim_( x to - 2 ^( - )) f (x) = lim _( h to 0) [ 4h + h ^(2) - ( 1- h ) ^(2)] = - 1 `
` " " lim_( x to - 2 ^(+)) f (x) = lim_( h to 0) f (-2 + h )`
`rArr lim_( x to - 2 ^(+)) f (x) = lim_( h to 0 ) [{( - 2 + h ) ^(2)} - { ( - 2 + h )} ^(2) ] `
` rArr lim_( x to - 2 ^( + ) ) f (x) =lim _( hto 0 ) [(( - 2 + h ) ^(2) - [ (-2 + h ) ^(2) ] )- (-2 + h - [ - 2 + h ] ) ^(2) ]`
` rArr lim _( x to - 2 ^( + )) f (x) = lim _( h to 0 ) [ (( - 2 + h ) ^(2) - 3 ) - ( - 2 + h + 2) ^(2)]`
` rArr lim _( x to - 2 ^(+)) f (x) = lim _(h to 0) [(-2 + h ) ^(2) - 3 - h ^(2)] = 1 `
` therefore lim _( x to - 2^( - ))f (x) ne lim_( x to - 2 ^( + )) f (x) `
So, f (x) is continuous at ` x = - 2 `
143.

`cot^(-1)sqrt(x)`

Answer» Correct Answer - `(-1)/(2sqrt(x)(1+x))`
144.

`e^(ax).sin^-1bx`

Answer» Correct Answer - `(e^(tan^(-1_x)).cos e^(tan^(-1_x)))/(1+x^2)`
145.

If `y=a^(x^(a^x..oo))` then prove that `dy/dx=(y^2 log y )/(x(1-y log x log y))`

Answer» `y=a^(x^(a^x..oo))`
`y-a^(x^(y)`
`rArr log y =log x^(x^(y))`
`x^(y).loga`
`y-a^(x^(y)`
`rArr log y =log x^(x^(y))`
`x^(y).loga`
`rArr log(log y)=log x^y+log(log a)`
`=ylog x+log +log (log a)`
Differentiate both sides with respect to x
`1/(y log y )dy/dx=y/x+log x. dy/dx +0`
`rArr (1/(y log y )-log x ) dy/dx = y/x `
`rArr ((1-y log x log y ) )/ (y log y ) .dy /dx = y/x`
`dy/dx = (y^2 log y )/(x(1-y log x log y)`
146.

If `x=at^2` and y=2 at then find `dy/dx`

Answer» `x=at^2`
`rArr dy/dx =a.d/dt(t^2)=a.2t=2at` and y=2 at
`rArr dy/dx =2a.d/dt (t)=2a .(1)=2a`
Now `dy/dx=(dy//dt)/(dx//dt)=(2a)/(2 at) =1/t.`
147.

`sin^-1(cos x)+tan ^-1(cot x)`

Answer» Correct Answer - -2
148.

If `(x-a)^2+(y-b)^2=c^2`, for some `c > 0`, prove that `([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2))`is a constant independent of a and b.

Answer» `(x-a)^(2)+(y-b)^(2)=c^(2) " "` …(1)
`implies2(x-a)+2(y-b)(dy)/(dx)=0`
`implies(dy)/(dx)= -(x-a)/(y-b) " " ` ...(2)
`implies (d^(2)y)/(dx^(2))= -((y-b)*1-(x-a)(dy)/(dx))/((y-b)^(2))`
`= -((y-b)-(x-a)[-(x-a)/(y-b)])/((y-b)^(2))`
`= -((y-b)^(2)-(x-a)^(2))/((y-b)^(3))`
`= -(c^(2))/((y-b)^(3))`
` " " `From equation (1)
Now `([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))=([1+((x-a)/(y-b))^(2)]^(3/2))/((-c^(2))/((y-b)^(3)))`
`=([((y-b)^(2)+(x-a)^(2))/((y-b)^(2))]^(3//2))/(-(c^(2))/((y-b)^(3)))`
`= -[(c^(2))/((y-b)^(2))]^(3//2)*((y-b)^(3))/(c^(2))`
`= -(c^(3))/((y-b)^(3))*((y-b)^(3))/(c^(2))= -c`
which is a constant independent of a and b. ` " " `Hence Proved.
149.

Differentiate the following w.r.t. x:`(logx)^x+x^(logx)`

Answer» `y = x^("log" x) + ("log" x)^(x)`
`=u + v " " (say)`
`implies (dy)/(dx) = (du)/(dx) + (dv)/(dx) " " ….(1)`
`"Now",u=x^("log"x)`
`rArr " log"u-"log"(x^("log"x))-"log"x*"log"x-("log"x)^(2)`
`rArr (1)/(u)(du)/(dx) = (2"log"x)/(x)`
`rArr (du)/(dx) = (2u "log"x)/(x) = (2"log"x)/(x).x^("log"x)`
`"and "v = ("log"x)^(x)`
`rArr "log"v = "log" ("log"x)^(x) = x"log" ("log"x)`
`rArr (1)/(v) (dv)/(dx) = (x)/(x"log"x) + "log"("log"x)`
`rArr (dv)/(dx) = v[(1)/("log"x) + "log"("log"x)]`
`=("log"x)^(x) [(1)/("log"x) + "log"("log"x)]`
From equation (1)
`(dy)/(dx) = x^("log"x)*(2"log"x)/(x) + ("log"x)^(x)[(1)/("log"x) + "log"("log"x)]`
150.

`y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) " then find " dy/dx`

Answer» `y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) `
`rArr sqrt(sin x +cos x+y )`
`rArr y^2 =sin x+ cos x+y `
`y^2-y =sin x+cos x` Differentiate both sides w.r.t. x,
`2y(dy)/(dx))-dy/dx = cos x -sin x `
`rArr dy /dx (2y -1) =cos x -sin x `
`rArr dy /dx =(cos x-sin x )/(2y -1)`