InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
The solution of `(dy)/(dx) + y = e^(x)` isA. ` 2y = e^(2x)+C`B. `2ye^(x)=e^(2)+C`C. `2ye^(x)=e^(2x)+C`D. `2ye^(2x)=2e^(x)+C` |
|
Answer» Correct Answer - d Given differential equation is `(dy)/(dx) +y = e^(x)` This is linear differential equation ` :. IF = e^(int P dx) = e^(int 1 dx ) = e^(x)` , Now, solution is ` ye^(x) = int e^(2x) dx +C/2 ` ` rArr ye^(x) = (e^(2x))/2 + C/2 rArr 2ye^(x) = e^(2x) +C` |
|
| 52. |
The solution of the differential equation `((x+2y^3)dy)/(dx)=y`is(a)`( b ) (c) (d) x/( e )(( f ) (g) y^(( h )2( i ))( j ))( k ) (l)=y+c (m)`(n)(b) `( o ) (p) (q) x/( r ) y (s) (t)=( u ) y^(( v )2( w ))( x )+c (y)`(z)(c)`( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l ) y (m) (n)=( o ) y^(( p )2( q ))( r )+c (s)`(t)(d) `( u ) (v) (w) y/( x ) x (y) (z)=( a a ) x^(( b b )2( c c ))( d d )+c (ee)`(ff)A. `x=y^(3) +Cy`B. `x = y^(3)+2Cy`C. ` x = 2y^(3)+Cy`D. ` x=3y^(3)+Cy` |
|
Answer» Correct Answer - a The Given differential equation can be written as ` (dx)/(dy ) + (-1/y) x = 2y^(2) , y != 0 ` This is a linear differential equation of the form ` (dx)/(dy) +Px =Q ` Here, `P = (-1)/y and Q = 2y^(2)` ` :. IF = e^( intPdy ) = e^(int (-1)/y dy) = e^(-logy ) = y^(-1) = y^(-1) = 1/y ` The general solution of the given differential equation is given by ` x IF = int (Q xx IF) dy + C` ` rArr x(1/y) = int 2y^(2) *1/y dy +C` ` rArr x/y = y^(2) +C rArr x = y^(3) + Cy` |
|
| 53. |
To reduce the differential equation `(dy)/(dx) + P (x)*y = Q (x) * y^(n)` to the linear form , the substitution isA. `v = 1/(y^(n))`B. ` v = 1/(y^(n-1))`C. ` v = y^(n)`D. `v = y^(n-1)` |
|
Answer» Correct Answer - a The Given differential equation is ` (dy)/(dx) + P (x)* y = Q (x) * y^(n)` ` rArr 1/(y^(n)) * (dy)/(dx) + y^(-n+1) P y = Q (x)* y^(n)` Put ` 1/(y^(n-1))= v ` ` rArr (-n +1) y^(-n)(dy)/(dx) =(dv)/(dx)` ` :. 1/(-n+1) * (dv)/(dx) +P (x) * v = Q (x)` ` rArr (dv)/(dx) +(1-n) P (x) * v = (1-n) Q (x)` which is linear differential equation . Hence , required substitiution is ` v = 1/(y^(n-1))` |
|
| 54. |
The solution of the differential equation `(dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y)`,isA. `e^(2y)=e^(3x)+x^(3)+c`B. `e^(2y)=e^(3x)-x^(3)+c`C. `(e^(2y))/(2)=(1)/(3)(e^(3x-x3))+c`D. `(e^(2y))/(2)=(1)/(3)(e^(3x+x3))+c` |
| Answer» Correct Answer - D | |
| 55. |
An integrating factor of the differential equation `(1+y+x^(2)y) dx + ( x +x^(3))dy = 0` isA. log xB. xC. `e^(x)`D. `1/x` |
|
Answer» Correct Answer - a Given , `(1+y+x^(2)y) dx + ( x + x^(3) )dy = 0 ` , ` rArr (dy)/(dx) = - (1+y+x^(2)y)/(x+x^(3))` ` rArr (dy)/(dx) +y/x = - 1/(x(1+x^(2)))` which is linear differential equation ` :. IF = e^(int 1/x dx) = e^(logx)= x` |
|
| 56. |
`2x^(x+2y) dx -3dy =0`A. `4e^(x)+3e^(-2y)=c`B. `4e^(x)-3e^(-2y)=c`C. `4e^(x)+3e^(2y)=c`D. `4e^(x)-3e^(2y)=c` |
| Answer» Correct Answer - A | |
| 57. |
The solution of the diffferential equation ` x (dy)/(dx ) + 2y = x^(2) ` isA. ` y = (x^(2)+C)/(4x^(2))`B. `y = (x^(2))/4+C`C. `y= (x^(4)+C)/(x^(2))`D. ` y = (x^(4)+C)/(4x^(2))` |
|
Answer» Correct Answer - b Given , `(dy)/(dx) +2/x y = x ` This is linear differential equation ` :. " Integrating factor " =e^(int 2/x dx) = x^(2) ` ` :. "Required solution is "` ` y * x^(@) = int x^(3) dx + C/4 = (x^(4))/4 +C/4 ` ` rArr y = (x^(4)+C)/(4x^(2))` |
|
| 58. |
Solution of differential equation `e^((dy)/(dx))=x` isA. `xlog|x|-1-y=c`B. `xlog|x|-1+y=c`C. `x(log|x|-1)+y=c`D. `x(log|x|-1)-y=c` |
| Answer» Correct Answer - D | |
| 59. |
The solution of differential equation ` (x^(2)-1) (dy)/(dx) + 2xy = 1/(x^(2)-1)` isA. ` y(x^(2)-1)=1/2 log |(x-1)/(x+1)|+C`B. ` y (x^(2)+1)=1/2 log |(x-1)/(x+1)|+C`C. ` y (x^(2)+1)=1/3 log |(x-1)/(x+1)|+C`D. `y ( x^(2)-1)=1/3 log |(x-1)/(x+1)|+C` |
|
Answer» Correct Answer - d The given differential equation is ` (x^(2)-1) (dy)/(dx) +2xy = 1/(x^(2)-1)` ` rArr (dy)/(dx) +(2x)/(x^(2)-1) y = 1/(x^(2)-1)^(2)` This is a linear differential equation is Here, `P = (2x)/(x^(2)-1) and Q = 1/(x^(2)-1)^(2)` ` :. IF = e^(int Pdx) = e^(int (2x)/(x^(2)-1)dx) = e^(log (x^(2)-1))= (x^(2)-1))` The general solution of the given differential equation is `y* IF int Q xx IF dx +C` ` rArr y(x^(2)-1) = int 1/(x^(2)-1)dx +C` `rArr y (x^(2)-1) = 1/2 log |(x-1)/(x+1)| +C` |
|
| 60. |
The solution of the differential equation `(1+y^(2)) dx = (tan^(-1) y - x) dy` isA. ` x = tan ^(-1)y -1+Ce^(-tan^(-1)y)`B. ` y = tan^(-1)y+1 +Ce^(-tan^(-1)y)`C. ` x = tan^(-1)y +Ce^(-tan^(-1))y`D. None of the above |
|
Answer» Correct Answer - a The Given differential equation is `(1+y^(2)) dx = (tan^(-1) y - x) dy` This equation can be rewritten as ` (dx)/(dy) + x/(1+y^(2)) = (tan^(-1)y)/(1+y^(2))` This is of the form , `(dx)/(dy) +Px = Q` Here, ` P = 1/(1+y^(2)) and Q = (tan^(-1)y)/(1+y^(2))` ` :. IF = e^(int 1/(1+y^(2))dy) = e^(tan-1y)` Therefore , required solution is ` xe^(tan-1y) = int e^(tan^(-1)) * (tan^(-1)y)/(1+y^(2)) dy +C` ` rArr xe^(tan-1y) = (tan ^(-1)y-1)e^(tan^(-1)y) +C` ` rArr x = tan^(-1) y - 1 +Ce ^(-tan ^(-1)y)` |
|
| 61. |
Solution of differential equation `(dy)/(dx)=3^(x+y)` isA. `3^(x)-3^(-y)=c`B. `3^(x)+3^(-y)=c`C. `3^(x)-3^(y)=c`D. `3^(x)-3^(y)=c` |
| Answer» Correct Answer - B | |
| 62. |
Solution of the differential equation `x-tan^(-1)y-1c e^(-tan^(-1)y)` isA. `y=(c-x)e^(x)`B. `y=(c-x)e^(-x)`C. `y=(c+x)e^(x)`D. `y=(c+x)e^(-x)` |
| Answer» Correct Answer - D | |
| 63. |
Solve the following differential equation: `(1+y^2)tan^(-1)dx+2y(1+x^2)dy=0`A. `(1)/(2)tan^(-1)x+log|1+y^(2)|=c`B. `(1)/(2)tan^(-1)x-log|1+y^(2)|=c`C. `(1)/(2)tan^(-1)x+log|1+y^(2)|=c`D. `(1)/(2)tan^(-1)x-log|1+y^(2)|=c` |
| Answer» Correct Answer - C | |
| 64. |
Solution of the differential equation `(1+x^(2)) dy + 2xy dx = cot x dx ` isA. ` y = log |sin x | (1+x^(2))+C(1+x^(2))^(-1)`B. ` y = log |sin x|(1+x^(2))^(-1)+C(1+x^(2))`C. ` y = log |sin x | (1+x^(2))+C(1+x)`D. ` y = log |sin x| (1+x^(2))^(-1)` |
|
Answer» Correct Answer - c Given , `(1+x^(2))dy +2xy dx = cot x dx ` ` rArr (1+x^(2)) dy = dx (cot x - 2xy ) ` ` rArr (dy)/(dx) = (cot x - 2xy)/(1+x^(2))` ` rArr (dy)/(dx) +(2xy)/(1+x^(2))= (cot x)/(1+x^(2))` Or comparing with the form `(dy)/(dx) +Py = Q` we get ` :. P = (2x)/(1+x^(2))and Q = (cot x)/(1+x^(2))` ` :. IF = e^(int Pdx) = e^(int (2x)/(1+x^(2) dx)) = e^(log(1+ x^(2))= 1+x^(2)` The General solution of the given differential equation given by `y * IF int Q xx IF dx +C` ` rArr (1+x)^(2) y = int( (1+x^(2))(cotx)/((1+x^(2)))) dx +C` ` rArr (1+x^(2)) y = log |sin x| +C` ` rArr y = log | sin x | (1+x^(2))^(-1)+C (1+x^(2))^(-1)` |
|
| 65. |
solution of the equation `(dy)/(dx)+1/x tany=1/x^2 tanysiny` isA. ` 2x= (1-2Cx^(2))sin y`B. `x=(1-2 Cx^(2)) sin y`C. `2x = (1+2Cx^(2))sin y`D. None of these |
|
Answer» Correct Answer - d The given differential equation can be rewritten as ` cot y "cosec" y (dy)/(dx) +1/x "cosec" y = 1/(x^(2))` On putting ` v = - "cosec" y and (dv)/(dx) = "cosec" y cot y (dy)/(dx),` we get ` (dv)/(dx) -1/x v = 1/(x^(2))` which is linear differential equation in v. Here, `P = -1/x and Q = 1/(x^(2))` ` :. IF = e^(int Pdx)= e^(int - 1/xdx)= e^(-logx)=1/x` Required solution is ` v = 1/x = int 1/x * 1/(x^(2))dx +C = -1/(2x^(2))+C` ` rArr 2x = (1- 2Cx^(2) ) sin y ` |
|
| 66. |
The solution of the differential equation `(1+y^(2)) dx = (tan^(-1) y - x) dy` isA. `x+tan^(-1)y+1c e^(-tan^(-1)y)`B. `x-tan^(-1)y+1c e^(-tan^(-1)y)`C. `x+tan^(-1)y-1c e^(-tan^(-1)y)`D. `x-tan^(-1)y-1c e^(-tan^(-1)y)` |
| Answer» Correct Answer - B | |
| 67. |
The solution of the differential equation ` (dy)/(dx) - (tany)/x = (tan y sin y)/(x^(2))` isA. `x/(siny) + log x = C`B. `y/(sin x)+log x =C`C. `log x +x = C`D. `log x +y = C` |
|
Answer» Correct Answer - b Given , ` (dy)/(dx) - (tany)/x = (tany sin y )/(x^(2))` ` rArr coty " cosec " y (dy)/(dx) - ("cosec "y)/x = 1/(x^(2))` Put ` - " cosec " y = t` ` rArr cot y " cosec " y (dy)/(dx) = (dt)/(dx)` Eq. (I ) reduces to , ` (dt)/(dx) +t/x = 1/(x^(2))` ` IF = e^(int P dx) = e^(int 1/x dx)= x` ` :. ` Required solution is given by ` tx = int x * 1/(x^(2)) dx- C` `rArr - "cosec" y * x = log x = C` ` rArr x/(sin y) + log x = C ` |
|
| 68. |
Solution of the differential equation `(dy)/(dx)tany=sin(x+y)+sin(x-y)` isA. `secy+2cosx=c`B. `secy-2cosx=c`C. `cosy-2sinx=c`D. `tany-2secx=c` |
| Answer» Correct Answer - A | |
| 69. |
The differential equation obtained by eliminating a and b from `y = ae^(bx)` isA. `y(d^(2)y)/(dx^(2))-((dy)/(dx))^(2)=0`B. `y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=0`C. `(d^(2)y)/(dx^(2))-((dy)/(dx))^(2)=0`D. `(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=0` |
| Answer» Correct Answer - A | |
| 70. |
The differential equation ` (e^(x)+1)y dy = (y+1) e^(x) dx ` has the solutionA. `(y-1)(e^(x)-1) = Ce^(y)`B. ` (y-1)(e^(x)+1) = Ce^(y)`C. ` (y+1) (e^(x)-1)=Ce^(y)`D. ` (y+1)(e^(x)+1)= Ce^(y)` |
|
Answer» Correct Answer - c Given differential equation can be rewritten as ` (y dy)/(y+1) = (e^(x)dx)/(e^(x)+1)` ` rArr (1- 1/(y+1))dy = (e^(x))/(e^(x)+1)dx` ` rArr y - log (y+1) = log (e^(x)+1) - log C` [ integrating both sides ] ` rArr y = log. ((e^(x)+1)(y+1))/C` , ` rArr (e^(x)+1) (y+1) = Ce^(y)` |
|
| 71. |
The solution of the differential equation `(dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y)`,isA. ` e^(2y) +e^(3x) +x^(3) +C`B. ` 1/2 e^(2y) =1/3 (e^(3x)+x^(3))+C`C. ` 1/2 e^(2y) = 1/3 (e^(3x)+x^(3))+C `D. ` e ^(2y)= e^(3x) + x^(2) +C` |
|
Answer» Correct Answer - d Given differential equation can be rewritten as , ` e^(2y)dy = (e^(3x)+x^(2))dx` On integrating , we get ` rArr (e^(2y))/2 = (e^(3x))/3 +x^(3)/3 + C` |
|
| 72. |
The solution of the differential equation ` y - x ( dy)/(dx) = a ( y^(2) + dy/dx)` isA. `y = C (x+a)(1-ay)`B. `y = C( x+a) (1+ay)`C. `y = C(x-a)(1+ay)`D. None of these |
|
Answer» Correct Answer - d Given , ` y - x (dy)/(dx) = a (y^(2) +dy/dx)` ` rArr (dy)/(dx) (a+x) = y - ay^(2) ` On integrating both sides , we get ` rArr int (1/y +a/(1-ay))dy = int (dx)/(a+x)` ` rArr log y - log (1-ay) = log (a+x) +log C` ` rArr log y = log (1- ay) (a+x)C` ` rArr y = C ( 1-ay ) (a+x)` |
|
| 73. |
The differential equation of the family of straight lines whose slope is equal to y - intercept ,isA. `a(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)=0`B. ` 2a (d^(2)y)/(dx^(2))+((dy)/(dx))^(3)=0`C. ` 2a (d^(2)y)/(dx^(2))- ((dy)/(dx))^(3)`D. ` a (d^(2)y)/(dx^(2))-((dy)/(dx))^(3)=0` |
|
Answer» Correct Answer - b Equation of the family of such parabola is ` ( y - k)^(2) = 4a (x-h) " "` …(i) where h and k are arbitrary constants ltbRgt On differetiating w.r.t , we get `(y-k) (dy)/(dx) = 2a " " ` (ii) Again , on differentiating , we get ` (y - k) (d^(2)y)/(dx^(2)) + ((dy)/(dx))^(2)=0" "`…(iii) On putting hte value of `(y-k) ` from Eq. (ii) in Eq. (iii) , we get ` 2a (d^(2)y)/(dx^(2)) + ((dy)/(x))^(3) = 0 ,` which is the required differential equation |
|
| 74. |
The solution of the differential equation `(dy)/(dx) = e^(y+x) +e^(y-x)` isA. ` e^(-y) = e^(x) -e^(-x)+C`B. ` e^(-y) = e^(-x)-e^(x) +C`C. ` e^(-y) = e^(x) +e^(-x)+C`D. ` e^(-y) +e^(x) +e^(-x) =C` |
|
Answer» Correct Answer - b Given differential equation is ` (dy)/(dx) = e^(y+x) +e^(y-x)` On integrating both sides , we get ` rArr int e^(-y) dy = int (e^(x)+e^(-x))dx` ` rArr -e^(-y) = e^(x) -e^(-x) -C` ` rArr e^(-y) = e^(-x) -e^(x) +C` |
|
| 75. |
Finda particular solution of the differential equation`(x" "" "y)" "(dx" "+" "dy)" "=" "dx" "" "dy`, given that `y" "=" "1`, when `x" "=" "0`. (Hint: put `x" "" "y" "=" "t`).A. ` log |x-y|= x+y +1`B. ` log |x-y|=x - y -1`C. ` log |x-y|= x+y -1`D. None of these |
|
Answer» Correct Answer - a Given , differential equation is ` (x-y) (dx+dy) = dx - dy` ` rArr dx + dy = (dx-dy)/(x-y)` On integrating both sides , we get ` int (dx + dy) = int (dx-dy)/(x-y) +C` Let `x - y = t rArr dx - dy = dt` ` :. int dx + dy -C = int (dx-dy)/(x-y) = int (dt)/t = log t = = log |x-y|` ` rArr x+ y = log + C = log | x-y | +C " "` ...(i) It is given when x = 0 , =-1 ` :. 0+(-1)= log (0+1)+C rArr C = -1 ` On substituting this value in Eq. (i) we get required prticular solution as ` x+y = log | x - y | -1 ` ` rArr loh | x-y| = x+ y +1 ` |
|
| 76. |
The differential equation of all straight lines passing through the point (1,-1) isA. `y=(x+1)(dy)/(dx)+1`B. `y=(x+1)(dy)/(dx)-1`C. `y=(x-1)(dy)/(dx)+1`D. `y=(x-1)(dy)/(dx)-1` |
| Answer» Correct Answer - D | |
| 77. |
Find the particular solution of the differential equation `(1+e^(2x))dy+(1+y^2)e^x dx=0,`given that `y=1`when `x=0.`A. `tan^(-1)y+tan^(-1)e^(x)=pi/2`B. ` tan^(-1)x+tan^(-1)e^(y)=pi/2`C. ` tan^(-1) x + tan^(-1)e^(y)=pi/4`D. ` tan^(-1)y +tan^(-1)e^(x)=pi/3` |
|
Answer» Correct Answer - a Given differential equation is ` 1+e^((2x)) dy + ( 1+y^(2)) e^(x)dx = 0 ` Separating the variables , we get ` (dy)/(1+y^(2)) +(e^(x)dx)/(1+e^(2x))=0` On intergrating both sides , we get ` int (dy)/(1+y^(2)) + int (e^(x)dx)/(1+e^(2x)) = C` Put `e^(x) = t rArr e^(x) dx = dt ` ` rArr tan^(-1) y + int (dt)/(1+t^(2))=C` ` rAr tan^(-1) ty + tan^(-1) t = C` ` rArr tan^(-1) + tan^(-1) e^(x) = C " "` ... (i) ltbRgt Now, put x = 0 and y = 1 ` :. tan^(-1) + tan^(-1) e^(0) = C` ` rArr pi/4 +pi/4 C rArr C = pi/2 ` |
|
| 78. |
The solution of ` (dy)/(dx) = 1+ y + y^(2) + x+ xy + xy^(2)` isA. `tan^(-1)((2y+1)/(sqrt(3)))=x+x^(2)+C`B. ` 4 tan^(-1) ((4y+1)/(sqrt(3)))= sqrt(3)(2x+x^(2))+C`C. ` sqrt(3) tan^(-1) ((3y+1)/3)=4 (1+x+x^(2))+C`D. ` 4 tan^(-1) ((2y+1)/(sqrt(3)))= sqrt(3)(2x+x^(2))+C` |
|
Answer» Correct Answer - a Given, ` (dy)/(dx) = (1+y+y^(2))+ x(1+y+y^(2))` ` = ( 1+ y + y^(2)) (1+x) ` ` rArr = (dy)/(1+y+y^(2)) = (1+x)` ` rArr int (dy)/((y+1/2)^(2)+((sqrt3)/2)^(2)) = int (1+x)dx` ` = (1+y+y^(2)) (1+x)` ` rArr (dy)/(1+y+y^(2)) = (1+x)dx` ` rArr int (dy)/((y+1/2)^(2)+((sqrt(3))/2)^(2) )= int (1+x)dx` ` rArr 1/(sqrt(3)/2) tan^(-1) ((2y+1)/(sqrt(3))) = sqrt(3) (2x +x^(2)) +C` |
|
| 79. |
The solution of the differential equation `y dx - (x + 2y^2)dy=0` is `x=f(y)`. If `f(-1)=1,` then `f(1)` is equal toA. 4B. 3C. 1D. 2 |
|
Answer» Correct Answer - b Given, `y dx = (x - 2y^(2)) dy = 0 ` ` rArr ( y dx - x dx)/(y^(2)) = 2dy rArr d ( x/y) = 2dy ` On integrating both sides , we get ` rArr int d(x/y) = 2 int dy ` ` rArr x/y = 2y +C` At x = 1 , y = -1 ` :. C = 1 ` Now, ` x/y = 2y +1` When y = 1 , then f(1) = 3 |
|
| 80. |
Find the general solution of the differential equations `(e^x+e^(-x))dy-(e^x-e^(-x))dx=0`A. ` y = log |e^(x)=e^(-x)|+C`B. ` y = log. |(e^(x)-e^(-x))/(e^(x)+e^(-x))|+C`C. `y= log|e^(x)+e^(-x)|+C`D. None of these |
|
Answer» Correct Answer - b Given ` (e^(x)+e^(-x))dy - (e^(x)-e^(-x))dx = 0 ` ` rArr (e^(x) +e^(-x))dy = (e^(x)-e^(-x))dx` On seperating the variables , we get ` dy = ((e^(x)-e^(-x))/(e^(x)+e^(-x)))dx` On integrating , we get ` int dy = int ((e^(x)-e^(-x))/(e^(x)+e^(-x)))dx` Let `e^(x) +e^(-x) = t rArr (e^(x) -e^(-x)) dx =dt` ` :. int dy = int (e^(x) - e^(-x))/t (dt)/(e^(x)-e^(-x))=int 1/t dt` ` rArr y = log |t| +C` ` rArr y = |log| |e^(x) +e^(-x) | +C` |
|
| 81. |
Findthe equation of the curve passing through the point `(0,pi/4)`whose differential equation is `s in" "x" "cos" "y" "dx" "+" "cos" "x" "s in" "y" "dy" "=" "0`.A. ` cos y = (cos a)/(sqrt(2))`B. ` cos y = (sin x)/2`C. ` cos y = (sec x)/(sqrt(2))`D. ` cos y = ("cosec"x)/(sqrt(2))` |
|
Answer» Correct Answer - c The differential equation of the given curve is `sin x cos y dx +cos x sin y dy =0` `rArr (sinx)/(cosx) dx +(siny)/(cosy) dy = 0` `rArr tan x dx + tan y dy = 0 ` On integrating both sides , we get ` int tan x dx _ int tan y dy = log C` ` rArr log ( sec x) + log (sec y ) = log C` ` sec x sec y = C " " ` ...(i) The curve passes through the point `(0,pi/4)` ,therefore put ` x = 0 , y = pi/4,` we get ` sec 0 sec pi/4 = C` ` rArr C = sqrt(2)` On putting the value of C in Eq. (i) , we get ` sec x * sec y = sqrt(2)` ` rarr sec x* 1/(cosy) = sqrt(2)` ` rArr cos y = (sec x)/(sqrt(2))` Hence, the required equation of the curve is ` cos y =(secx)/(sqrt(2))` |
|
| 82. |
The differential eqution for `(x)/(a)+(y)/(b)=1` isA. `(dy)/(dx)=0`B. `(d^(2)y)/(dx^(2))=0`C. `(d^(2)y)/(dx^(2))+(dy)/(dx)=0`D. `(d^(2)y)/(dx^(2))-(dy)/(dx)=0` |
| Answer» Correct Answer - B | |
| 83. |
The equation of the curve satisfying the eqution `(xy-x^(2)) (dy)/(dx) = y^(2)` and passing through the point `(-1,1)` isA. `y=(logy-1)x`B. `y=(log y+1)x`C. `x= (log x-1)y`D. `x = (log x+1)y` |
|
Answer» Correct Answer - b We have , `(xy-x^(2)) (dy)/(dx) = y^(2)` ` rArr y^(2) (dx)/(dy) = xy -x^(2)` ` rArr 1/(x^(2)) (dx)/(dy) - 1/x . 1/y = -1/(y^(2))` Put `1/x = v` ` rArr -1/(x^(2)) (dx)/(dy) = (dv)/(dy)` ` (dv)/(dy) + v/y = 1/(y^(2))`, which is linear ` :. IF - e^(int1/ydy) = e^(logy) = y` ` :. " The solution " vy = int 1/(y^(2) ) . y dy + C` ` rArr y/x = log y + C rArr y = x ( log y + C)` This passes through the point `(-1),1)` ` :. 1 = -1 ( log 1 +C) " i.e " C =-1` Thus , the equation of the curve is y = x `(log y -1)` |
|
| 84. |
The tangent at any point `(x , y)`of a curve makes an angle `tan^(-1)(2x+3y)`with x-axis. Find the equation of the curve if itpasses through (1,2).A. ` 6x+9y +2 = 26 e^(3(x-1))`B. ` 6x- 9y +2 = 26 e^(3(x-1))`C. ` 6x + 9y -2 = 26 e^(3(x-1))`D. ` 6x - 9y -2 = 26 e^(3(x-1))` |
|
Answer» Correct Answer - a Given , `(dy)/(dx) = tan theta = 2x +3y` Put ` 2x + 3y = z rArr 2 +3 (dy)/(dx) = (dz)/(dx)` ` rArr (dy)/(dx) = ((dz)/(dx) - 2 ) 1/3 ` ` :. (dz)/(dx) - 2 = 3z rArr (dz)/(3z + 2) = dx` On integrating , we get `(log (3z+2))/3 = x+C` ` rArr (log (6x + 9y +2))/3 = x=C` Since , it passes through (1,2) ` :. (log (6+18+2))/3 = 1+C rArr C = (log 26)/3 -1` ` :. (log (6x +9y+2))/3 = x + (log 26)/3 -1` ` rArr log ((6x+9y+2)/26) = 3 ( x-1)` ` rArr 6x + 9y +2 = 26 e^(3(x-1))` |
|
| 85. |
The solution of the differential eqution `(d^(2)y)/(dx^(2)) = e^(-2x)` is ` y = c_(1)e^(-2x) +c_(2)x + c_(3)` where `c_(1)` isA. 1B. `1/4`C. `1/2`D. 2 |
|
Answer» Correct Answer - b Given , ` (d^(2)y)/(dx^(2)) = e^(-2x)` ` rArr (dy)/(dx) = (e^(-2x))/(2) +c_(2)` [ integrating ] `rArr y = (e^(-2x))/4 + c_(2)x + c_(3)` [ integrating] But ` y = c(1)e^(-2x) + c_(2) x + c_(3) ` [given ] ` :. C_(1) = 1/4 ` |
|
| 86. |
Let y = f(x) be a curve passing through `(e,e^( e ))` which satisfy the differential equation ` ( 2ny + xy log_(e) x ) dx - x log_(e) x dy = 0 , x gt 0, y gt 0`A. eB. 1C. 0D. 2 |
|
Answer» Correct Answer - c `2ny + xy log _(e)x) dx = x log_(e) x dy` ` rArr (dy)/y = ((2n)/(x log _(e)x)+1) dx` ` rArr log (y) = 2n log | log x| + x+C` ` :. " Curve through" (e,e^(e )) ` so , C = 0 ` :. y = e^(x+log(logx)2n)` ` rArr f(x) = e^(x) (log x )^(2n) ` Now, `g(x) =underset(nrarroo)lim f(x)={{:(oo","," if",xlt(1)/(e)),(0","," if ",(1)/(e)lt xlt e),(oo","," if ",x gt e):}` `therefore" "int_(1//e)^(e)g(x)dx=0` |
|
| 87. |
The solution of the differential equation `xy(dy)/(dx)={(1+y^2)(1+x+x^2)}/(1+x^2)` is:A. ` sqrt(1+y^(2))=Cxe^(tan^(-1)x)`B. ` sqrt(1-y^(2))=Cxe^(tan^(-1)x)`C. ` sqrt(1+y^(2))=Ce^(tan^(-1)x)`D. ` sqrt(1+y^(2))=Cx` |
|
Answer» Correct Answer - a ` xy (dy)/(dx) = (1 +y^(2)) (1+x/(1+x^(2)))` ` rArr y/(1+y^(2)) (dy)/(dx) = 1/x + 1/(1+x^(2))` ` 1/2 In (1+y^(2))= In x + tan^(-1) x In C` ` rArr sqrt(1+y^(2)) = Cxe ^(tan^(-1)x)` |
|
| 88. |
The equation of curve through point (1,0) which satisfies the differential equation `(1+y^(2))dx- xy ` dy = 0 , isA. `x^(2)+y^(2)=4`B. `x^(2)-y^(2)=1`C. `2x^(2)+y^(2)=2`D. None of the above |
|
Answer» Correct Answer - c Given , `(dx)/(x) = (ydx)/(1+y^(2))` ` rArr log x = 1/2 log (1+y^(2))+log C rArr x = C sqrt(1+y^(2))` But it passes through (1,0) ,so we get C = 1 ` :. " Solution is " x^(2) - y^(2) = 1` |
|
| 89. |
The solution of the differential equation `(dy)/(dx) + y = 1 ( y != x)` isA. `y=ce^(x)`B. `y = ce^(-x)`C. `y = 1+ce^(x)`D. `y = 1+ce^(-x)` |
|
Answer» Correct Answer - a The given equation is `(dy)/(dx) +y =1` ` rArr (dy)/(dx) = 1-y rArr (dy)/(1-y) = dx` On integrating both sides , we get ` int (dy)/(1-y) = int dx` ` rArr log.((1-y))/-1 = x+c_(1)` , ` rArr (1-y) = e^(-xc_(1))` `rArr 1-y = e^(-x) .e^(-c_(1))` `rArr y = 1 +ce^(-x), "where" c = e^(-c_(1))` |
|
| 90. |
Find the general solution of each of the following differential equations: `(dy)/(dx)=(1-cos x)/(1+cosx)`A. ` y = tan.x/2+c`B. `y = 2 tan.x/2 +c`C. ` y = 2 tan. x/2 -x +c`D. ` y = 2tan. x/2 +x + c` |
|
Answer» Correct Answer - c The given equation is `(dy)/(dx) = (1-cosx)/(1+cosx)` ` rArr (dy)/(dx) = (2 sin^(2) x//2)/(2 cos^(2)x//2)` ` rArr (dy)/(dx) = tan^(2) x//2` ` rArr dy = (tan^(2)x//2) dx` On integratng both sides , we get ` int dy = int tan^(2) x//2 dx` ` = int (sec^(2). x/2 -1)dx` ` = (tan.x/2)/(1//2)-x +c` ` rArr y = 2 tan. x/2 - x +c` |
|
| 91. |
`x +(dy)/(dx) = sqrt(1+ ((dy)/(dx))^(2))`A. 1 and 2B. 1 and 1C. `1 and (1)/(2)`D. 2 and 1 |
| Answer» Correct Answer - B | |
| 92. |
The solution of the differential equation `(dx)/x +(dy)/y = 0` isA. xy=CB. `x+y=C`C. `log x log y=C`D. `x^(2)+y^(2)=C` |
|
Answer» Correct Answer - a The given differential equation is `(dx)/x+(dy)/y =0` On integrating both sides , we get ` log x + log y = k rArr log xy = k` ltbRgt ` rArr xy =e^(k) rArr xy =C,` where `C = e^(k)` |
|
| 93. |
Order and degree of the differential equation `y(dy)/(dx)=(x)/((dy)/(dx) + ((dy)/(dx))^(3))` respectively areA. 1 and 1B. 1 and 2C. 1 and 3D. 1 and 4 |
| Answer» Correct Answer - D | |
| 94. |
Order and degree of the differential equation `(dy)/(dx)=(2sinx+3)/((dy)/(dx))` respectively areA. 1 and 1B. 1 and 2C. 2 and 1D. 2 and 2 |
| Answer» Correct Answer - B | |
| 95. |
Solution of differential equation `(dy)/(dx)=xlogx` isA. `y=x^(2)log|x|-(x^(2))/(2)+c`B. `y=(x^(2))/(2)log|x|-x^(2)+c`C. `y=(x^(2))/(2)+(x^(2))/(2)log|x|+c`D. `y=(x^(2))/(2)log|x|-(x^(2))/(4)+c` |
| Answer» Correct Answer - D | |
| 96. |
The solution of differential equation `(1+x) y dx +(1-y) x dy = 0 ` isA. ` log_(e)(xy)+x-y=C`B. ` log _(e)(x/y)+x+y = C`C. ` log_(e) (x/y)-x+y = C`D. `log_(e) (xy)-x+y = C` |
|
Answer» Correct Answer - a Given , `(1+x) y dx +(1-y) x dy = 0 ` ` rArr ((1-y))/y dy +((1+x))/x dx = 0 ` On integrating both sides , we get ` rArr int (1/y -1) dy +int (1/x +1) dx = 0 ` ` rArr log_(e)y - y + log_(e) x + x =C` ` rArr log_(e) (xy) +x-y = C` |
|
| 97. |
The general solution of the differential equation ` (dy)/(dx) = ((1+y^(2)))/(xy(1+x^(2)))` isA. `(1+x^(2))(1+y^(2))=C`B. `(1+x^(2))(1+y^(2))=Cx^(2)`C. `(1-x^(2))(1-y^(2))=C`D. `(1+x^(2))(1+y^(2))=Cy^(2)` |
|
Answer» Correct Answer - b Given differential equation can be rewritten as ` y/(1+y^(2))dy= (dx)/(x(1+x^(2)))` `rArr 1/2 int (2y)/(1+y^(2))dy = (dx)/(x(1+x^(2)))` ` rArr 1/2 int (2y)/((1+y^(2)))dy=1/2 int (dt)/(t(t+1))` [ put `x^(2)` = t and 2x dx = dt in RHS integral ] ` rArr 1/2 int ((2y" "dy))/(1+y^(2))=1/2 int (1/t - 1/(1+t))dt` ` rArr 1/2 * log (1+y^(2)) = 1/2 [ log t - log (1+t)] +1/2 log C` ` rArr log 1+y^(2) = logx^(2)- log (1+x^(2))+log C` ` rArr log (1+y^(2))(1+x^(2))= log Cx^(2)` ` rArr (1+y^(2))(1+x^(2))= Cx^(2)` |
|
| 98. |
The solution of the differential equation ` (dy)/(dx)= x log x ` isA. ` y=x^(2)logx-(x^(2))/2 +C`B. `y=(x^(2))/x log x-(x^(2))/4+C`C. `y = (x^(2))/2+(x^(2))/2 log x +C`D. None of these |
|
Answer» Correct Answer - c Given `dy = x log x dx` On integrating both sides , we get ` rArr y = (x^(2))/2 log x - int x/2 dx ` ` rArr y = (x^(2))/2 logx - (x^(2))/4 +C` |
|
| 99. |
The solution of `(dy)/(dx) + sqrt(((1-y^(2))/(1-x^(2))))=0`isA. `tan^(-1)x +cot^(-1)x = C `B. `sin^(-1)x + sin^(-1)y=C`C. `sec^(-1)x+"cosec"^(-1)x=C`D. None of these |
|
Answer» Correct Answer - b Given ` dy/dx + sqrt((1-y^(2))/(1-x^(2))) = 0 ` ` rArr int (dy)/(sqrt(1-y^(2)))+ int (dx)/(sqrt(1-x^(2)) )=0` ` rArr sin^(-1) y + sin^(-1) x = C` |
|
| 100. |
The solution of differential edquation `(dy)/(dx) +1 = cosec (x+y)` isA. `cos(x+y)+x=C`B. `cos(x+y)=C`C. `sin(x+y)+x=C`D. `sin(x+y)+sin(x+y)=C` |
|
Answer» Correct Answer - b Given `(dy)/(dx) +1 = " cosec" (x+y)` Put ` x+y = t` ` rArr 1+ (dy)/(dx) = (dt)/(dx)` ` :. (dt)/("cosec t ") = dx ` ` rArr int sin t dt = int dx ` ` rArr cos ( x+y) +x = C` |
|