InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Evaluate: \(\int\limits_0^1\cfrac{tan^{-1}}{(1+x^2)}dx\)∫ tan-1x/(1+x2)dx, x ∈[0,1] |
|
Answer» Let \(I=\int\limits_0^1\cfrac{tan^-1x}{1+x^2}dx\) Let tan-1x=t \(\Rightarrow\cfrac{1}{1+x^2}dx=dt.\) Also, when x=0, t=0 and when x=1,t=\(\cfrac{\pi}{4}\) Hence, \(I= \int\limits_0^{\pi/4}t\,dt=\cfrac{1}{2}t^2|_0^{\frac{\pi}{4}}=\cfrac{\pi^2}{32}\) |
|
| 2. |
Evaluate: \(\int\limits_2^43dx\)∫ 3dx, x ∈[2,4] |
|
Answer» \(\int\limits_2^43dx=3[x]\) =3[4-2] =6 |
|
| 3. |
The area of the region enclosed by the curve y = 1/x , and the lines x = e, x = e2 is given by(a) 1 sq unit (b) 1/2 sq units (c) 3/2 sq units (d) 5/2 sq units |
|
Answer» Correct option is: (a) 1 sq unit |
|
| 4. |
The area bounded by the region 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by (a) 12 sq units (b) 8 sq units (c) 25 sq units (d) 32 sq units |
|
Answer» Correct option is: (a) 12 sq units |
|
| 5. |
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is(a) 128/3 sq units (b) 108/3 sq units (c) 118/3 sq units (d) 218/3 sq units |
|
Answer» Correct option is: (a) 128/3 sq units |
|
| 6. |
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by(a) 16a2/3 sq units (b) 8a2/3 sq units (c) 4a2/3 sq units (d) 32a2/3 sq units |
|
Answer» Correct option is: (a) 16a2/3 sq units |
|
| 7. |
The area of the circle x2 + y2 = 25 in first quadrant is (a) 25π/3 sq units (b) 5π sq units (c) 5 sq units (d) 3 sq units |
|
Answer» Correct option is: (a) 25π/3 sq units |
|
| 8. |
The area bounded by the curve y = tan x, X-axis and the line x = π/4 is(a) 1/3 log 2 sq units (b) log 2 sq units (c) 2 log 2 sq units (d) 3 log 2 sq units |
|
Answer» Correct option is: (a) 1/3 log 2 sq units |
|
| 9. |
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is(a) 7/3 sq units (b) 8/3 sq units (c) 64/3 sq units (d) 56/3 sq units |
|
Answer» Correct option is: (d) 56/3 sq units |
|
| 10. |
The area bounded by the ellipse and the line \(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2} = 1\) x2/a2 + y2/b2 = 1 is(a) πab – 2ab sq units (b) πab/4 - ab/2 sq units (c) (πab – ab) sq units (d) πab sq units |
|
Answer» Correct option is: (b) πab/4 - ab/2 sq units |
|
| 11. |
The area bounded by y = √x and line x = 2y + 3, X-axis in first quadrant is (a) 2√3 sq units (b) 9 sq units (c) 34/3 sq units (d) 18 sq units |
|
Answer» Correct option is: (b) 9 sq units |
|
| 12. |
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ π/6 and the X-axis is(a) 1/2 sq unit (b) 1 sq unit (c) 2/3 sq unit (d) 1/3 sq unit |
|
Answer» Correct option is: (d) 1/3 sq unit |
|
| 13. |
Prove that \(\int\limits_0^{\pi/2}(sin\,x-cos\,x)log(sin\,x+cos\,x)dx=0\)∫ (sin x- cos x)log(sin x+ cos x)dx=0, x ∈[0,π/2] |
|
Answer» Let, sin x + cos x = t ⇒ cos x – sin x dx = dt At x = 0, t = 1 At x = π/2, t = 1 \(y=\int\limits_0^{1}-logt\,dt\) We know that when upper and lower limit in definite integral is equal then value of integration is zero. So, y = 0 |
|
| 14. |
Evaluate\(\int\limits_{0}^{1}\cfrac{2\text x}{1+\text x^2}d\text x \) |
|
Answer» Let I = \(\int\limits_{0}^{1}\cfrac{2\text x}{1+\text x^2}d\text x \) Substituting 1+x2 = t ⇒ 2x dx=dt Also, When x = 0, t=1 and x=1, t = 2 We get I = \(\int\limits_{0}^{1}\cfrac{1}tdt\) = loget \(|^2_1\) = loge 2 - loge1 = loge2 (Since loge1 = 0) |
|
| 15. |
Evaluate: \(\int\limits_1^2 log\,x\,dx\)∫ log x dx, x ∈[1,2] |
|
Answer» \(=\int\limits_1^2 log(x)dx=xlog(x)-(x)\) \(=2log(2)-(2)-1log(1)+(1)\) = 2log(2)-1 |
|
| 16. |
\(\int_0^{\pi/2} \cfrac{sin^2\,x}{(1+cos\,x)^2}.dx =\).....∫ sin2x/(1+cos x)2.dx, x ∈ [0, π/2] = .......(a) \(\cfrac{4-\pi}{2}\)(b) \(\cfrac{\pi-4}{2}\)(c) \(4-\cfrac{\pi}{2}\)(d) \(\cfrac{4+\pi}{2}\) |
|
Answer» Correct option is: (a) \(\cfrac{4-\pi}{2}\) |
|
| 17. |
\(\int_2^3 \cfrac{dx}{x(x^3-1)}\) = ∫ dx/x(x3 -1).dx, x ∈ [0, 1] = .......(a) \(\frac{1}{3} log (\frac{208}{189})\)(b) \(\frac{1}{3} log (\frac{189}{208})\)(c) \(log (\frac{208}{189})\)(d) \(log (\frac{189}{208})\) |
|
Answer» Correct option is: (a) \(\frac{1}{3} log (\frac{208}{189})\) |
|
| 18. |
\(\int_1^2\cfrac{1}{x^2}e^{1/x}.dx =\).....∫ 1/x2e1/x.dx x ∈ [1, 2] = .....(a) √e + 1 (b) √e − 1 (c) √e(√e − 1) (d) (√e-1)/e |
|
Answer» Correct option is: (c) √e(√e − 1) |
|
| 19. |
If \(\int_0^1\cfrac{1}{\sqrt{1+x}-\sqrt{x}} = \cfrac{k}{3},\) ∫ 1/√(1+x)-√x .dx = k/3 ,x ∈ [0, 1] then k is equal to(a) √2(2√2–2) (b) √2/3 (2–2√2) (c) (√2/2 -2)/3(d) 4√2 |
|
Answer» Correct option is: (d) 4√2 |
|
| 20. |
\(\int_0^{\pi/2} sin^6x cos^2x.dx=\)∫ sin6 x cos2 x .dx, x ∈ [0, π/2] = .......(a) 7π/256(b) 3π/256(c) 5π/256(d) -5π/256 |
|
Answer» Correct option is: (c) 5π/256 |
|
| 21. |
If the marginal cost of a firm is f'(x) = 10 + 6x – 6x2 where x is the output find the total cost assuming that the fixed cost is Rs 125. |
|
Answer» Given MC = f'(x) = 10 + 6x – 6x2, C = 125, TC = ? TC = C(x) = ∫MCdx = ∫(10 +6x – 6x2)dx = 10x + \(\frac{6x^2}{2} - \frac{6x^3}{3}\)+ C Total cost = 10x + 3x2 – 2x3 + 125. |
|
| 22. |
Evaluate: \(\int\limits_0^{\pi/6}sec^2x\,dx\)∫ sec2x dx, x ∈[0, π/6] |
|
Answer» \(\int\limits_0^{\pi/6}sec^2x\,dx=[tanx]\) \(=[tan(\frac{\pi}{6})-tan\,0]\) \(=\cfrac{1}{\sqrt{3}}\) |
|
| 23. |
Evaluate: \(\int_0^1x^2dx\) |
|
Answer» \(\int_0^1x^2dx\) = \(\Big[\frac{x^3}{3}\Big]_0^1 = \frac{1}{3}\) |
|
| 24. |
Evaluate:\(\int\cfrac{e^x}{(e^{2x}+1)}dx\) ∫ ex/(e2x+1) |
|
Answer» To find: \(\int\cfrac{e^x}{(e^{2x}+1)}dx\) Formula Used: \(\int\cfrac{dx}{1+x^2}=tan^{-1}x\) Let y = ex … (1) Differentiating both sides, we get ' dy = ex dx Substituting in given equation, \(\Rightarrow\) \(\int\cfrac{dy}{y^2+1}\) ⇒ tan-1 y From (1), ⇒ tan-1 (ex ) Therefore, \(\int\cfrac{e^x}{(e^{2x}+1)}dx=tan^{-1}(e^x)+c\) |
|
| 25. |
Evaluate : \(\int\limits_0^1\frac{dx}{1+x^2}\) |
|
Answer» \(\int\limits_0^1\frac{dx}{1+x^2}\) = \([tan^{-1}x]^1_0\) = tan-11 - tan-10 = \(\frac{\pi}{4}-0\) = \(\frac{\pi}{4}\) |
|
| 26. |
Mark against the correct answer in the following:\(\int\limits_{-\pi}^\pi\,tan\,x\,dx=?\)∫ tan x dx=?, x ∈[-π,π]A. 2 B.\(\cfrac{1}{2}\) C.-2 D. 0 |
|
Answer» Correct answer: D. 0 f(x)=tan x f(-x) =tan(-x) =-tan x hence the function is odd, therefore, I=0 |
|
| 27. |
Evaluate: \(\int\limits_{-4}^{-1}\cfrac{dx}{x}\)∫ dx/x, x ∈[-1,-4] |
|
Answer» \(\int\limits_{-4}^{-1}\cfrac{dx}{x}=-[logx]\) =[log(-1)-log(-4)] =-[log(-4)-log(-1)] =\(-\left[log\left(\cfrac{-4}{-1}\right)\right]\) =-log 4 |
|
| 28. |
Evaluate the following Integral:\(\int\limits_{\pi/6}^{\pi/3}\)(tan x + cot x)2 dx |
|
Answer» =\(\int\limits_{\pi/6}^{\pi/3}\)tan2x + 2tanx cot x + cot2x dx recall: sec2x - tan2x = 1, cosec2x - cot2x = 1 = \(\int\limits_{\pi/6}^{\pi/3}\)sec2x -1 + 2 + cosec2x - 1 dx = \(\int\limits_{\pi/6}^{\pi/3}\) sec2x + cosec2x dx Integral sec2x is tan x and integral of cosec2x = - cot x = [tan x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\) - [cot x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\) Tan 30 = cot 60 = \(\cfrac{1}{\sqrt3}\) Tan 60 = cot 30 = √3 = Tan 60 - cot 60 - {Tan 30 - cot 30} = \(\sqrt3-\cfrac{1}{\sqrt3}-(\cfrac{1}{\sqrt3}-\sqrt3)\) = \(\cfrac{4}{\sqrt3}\) |
|
| 29. |
Evaluate \(\int\limits_{0}^{1}\cfrac{1}{\text x^2+1}d\text x\) |
|
Answer» Let I = \(\int\limits_{0}^{1}\cfrac{1}{\text x^2+1}d\text x\) Substituting x=tanθ ⇒ dx=sec2θdθ (By differentiating both sides) Also, when x=0, θ=0 and x=1 θ = \(\cfrac{\pi}4\) Since sec2θ=1 + tan2θ We get I = \(\int\limits_{0}^{\pi/4}d\theta\) = \(\cfrac{\pi}4\) |
|
| 30. |
LetI1 = \(\int_e^{e^2} \cfrac{dx}{log\,x}\) and I2 = \(\int_1^2 \cfrac{e^x}{x}.dx,\) I1 = ∫ dx/log x , x ∈ [e, e2] and I2 = ∫ ex/x .dx, x ∈ [1, 2] then(a) I1 = 1/3 I2 (b) I1 + I2 = 0(c) I1 = 2I2 (d) I1 = I2 |
|
Answer» Correct option is: (d) I1 = I2 |
|
| 31. |
The value of \(\int_{-\pi/4}^{\pi/4} log \left(\cfrac{2+sin\theta}{2-sin\theta}\right).d\theta\) ∫ log ((2+sin θ)(2-sin θ)). dθ, θ ∈ [-π/4, π/4] is(a) 0 (b) 1 (c) 2 (d) π |
|
Answer» Correct option is: (a) 0 |
|
| 32. |
Evaluate\(\int\limits_{-1}^{1}\) x | x | dx |
|
Answer» Let I = \(\int\limits_{-1}^{1} \) x | x | dx |x|= -x, if x <0 And |x|=x, if x ≥ 0 Therefore f(x)=x|x|=-x2, if x<0 And f(x)=x|x|=x2, if x ≥ 0 Consider x≥0 ⇒ f(x)=x2 Then -x < 0 ⇒ f(-x) = -(-x)2 = -f(-x) Now Consider x<0 ⇒ f(x)=-x2 Then -x ≥ 0 ⇒ f(-x) =-(-x)2=x2= -f(x) Hence f(x) is an odd function. An odd function is a function which satisfies the propertyf(-x) =-f(-x), ∀ x∈ Domain of f(x) There is a property of integration of odd functions which states that \(\int\limits_{-a}^af(x)dx=0 \) if f(x) is an odd function. Therefore I = \(\int\limits_{-1}^{1} \) x | x | dx = 0 |
|
| 33. |
Evaluate\(\int\limits_{-\pi/2}^{\pi/2}\) x cos2x dx |
|
Answer» Let I = \(\int\limits_{-\pi/2}^{\pi/2} \) x cos2x dx f(x)=xcos2x f(-x)=(-x)cos2(-x) =-xcos2x =-f(x) Hence, f(x) is an odd function. Since, \(\int\limits_{-a}^af(x)dx=0\) if f(x) is an odd function. Therefore, I = 0. |
|
| 34. |
Evaluate\(\int\limits_{-\pi/2}^{\pi/2}\)sin3x dx |
|
Answer» Let I = \(\int\limits_{-\pi/2}^{\pi/2}\)sin3x dx f(x)=sin3x f(-x)=sin3(-x)=-sin3x Hence, f(x) is an odd function. Since. \(\int\limits_{-a}^af(x)dx=0\) if f(x) is an odd function. Therefore, I = 0 |
|