Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

State the first principle of mathematical induction.

Answer»

The first principle of mathematical induction states that if the basis step and the inductive step are proven, then P(n) is true for all natural numbers.

2.

The distributive law from algebra states that for real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2 Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, …... an are any real numbers, then c(a1 + a2 +…+ an) = ca1 + ca2 +…+ can.

Answer»

Let P(n):c(a1+a2+…+an) = ca1+ca2+…+can ,for all natural 

numbers, n ≥ 2. 

Step1: For n=2, 

P(2) 

LHS= c(a1 + a2

RHS= c a1 + ca2 

As, it is given that c(a1 + a2) = c a1 + ca

Thus, P(2) is true. 

Step2: For n=k, 

Let P(k) be true 

So, c(a1+a2+…+ak ) = ca1+ca2+…+cak 

Now, we need to show P(k+1) is true whenever P(k) is true.

P(k+1): 

LHS= c(a1+a2+…+aK+ak+1

=c[(a1+a2+…+aK)+ak+1

=c(a1+a2+…+aK)+cak+1 

=ca1+ca2+…+caK+cak+1 

= RHS 

Thus, P(k+1) is true, so by mathematical induction P(n) is true.

3.

Prove the following by the principle of mathematical induction: n(n + 1) (n + 5) is a multiple of 3 for allnϵ N. Show that: P(n): n(n + 1) (n + 5) is multiple by 3 for all n∈N

Answer»

Let P(n): n(n + 1) (n + 5) is multiple by 3 for all n∈N 

Let P(n) is true for n=1 

P(1): 1(1 + 1) (1 + 5) 

= 2 × 6 

= 12 

Since, it is multiple of 3 

So, P(n) is true for n = 1 

Now, Let P(n) is true for n = k 

P(k): k(k + 1) (k + 5) 

= k(k + 1) (k + 5) is a multiple of 3 

Then, k(k + 1) (k + 5) = 3λ - - - - - (1)

We have to show, 

= (k + 1)[(k + 1) + 1][(k + 1) + 5] is a multiple of 3 

= (k + 1)[(k + 1) + 1][(k + 1) + 5] = 3μ 

Now, 

= (k + 1)[(k + 1) + 1][(k + 1) + 5] 

= (k + 1)(k + 2)[(k + 1) + 5] 

= [k(k + 1) + 2(k + 1)][(k + 5) + 1] 

= k(k + 1)(k + 5) + k(k + 1) + 2(k + 1)(k + 5) + 2(k + 1) 

= 3λ + k2 + k + 2(k2 + 6k + 5) + 2k + 2 

= 3λ + k2 + k + 2k2 + 12k + 10 + 2k + 2 

= 3λ + 3k 2 + 15k + 12 

= 3(λ + k 2 + 5k + 4) 

= 3μ 

Therefore, P(n) is true for n = k + 1 

Hence, P(n) is true for all n∈N

4.

If P(n) : 49n + 16n + λ is divisible by 64 for n ∈ N is true, then the least negative integral value of λ is A. -3 B. -2 C. -1 D. -4

Answer»

For n=1, 

49 16 + λ 

⇒ 65 + λ 

Now we can see that if λ = -1, then it is divisible by 64 

λ = - 1

5.

Prove by the principle of mathematical induction: 12 + 22 + 32 + … + n2 = [n(n + 1) (2n + 1)]/6

Answer»

Let us considering P (n) = 12 + 22 + 32 + … + n2 = [n(n + 1) (2n + 1)]/6

For, n = 1

P (1) = [1(1 + 1) (2 + 1)]/6

1 = 1

P (n) is true for n = 1

Suppose P (n) is true for n = k, therefore

P (k): 12 + 22 + 32 + … + k2 = [k(k + 1) (2k + 1)]/6

Let’s us check for the P (n) = k + 1, therefore

P(k) = 12 + 22 + 32 + – – – – – + k2 + (k + 1)2 = [k + 1 (k + 2) (2k + 3)]/6  

= 12 + 22 + 32 + – – – – – + k2 + (k + 1)2

= [k + 1 (k + 2) (2k + 3)]/6 + (k + 1)2

= (k +1) [(2k2 + k)/6 + (k + 1)/1]

= (k +1) [2k2 + k + 6k + 6]/6

= (k +1) [2k2 + 7k + 6]/6

= (k +1) [2k2 + 4k + 3k + 6]/6

= (k +1) [2k(k + 2) + 3(k + 2)]/6

= [(k +1) (2k + 3) (k + 2)] / 6

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

6.

Prove by the principle of mathematical induction:(ab)n = an bn for all n ϵ N

Answer»

Suppose P (n): (ab)n = an bn 

Now let us check for n = 1,

P (1): (ab)1 = a1 b1

: ab = ab

P (n) is true for n = 1.

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): (ab)k = ak bk … (i)

Now we have to prove,

(ab)k + 1 = ak + 1.bk + 1

Therefore,

= (ab)k + 1

= (ab)k (ab)

= (abk) (ab) using equation (1)

= (ak + 1) (bk + 1)

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

7.

Given an example of a statement P (n) such that it is true for all n ϵ N.

Answer»

Let us considering

P (n) = 1 + 2 + 3 + – – – – – + n = n(n+1)/2 

Therefore,

P (n) is true for all natural numbers.

Thus, P (n) is true for all n ∈ N.

8.

Prove by the principle of mathematical induction:1 + 2 + 3 + … + n = n(n +1)/2 i.e., the sum of the first n natural numbers is n(n + 1)/2.

Answer»

Let us considering P(n) = 1 + 2 + 3 + ….. + n = n(n +1)/2

For the n = 1

LHS of P (n) = 1

RHS of P (n) = 1 (1+1)/2 = 1

Therefore, LHS = RHS

Here, P (n) is true for n = 1

Let us consider P (n) be the true for n = k, therefore

1 + 2 + 3 + …. + k = k (k+1)/2 … (i)

Then,

(1 + 2 + 3 + … + k) + (k + 1) = k(k + 1)/2 + (k + 1)

= (k + 1) (k/2 + 1)

= [(k + 1) (k + 2)]/2

= [(k + 1) [(k + 1) + 1]]/2

P (n) is true for n = k + 1

P (n) is true for all n ∈ N

Therefore, by the principle of Mathematical Induction

Thus, P (n) = 1 + 2 + 3 + ….. + n = n (n +1)/2 is true for all n ∈ N.

9.

Prove by the principle of mathematical induction: 1 + 3 + 32 + … + 3n-1 = (3n – 1)/2

Answer»

Suppose P (n) = 1 + 3 + 32 + – – – – + 3n – 1 = (3n – 1)/2 

Then, For n = 1

P (1) = 1 = (31 – 1)/2 = 2/2 =1

P (n) is true for n = 1

Then, let’s us check for the P (n) is true for n = k

P (k) = 1 + 3 + 32 + – – – – + 3k – 1 = (3k – 1)/2 … (i) 

Then, we have to show P (n) is true for n = k + 1

P (k + 1) = 1 + 3 + 32 + – – – – + 3k = (3k + 1 – 1)/2 

Now, {1 + 3 + 32 + – – – – + 3k – 1} + 3k + 1 – 1

= (3k – 1)/2 + 3k using equation (i)

= (3k – 1 + 2 × 3k)/2

= (3 × 3 k – 1)/2

= (3k + 1 – 1)/2

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

10.

If P (n) is the statement “n2 – n + 41 is prime”, prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.

Answer»

Given as

P(n) = n2 – n + 41 is prime.

P(n) = n2 – n + 41

P(1) = 1 – 1 + 41

= 41

P (1) is Prime.

Now similarly,

P(2) = 22 – 2 + 41

= 4 – 2 + 41

= 43

P (2) is prime.

Then similarly,
P (3) = 32 – 3 + 41

= 9 – 3 + 41

= 47

P (3) is prime

Then,

P (41) = (41)2 – 41 + 41

= 1681

P (41) is not prime

Thus P (1), P(2), P (3) are true but P (41) is not true.

11.

State the second principle of mathematical induction.

Answer»

Let M be an integer. Suppose we want to prove that P(n) is true for all positive integers ≥M. Then if we show that: 

Step 1: P(M) is true, and 

Step 2: for an arbitrary positive integer k≥M, if P(M).P(M+1).P(M+2)……P(k) are true then P(k+1) is true, 

Then P(n) is true for all positive integers greater than or equal to M.

12.

Prove by the principle of mathematical induction:n(n + 1) (n + 5) is a multiple of 3 for all n ϵ N.

Answer»

Suppose P (n): n(n + 1) (n + 5) is a multiple of 3

Now let us check for n = 1,

P(1): 1(1 + 1) (1 + 5)

: 2 × 6

: 12

P (n) is true for n = 1. Where, P (n) is a multiple of 3

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): k(k + 1) (k + 5) is a multiple of 3

: k(k + 1) (k + 5) = 3λ … (i)

Now we have to prove,

(k + 1)[(k + 1) + 1][(k + 1) + 5] is a multiple of 3

(k + 1)[(k + 1) + 1][(k + 1) + 5] = 3μ

Therefore,

= (k + 1) [(k + 1) + 1] [(k + 1) + 5]

= (k + 1) (k + 2) [(k + 1) + 5]

= [k(k + 1) + 2(k + 1)] [(k + 5) + 1]

= k(k + 1) (k + 5) + k(k + 1) + 2(k + 1) (k + 5) + 2(k + 1)

= 3λ + k2 + k + 2(k2 + 6k + 5) + 2k + 2

= 3λ + k2 + k + 2k2 + 12k + 10 + 2k + 2

= 3λ + 3k2 + 15k + 12

= 3(λ + k2 + 5k + 4)

= 3μ

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

13.

Prove the following by the principle of mathematical induction:1 + 2 + 3 +.....+ n = \(\frac{n(n+1)}2\) i.e., the sum of the first n natural numbers is \(\frac{n(n+1)}2\).

Answer»

Let us Assume P(n) = 1 + 2 + 3 + - - - - - - + n = \(\frac{n(n+1)}2\)

For n = 1 

L.H.S of P(n) = 1 

R.H.S of P(n) = \(\frac{1(1+1)}2\) = \(\frac{2}2\) = 1 

Therefore, L.H.S = R.H.S 

Since, P(n) is true for n = 1 

Let assume P(n) be the true for n = k, 

so 

1 + 2 + 3 + - - - - - + k = \(\frac{k(k+1)}2\) - - - (1) 

Now 

(1 + 2 + 3 + - - + k) + (k + 1) 

\(\frac{k(k+1)}2\) + (k + 1)

=  (k + 1)\((\frac{k}2+1)\)

\(\frac{(k+1)(k+2)}2\)

=  \(\frac{(k+1)[(k+1)+1]}2\)

P(n) is true for n = k + 1 

P(n) is true for all n∈N 

So , by the principle of Mathematical Induction

Hence, P(n) = 1 + 2 + 3 + - - - + n = \(\frac{n(n+1)}2\) is true for all n∈N

14.

Prove by the principle of mathematical induction:1/1.2 + 1/2.3 + 1/3.4 + … + 1/n(n + 1) = n/(n + 1) 

Answer»

Suppose P (n) = 1/1.2 + 1/2.3 + 1/3.4 + … + 1/n(n+1) = n/(n+1)

For, n = 1

P (n) = 1/1.2 = 1/1+1

1/2 = 1/2

P (n) is true for n = 1

Now, let’s check for P (n) is true for n = k,

1/1.2 + 1/2.3 + 1/3.4 + … + 1/k(k+1) + k/(k+1) (k+2) = (k+1)/(k+2)

Now,

1/1.2 + 1/2.3 + 1/3.4 + … + 1/k(k + 1) + k/(k + 1) (k + 2)

= 1/(k + 1)/(k + 2) + k/(k + 1)

= 1/(k + 1) [k(k + 2) +1]/(k + 2)

= 1/(k + 1) [k2 + 2k + 1]/(k + 2)

=1/(k + 1) [(k + 1) (k + 1)]/(k + 2)

= (k + 1)/(k + 2)

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

15.

Prove by the principle of mathematical induction:72n + 23n – 3. 3n – 1 is divisible by 25 for all n ϵ N

Answer»

Suppose P (n): 72n + 23n – 3. 3n – 1 is divisible by 25

Now let us check for n = 1,

P (1): 72 + 20.30

: 49 + 1

: 50

P (n) is true for n = 1. Where, P (n) is divisible by 25

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): 72k + 23k – 3. 3k – 1 is divisible by 25

: 72k + 23k – 3. 3k – 1 = 25λ … (i)

Now we have to prove that:

72k + 1 + 23k. 3k is divisible by 25

72k + 2 + 23k. 3k = 25μ

Therefore,

= 72(k + 1) + 23k. 3k

= 72k.71 + 23k. 3k

= (25λ – 23k – 3. 3k – 1) 49 + 23k. 3k by using equation (i)

= 25λ. 49 – 23k/8. 3k/3. 49 + 23k. 3k

= 24 × 25 × 49λ – 23k . 3. 49 + 24 . 23k.3k

= 24 × 25 × 49λ – 25 . 23k. 3k

= 25(24 . 49λ – 23k. 3k)

= 25μ

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

16.

If P(n): 2 × 42n + 1 + 33n + 1 is divisible by λ for all n ∈ N is true, then find the value of λ.

Answer»

for n=1, 

2×42×1+1 + 33×1+1=2×43+34 

= 2×64+81 

= 128+81 

= 209 

For n=2, 

2×42×2+1 + 33×2+1 = 2×45+3

= 2×1024+2187 

= 2048+2187 

= 4235 

Now, the H.C.F of 209 and 4235 is 11. 

Hence, λ=11.

17.

Prove that the number of subsets of a set containing n distinct elements is 2n for all n ϵ N.

Answer»

Let the given statement be defined as 

P(n): The number of subsets of a set containing n distinct 

elements = 2n, for all n ϵ N. 

Step1: For n = 1, 

L.H.S=As, the subsets of the set containing only 1 element are: 

Φ and the set itself 

i.e. the number of subsets of a set containing only element = 2 

R.H.S = 21 = 2 

As, LHS=RHS, so, it is true for n=1. 

Step2: Let the given statement be true for n = k. 

P(k): The number of subsets of a set containing k distinct 

elements = 2k 

Now, we need to show P(k+1) is true whenever P(k) is true. 

P(k+1): 

Let A={a1, a2, a3, a4,…, ak , b} so that A has (k+1) elements. 

So the subset t of A can be divided into two collections: 

first contains subsets of A which don t have b in them and the second contains subsets of A which do have b in them. 

First collection: { }, {a1},{a1, a2},{a1, a2, a3},…,{a1, a2, a3, a4,…, ak} and 

Second collection: {b}, {a1,b},{a1,a2,b },{a1,a2,a3,b},…,{a1,a2,a3,a4,…,ak , b} 

It can be clearly seen that: 

The number of subsets of A in first collection 

= The number of subsets of set with k elements i.e. {a1, a2, a3, a4,…, ak} = 2

Also it follows that the second collection must have 

the same number of the subsets as that of the first = 2k 

So the total number of subsets of A = 2k+2= 2k+1 

Thus, by the principle of mathematical induction P(n) is true.

18.

If P(n) is the statement “n2 – n + 41 is prime”, prove that P(1), P(2) and P(3) are true. Prove also that P(41) is not true.Given. P(n) = n2 - n + 41 is primeProve P(1),P(2) and P(3) are true and P(41) is not true.

Answer»

P(n) = n2 - n + 41 

= P(1) = 1 - 1 + 41 

= P(1) = 41 

Therefore, P(1) is Prime 

= P(2) = 22 – 2 + 41 

= P(2) = 4 - 2 + 41 

= P(2) = 43 

Therefore, P(2) is prime 

= P(3) = 32 – 3 + 41 

= P(3) = 9 – 3 + 41 

= P(3) = 47 

Therefore P(3) is prime 

Now, P(41) = (41)2 - 41 + 41 

= P(41) = 1681 

Therefore, P(41) is not prime 

Hence, P(1),P(2),P(3) are true but P(41) is not true.

19.

Prove by the principle of mathematical induction:1 + 3 + 5 + … + (2n – 1) = n2 i.e., the sum of first n odd natural numbers is n2.

Answer»

Suppose P (n): 1 + 3 + 5 + … + (2n – 1) = n2

Now, let us check for the P (n) is true for n = 1

P (1) = 1 =12

1 = 1

P (n) is true for n = 1

Then, let’s us check for the P (n) is true for n = k

P (k) = 1 + 3 + 5 + … + (2k – 1) = k2 … (i)

Now, we have to show that

1 + 3 + 5 + … + (2k – 1) + 2(k + 1) – 1 = (k + 1)2

Then,

1 + 3 + 5 + … + (2k – 1) + 2(k + 1) – 1

= k2 + (2k + 1)

= k2 + 2k + 1

= (k + 1)2

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

20.

Given an example of a statement P(n) such that it is true for all n ϵ N.

Answer»

P(n) = 1 + 2 + 3 + - - - - - + n = \(\frac{n(n+1)}2\)

P(n) is true for all natural numbers. 

Hence, P(n) is true for all n∈N

21.

Let P(n) be the statement: 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ϵ N?

Answer»

If P(r) is true then 2r ≥ 3r 

For, P(r+1) 

2r+1 = 2.2

For, x>3, 2x>x+3 

So, 2.2r > 2+ 3 for r >1 

⇒ 2r+1>2r+3 for r>1 

⇒ 2r+1 > 3r +3 for r>1 

⇒ 2r+1 > 3(r+1) for r>1 

So, if P(r) is true, then P(r+1) is also true. 

For, n =1, P(1): 

L.H.S = 2 

R.H.S = 3 

As L.H.S < R.H.S

So, it is not true for n = 1 

Hence, P(n) is not true for all natural numbers.

22.

If P (n) is the statement “2n ≥ 3n”, and if P (r) is true, prove that P (r + 1) is true.

Answer»

Given as 

P (n) = “2n ≥ 3n” and p(r) is true.

We have, P (n) = 2n ≥ 3n

Here, P (r) is true

Therefore,

2≥ 3r

Then, let’s multiply both sides by 2

2 × 2≥ 3r × 2

2r + 1 ≥ 6r

2r + 1 ≥ 3r + 3r [since 3r >3 = 3r + 3r ≥ 3 + 3r]

∴ 2r + 1 ≥ 3(r + 1)

Thus, P (r + 1) is true.

23.

For all n ∈ N, 3 × 52n + 1 + 23n + 1 is divisible by A. 19 B. 17 C. 23 D. 25

Answer»

Given for all n€ N 3 × 52n+1 + 23n+1 

For n=1, 

3 × 53 + 2

3 × 125 + 16 

375 + 16 = 391 

For n=2, 

3 × 55 + 2

3 × 3125 +128 

9375 + 128 = 9503 

H.C.F of 391, 9503 = 17

24.

Let S(k) = 1 + 3 + 5 + .... + (2k – 1) = 3 + k2. Then, which of the following is true?(a) S(1) is correct (b) S(k) ⇒ S (k + 1) (c) S(k) \(\neq\) S(k + 1) (d) Principle of mathematical induction can be used to prove the above formula.

Answer»

Answer: (B) S(k) ⇒ S(k+1)

S(k) = 1 + 3 + 5 + .... + (2k – 1) = 3 + k2 

Putting k = 1 on both the sides, we get 

LHS = 1, RHS = 3 + 1 = 4 

LHS ≠ RHS 

⇒ S(1) is not true. 

Assume S(k) = 1 + 3 + 5 + .... + (2k – 1) = 3 + k2 is true. 

Then, 

To find S(k + 1), add the (k + 1)th term = (2 (k + 1) – 1) = 2k +1 on both the sides of S(k). 

∴ S(k + 1) = 1 + 3 + 5 + .... + (2k – 1)+(2k + 1) = 3 + k2 + 2k + 1 

⇒ 1 + 3 + 5 + .... + (2k – 1) + (2k + 1) = 3 + (k + 1)2 

⇒ S(k + 1) is also true. 

∴ S(k) ⇒ S(k + 1) is true

25.

For all natural number n, 2 + 4 + 6 + ..... + 2n equals(a) 2 (n + 1) (b) \(\frac{1}{2}\) n (n +2)(c) n (n + 1) (d) (n + 2) (n + 4)

Answer»

Answer: (C) n(n+1)

Let Sn = 2 + 4 + 6 + .... + 2n 

When n = 1, Sn = 2 

Now from the options given, when n = 1, 

2(n + 1) = 4, \(\frac{1}{2}n(n+2) =\frac{3}{2}\) ,n(n + 1) = 2, (n + 2) (n + 4) = 15

∴ Sn ≠ 2(n + 1), Sn ≠ \(\frac{1}{2}\) n (n + 2), Sn ≠ (n + 2) (n + 4) for n = 1 

Sn = n (n + 1) for n = 1 

∴  We need to prove 2 + 4 + 6 + .... + 2n = n (n + 1) ∀ n∈N. 

Let T(n) = 2 + 4 + 6 + .... + 2n = n (n + 1) 

Basic Step: 

For n =1, LHS = 2 × 1 = 2, RHS = 1 × (1 + 1) = 2 

⇒ LHS = RHS 

⇒ T(1) is true.

Induction Step: 

Assume T(k) is true, i.e., 

2 + 4 + 6 + .... + 2k = k (k + 1) 

To obtain T(k + 1), we add the (k + 1)th term, i.e, 2 (k + 1) to both the sides of T(k), 

i.e., 2 + 4 + 6 + ... + 2k + 2(k + 1) = k(k + 1) + 2(k + 1) 

= (k + 1) (k + 2) = (k + 1) ((k + 1) + 1) 

Thus the statement T(n) is true for n = k + 1, whenever it is true for n = k. 

Therefore by the principle of mathematical induction it is true for all n∈N

26.

If P(n) is the statement “n2 + n” is even”, and if P(r) is true, then P(r + 1) is true Given. P(n) = n2 + n is even and P(r) is true. Prove. P(r + 1) is true

Answer»

Given 

P(r) is true that means, 

= r2 + r is even 

Let Assume r2 + r = 2k - - - - - - (i) 

Now, (r + 1)2 + (r + 1) 

r2 + 1 + 2r + r + 1 

= (r2 + r) + 2r + 2 

= 2k + 2r + 2 

= 2(k + r + 1) 

= 2μ 

Therefore, (r + 1)2 + (r + 1) is Even. 

Hence, P(r + 1) is true

27.

Prove by the principle of mathematical induction: 32n + 7 is divisible by 8 for all n ϵ N

Answer»

Suppose P (n): 32n + 7 is divisible by 8 

Now let us check for n = 1,

P (1): 32 + 7 = 9 + 7 = 16

P (n) is true for n = 1. Where, P (n) is divisible by 8

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): 32k + 7 is divisible by 8

: 32k + 7 = 8λ

: 32k = 8λ – 7 … (i)

Now we have to prove,

32(k + 1) + 7 is divisible by 8

32k + 2 + 7 = 8μ

Therefore,

= 32(k + 1) + 7

= 32k.32 + 7

= 9.32k + 7

= 9.(8λ – 7) + 7 by using equation (i)

= 72λ – 63 + 7

= 72λ – 56

= 8(9λ – 7)

= 8μ

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

28.

If P(n) is the statement “2n ≥ 3n”, and if P(r) is true, prove that P(r + 1) is true.

Answer»

Given. 

P(n) = “2n ≥ 3n” and p(r) is true. 

Prove. P(r + 1) is true 

we have P(n) = 2n ≥ 3n 

Since, P(r) is true So, 

= 2r ≥ 3r 

Now, Multiply both side by 2 

= 2.2r ≥ 3r.2 

= 2r+1 ≥ 6r 

= 2r+1 ≥ 3r + 3r [since 3r >3 = 3r + 3r ≥3 + 3r] 

Therefore 2r+1 ≥ 3(r + 1) 

Hence, P(r + 1) is true

29.

Let P (n): 2n &lt; (1 × 2 × 3 × … × n). Then the smallest positive integer for which P(n) is true is A. 1 B. 2 C. 3 D.4

Answer»

Given P(n):2n< (1×2×…. ×n)

For n=1, 2<2 

For n=2, 4<4 

For n=3, 6<6 

For n=4, 8<24 

 the smallest positive integer for which P(n) is true is 4.

30.

If ‘n’ be any positive integer, then n (n + 1) (2n + 1) is(a) an odd integer (b) an integral multiple of 6 (c) a perfect square (d) None of these

Answer»

Answer: (B) an integral multiple of 6 

When n = 1, n(n+1)(2n+1) = (1) (2) (3) = 6, which is an integral multiple of 6. 

It is neither an odd integer nor a perfect square. 

Using the principle of mathematical induction, we shall now show that the expression n(n + 1)(2n + 1) is an integral multiple of 6 ∀ n ∈ N. 

Assume T(n) = n(n+1)(2n+1) = 6x where x∈N. 

Basic Step: 

T(1) is true as shown above. 

Induction Step: 

Let T(k) be true for all k∈N. 

⇒ k (k +1) (2k +1) = 6x, where x∈N. .....(i) 

For T(k + 1), we replace k by (k + 1) in the given expression, i.e., 

T(k + 1) = (k + 1) (k + 2) (2 (k + 1) + 1) 

= (k + 1) (k + 2) ((2k + 1) + 2) 

= (k + 1) (k + 2) (2k + 1) + 2 (k + 1) (k + 2) 

= k (k + 1) (2k + 1) + 2 (k + 1) (2k + 1) + 2 (k + 1) (k + 2) 

= k (k + 1) (2k + 1) + 2 (k + 1) [(2k + 1) + (k + 2)] 

= 6x + 2(k + 1)(3k + 3) 

= 6x + 6(k + 1)2 

= 6 (x + (k + 1)2) = 6 × a positive integer 

∴ T(k) is true ⇒ T(k + 1) is true. 

∴ T(n) is true for all n∈N

31.

Prove by the principle of mathematical induction:52n + 2 – 24n – 25 is divisible by 576 for all n ϵ N

Answer»

Suppose P (n): 52n + 2 – 24n – 25 is divisible by 576

Now let us check for n = 1,

P (1): 52.1 + 2 – 24.1 – 25

: 625 – 49

: 576

P (n) is true for n = 1. Where, P (n) is divisible by 576

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): 52k + 2 – 24k – 25 is divisible by 576

: 52k + 2 – 24k – 25 = 576λ …. (i)

Now we have to prove,

52k + 4 – 24(k + 1) – 25 is divisible by 576

5(2k + 2) + 2 – 24(k + 1) – 25 = 576μ

Therefore,

= 5(2k + 2) + 2 – 24(k + 1) – 25

= 5(2k + 2).52 – 24k – 24 – 25

= (576λ + 24k + 25)25 – 24k– 49 by using equation (i)

= 25. 576λ + 576k + 576

= 576(25λ + k + 1)

= 576μ

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

32.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? 1×1! + 2×2! + 3×3! +…+ n×n! = (n + 1)! – 1 for all nϵ N.

Answer»

Let P(n) = 1×1! + 2×2! + 3×3! +…+ n×n 

P(n): 1×1! + 2×2! + 3×3! +…+ n×n! = (n + 1)! – 1 for all nϵ N 

Step1: 

P(1) = 1×1! = (2)! – 1 = 1 

Thus, P(n) is equal to (n + 1)! – 1 for n = 1 

Step2: 

Let, P(m) be equal to (m + 1)! – 1 

Then, 1×1! + 2×2! + 3×3! +…+ m×m! = (m + 1)! – 1 

Now, we need to show that P(m+1) is true whenever P(m) is true. 

P(m+1) = 1×1! + 2×2! + 3×3! +…+ m×m! + (m+1)×(m+1)!

= (m+1)! – 1 + (m+1)×(m+1)! 

= (m+1)!(m+1+1) – 1 

= (m+1)!(m+2) – 1 

= (m+2)! – 1 Thus, P(m+1) is true. 

So, by the principle of mathematical induction, P(n) is true for all nϵN.

33.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? 2.7n + 3.5n – 5 is divisible by 24 for all n ϵ N

Answer»

Let P(n) = 2.7n + 3.5n – 5 

Now, P(n): 2.7n + 3.5n – 5 is divisible by 24 for all n ϵ N 

Step1: 

P(1) = 2.7 + 3.5 – 5 = 1.2 

Thus, P(1) is divisible by 24 

Step2: 

Let, P(m) be divisible by 24 

Then, 2.7m + 3.5m – 5 = 24λ, where λ ϵ N. 

Now, we need to show that P(m+1) is true whenever P(m) is true. 

So, P(m+1) = 2.7m+1 + 3.5m+1 – 5 

= 2.7m+1 + 5.( 2.7m + 3.5m – 5 ) – 5 

= 2.7m+1 + 5.( 24λ + 5 - 2.7m ) – 5 

= 2.7m+1 + 120λ + 25 - 10.7m – 5 

= 2.7m.7 - 10.7m+ 120 λ +24 – 4 

= 7m(14 – 10) + 120 λ +24 – 4 

= 7m(4) + 120 λ +24 – 4 

= 7m(4) + 120 λ +24 – 4 

= 4(7m - 1) + 24(5λ +1) 

As, 7m – 1 is a multiple of 6 for all m ϵ N. 

So, P(m+1) = 4.6μ +24(5λ +1) 

= 24(μ +5λ +1) 

Thus, P(m+1) is true. 

So, by the principle of mathematical induction, P(n) is true for all n ϵN.

34.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? n3 – 7n + 3 is divisible by 3 for all n ϵ N.

Answer»

Let P(n) = n3 – 7n + 3 

Now, P(n): n3 – 7n + 3 is divisible by 3 for all n ϵ N 

Step1: 

P(1) = 1 – 7 + 3 = -3 

Thus, P(1) is divisible by 3 

Step2: 

Let, P(m) be divisible by 24 

Then, n3 – 7n + 3 = 3λ, where λ ϵ N. 

Now, we need to show that P(m+1) is true whenever P(m) is true.

So, P(m+1) = (n+1)3 – 7(n+1) + 3 

= n3+3n2+3n+1-7n-7+3 

= n3– 7n + 3 +3n2+3n+1-7 

= 3λ+3(n2+n-2) 

= 3(λ+n2+n-2) 

Thus, P(m+1) is true. 

So, by the principle of mathematical induction, P(n) is true for all n ϵN.

35.

If P(n) is the statement “n3 + n is divisible by 3”, prove that P(3) is true but P(4) is not true.

Answer»

Given. 

P(n) = n3 + n is divisible by 3 

Find P(3) is true but P(4) is not true 

We have P(n) = n3 + n is divisible by 3 

Let’s check with P(3) 

= P(3) = 33 + 3 

= P(3) = 27 + 3 

Therefore 

P(3) = 30, So it is divisible by 3 

Now check with P(4) 

= P(4) = 43 + 4 

= P(4) = 64 + 4 

Therefore P(4) = 68, So it is not divisible by 3 

Hence, 

P(3) is true and P(4) is not true.

36.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? 1 + 2 + 22 + … + 2n = 2n + 1 – 1 for all n ϵ N

Answer»

Let P(n) = 1 + 2 + 22 + … + 

P(n): 1 + 2 + 22 + … + 2n = 2n + 1 – 1 for all n ϵ N 

Step1: 

P(1) = 1 = (2) – 1 = 1 

Thus, P(n) is equal to 2 n + 1 – 1 for n = 1 

Step2: 

Let, P(m) be equal to 2m + 1 – 1 

Then, 1 + 2 + 22 + … + 2m = 2m + 1 – 1 

Now, we need to show that P(m+1) is true whenever P(m) is true. 

P(m+1) = 1 + 2 + 22 + … + 2m + 2m + 1 

= 2m + 1 – 1 + 2m + 1 

= 2.2m + 1 –1 

= 2m + 2 – 1 

Thus, P(m+1) is true. 

So, by the principle of mathematical induction, P(n) is true for all nϵN.

37.

If n is a positive integer, then 52n+2 – 24n – 25 is divisible by(a) 574 (b) 576 (c) 675 (d) 575 

Answer»

Answer: (B) 576

For n = 1, 

52n + 2 – 24n – 25 = 54 – 24 – 25 = 625 – 49 = 576 which is divisible by 576 and none of the other given alternative.

∴ To prove: 52n+2 – 24n – 25 is divisible by 576 using mathematical induction. 

Let T(n) be the statement: 52n + 2 – 24n – 25 is divisible by 576 ∀ n∈N. 

Basic Step: 

For n = 1, T(1) = 54 – 24 – 25 = 576 which is divisible by 576. 

⇒ T(1) is true. 

Induction Step: 

Assume T(k) where n = k, k∈N to be true i.e., 

T(k) = 52k + 2 – 24k – 25 is divisible by 576 is true, 

i.e., 52k+2 – 24k – 25 = 576m, m∈N ....(i) 

∴ T(k + 1) = 52(k + 1)+2 – 24 (k + 1) – 25 

= 52k + 2 . 25 – 24k – 24 – 25 

= 52k + 2 . 25 – 24k – 49

= 25 (52k + 2 – 24k – 25) + 24. (24k) + 576 

= 25. (576m) + 576k + 576 (From (i)) 

= 576 (25m + k + 1) 

⇒ 22(k + 1) + 2 – 24 (k + 1) – 25 is divisible by 576 

⇒ T(k + 1) is true, whenever T(k) is true. 

⇒ 52n + 2 – 24k – 25 is divisible by 576 ∀  n∈N

38.

If n is a positive integer, then n3 + 2n is divisible by(a) 2 (b) 6 (c) 15 (d) 3

Answer»

Answer: (D) = 3

For n = 1, n3 + 2n = 1 + 2 = 3 which is divisible by 3 and none of the other given alternatives. 

∴ We shall prove n3 + 2n divisible by 3 for all n∈N. 

Let T(n) = n3 + 2n is divisible by 3. 

Basic Step: 

For n = 1, T(1) = n3 + 2n = 1 + 2 = 3 is divisible by 3 is true. 

Induction Step: 

Assume T(k) to be true, i.e., T(k) = k3 + 2k is divisible by 3 

= k3 + 2k = 3m, where m∈N. ...(i) 

Now we need to prove that T(k + 1) holds true, i.e., 

(k + 1)3 + 2(k + 1) is divisible by 3. 

(k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k +1 + 2k + 2

= (k3 + 2k) + (3k2 + 3k + 3) 

= 3m + 3 (k2 + k + 1) (From (i)) 

⇒ T(k + 1) = (k + 1)3 + 2 (k + 1) is divisible by 3, whenever T(k) = k3 + 2k is divisible by 3. 

⇒ n3 + 2n is divisible by 3  ∀ n∈N.

39.

If n is an integer, n \(\geq\)1, then show that \(3^{2^n}\)– 1 is divisible by 2n + 2.

Answer»

Let T(n) be the statement:

\(3^{2^n}\) – 1 is divisible by 2n + 2 

Basic Step: 

For n = 1, 

\(3^{2^1}\) – 1 = 8 and 2n + 2 = 8 

⇒ T (1) is true 

Induction Step: 

Assume T(k) to be true, i.e., 

T(k) = \(3^{2^k}\) – 1 is divisible by 2k + 2 

= \(3^{2^k}\) – 1 = m. 2k + 2 when m∈N ...(i) 

= \(3^{2^k}\)= m. 2k + 2 + 1 

Now we need to prove that T(k + 1) holds true. 

\(3^{2^{k+1}}\) –1 = \(3^{2^k.2}\) – 1 

= (m . 2k + 2 + 1)2 – 1 (using (i)) 

= m2 (2k+2)2 + 2m . 2k+2 + 1 – 1 = 2k+2 (m2 . 2k+2 + 2m) 

⇒ T(k + 1) = \(3^{2^{k+1}}\) – 1 is divisible by 2k+2, whenever T(k) holds. 

Thus \(3^{2^n}\) – 1 is divisible by 2n + 2 for all integers n \(\geq\) 1.

40.

Prove that 32n+2 – 8n – 9 is divisible by 64 for any positive integer n.

Answer»

Let T(n) be the statement: 32n+2 – 8n – 9 is divisible by 64. 

Basic Step: 

For n =1, 32×1+2 – 8 × 1 – 9 = 81 – 17 = 64 which is divisible by 64. 

⇒ T(1) holds. 

Induction Step: 

Let T(k), k∈N hold, i.e., 

32k+2 – 8k – 9 is divisible by 64. 

Then, T(k + 1) = 32(k+1) + 2 – 8(k + 1) – 9 = 32. 32k+2 – 8k – 17 

= 9 (32k+2 – 8k – 9) + 64k + 64 = 9. 

T (k) + 64 (k + 1) 

⇒ T(k + 1) is divisible by 64, whenever T(k) is divisible by 64. 

⇒ T(n) is true for every natural number n.

41.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? Given. P(n) = n(n + 1) is even. Find. P(3) ?

Answer»

We have P(n) = n(n + 1). 

= P(3) = 3(3 + 1) 

= P(3) = 3(4) 

Hence, 

P(3) = 12, So P(3) is also Even.

42.

Prove that xn – yn is divisible by x – y; when n is a + ve integer.

Answer»

Let T(n) be the statement: 

xn – yn is divisible by x – y. 

Basic Step:

For n = 1, x1 – y1 = x – y is divisible by (x – y) 

⇒ T(1) is true 

Induction Step: 

Assume that T(k) is true, i.e., for k∈N xk – yk is divisible by (x – y) 

Now, we prove T(k + 1) is true. 

xk+1 – yk+1 = xk . x – yk . y = xk.x – xk . y + xk .y – yk .

(Adding and subtracting xk.y) 

= xk (x – y) + y (xk – yk ) Since xk(x – y) is divisible by (x – y) and (xk – yk ) is divisible by (x – y) (By induction step, i.e., assuming T(k) is true), therefore,

xk+1 – yk+1 = xk(x – y) + y(xk – yk) is divisible by (x – y) ⇒ T(k + 1) is true, whenever T(k) is true. 

⇒ T(n) holds for all positive integral values of n.

43.

For all natural numbers n, the expression 2.7n + 3.5n – 5 is divisible by(a) 16 (b) 24 (c) 20 (d) 21

Answer»

Answer : (b) = 24

When n = 1, 

2.7n + 3.5n – 5 = 2.7 + 3.5 – 5 = 24 which is divisible by 24 and none of the other given alternatives. 

∴ We need to prove 2.7n + 3.5n – 5 is divisible by 24 ∀  n∈N. 

Let T(n) be the statement 2.7n + 3.5n – 5 is divisible by 24. 

T(1) holds true as shown above. 

Assume T(k) to be true, i.e., 2.7k + 3.5k – 5 is divisible by 24, i.e., 

2.7k + 3.5k – 5 = 24m, m∈N ....(i) 

Now 2.7k + 1 + 3.5k + 1 – 5 = 2.7.7k + 3.5.5k – 5 

= (2.7k + 3.5k – 5) + 12(7k ) + 12 (5k

= 24m + 12 (7k + 5k

\(\big[Now\,7^k\,and\,5^k\,,k\,\in\,N\,being \,both\,odd\,,their\,sum\,is\,even. Let\,7^k\,+5^k\,=2x\,,\,x\,\in\,N\big]\)

 = 24m + 12 (2x) ; m, x∈N = 24 (m + x) 

⇒ 2.7k + 1 + 3.5k + 1 – 5 is divisible by 24 

⇒ T (k + 1) is true whenever T(k) is true, k∈N. 

⇒ 2.7n + 3.5n – 5 is divisible by 24 for all n∈N.

44.

Prove that for all +ve integral values of n, 1 + 3 + 5 + .... + (2n – 1) = n2.

Answer»

Let T(n) be the statement: 1 + 3 + 5 + ... + (2n – 1) = n2 

Basic Step: For n = 1, LHS = 1, RHS = 12 

LHS = RHS ⇒ T(1) is true 

Induction Step: Assume that T(k) is true, i.e., 1 + 3 + 5 + ... + (2k – 1) = k2 

To obtain T (k + 1), add the (k + 1)th term 

= 2 (k + 1) – 1 = 2k + 2 – 1 = 2k + 1 to both the sides. 

Then, 1 + 3 + 5 + ... + (2k – 1) + (2k + 1) = k2 + 2k + 1 

⇒ 1 + 3 + 5 + ... to (k + 1) terms = (k + 1)2 

Thus the statement is true for n = k + 1 under the assumption that statement is true for n = k 

Therefore, the statement 1 + 3 + 5 + ... to n terms = n2 for every positive integer n.

45.

10n + 3(4n + 2) + 5 is divisible by (for all n∈N)(a) 5 (b) 7 (c) 9 (d) 13

Answer»

Answer: (C) = 9

For n = 1, 

10n + 3 (4n + 2) + 5 = 10 + 3 × 43 + 5 = 10 + 192 + 5 = 207 which is divisible by only 9 and none of the other given alternatives. 

\(\therefore\) We need to prove 10n + 3 (4n + 2) + 5 is divisible by 9 ∀  n∈N. 

Let T(n) be the statement 

10n + 3(4n+2) + 5 is divisible by 9. 

Basic Step: 

For n = 1, T(1) holds true as proved above. 

Induction Step: 

Assume T(k) to be true, k∈N i.e., 

10k + 3 (4k + 2) + 5 is divisible by 9, i.e., 

10k + 3 (4k + 2) + 5 = 9m, m∈N ....(i) 

Now, 10k + 1 + 3 (4k+1+2) + 5 

= 10k+1 + 3(4k + 3) + 5 

= 10. 10k + 12. 4k+2 + 5 

= 4(10k + 3(4k + 2)+5) + 6 .10k – 15 

= 4. (9m) + 6 (10k – 1) – 9 

= 4. (9m) + 6. (9x) – 9 (\(\because\) 10k – 1 is always divisible by 9) 

= 9 (4m + 6x – 1) 

⇒ 10k + 1 + 3 (4(k + 1) + 2) + 5 is divisible by 9. 

⇒ T(k + 1) is true whenever T(k) is true, ∀  k∈N 

⇒ 10n – 3(4n + 2) + 5 is divisible by 9 ∀  k∈N.

46.

Using the method of induction, show that 1 + 2 + 3 + ... + n = \(\frac{1}{2}\) n (n + 1), for all n∈N

Answer»

Let T (n) = 1 + 2 + 3 + ... + n = \(\frac{1}{2}\) n (n + 1) 

Basic Step: For n = 1, 

LHS = T (1) = 1,   RHS = \(\frac{1}{2}\) × 1 × 2 = 1 ⇒ LHS = RHS ⇒ T(1) is true. 

Induction Step: Assume that T (k) is true, i.e., 

1 + 2 + 3 + ... + k = \(\frac{1}{2}\) k (k + 1) 

To obtain T(k + 1), we add (k + 1)th term = (k + 1) to both the sides, i.e., 

1 + 2 + 3 + ... + k + (k + 1) = \(\frac{1}{2}\) k (k + 1) + (k + 1) 

⇒ 1 + 2 + 3 + ... + k + (k + 1) = (k + 1) \(\big(\frac{k}{2}+1\big)\)

⇒ 1 + 2 + 3 + ... + k + (k + 1) = \(\frac{1}{2}\) (k + 1) (k + 2) 

⇒ Thus the statement T(n) is true for n = k + 1 under the assumption that T(k) is true. Therefore, by the principle of mathematical induction, the statement is true for every +ve integer n.

47.

Prove by the principle of mathematical induction: a + (a + d) + (a + 2d) + … + (a + (n - 1)d) = n/2[2a + (n - 1)d]

Answer»

Suppose P (n): a + (a + d) + (a + 2d) + … + (a + (n - 1)d) = n/2[2a + (n - 1)d]

Now let us check for n = 1,

P (1): a = 1/2[2a + (1 - 1)d]

: a = a

P (n) is true for n = 1.

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): a + (a + d) + (a + 2d) + … + (a + (k - 1)d) = k/2[2a + (k - 1)d] … (i)

Therefore,

a + (a + d) + (a + 2d) + … + (a + (k - 1)d) + (a + (k)d)

Then, substituting the value of P (k) we get,

= k/2 [2a + (k - 1)d] + (a + kd) by using equation (i)

= [2ka + k(k - 1)d + 2(a + kd)]/2

= [2ka + k2d – kd + 2a + 2kd]/2

= [2ka + 2a + k2d + kd]/2

= [2a(k + 1) + d(k2 + k)]/2

= (k + 1)/2 [2a + kd]

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.

48.

Using the method of mathematical induction, show that for all n∈N, a + ar + ar2 + ... +arn – 1 = \(\frac{a(1-r^n)}{(1-r)}\) , r ≠ 1.

Answer»

Let T(n) be the statement: 

a + ar + ar2 + ... + arn–1 = \(\frac{a(1-r^n)}{(1-r)}\) , r ≠ 1 

Basic Step: 

For n = 1, ⇒LHS = a, RHS = \(\frac{a(1-r^1)}{(1-r)}\)= a. 

⇒LHS = RHS ⇒ T(1) is true.

Induction Step: 

Let the statement hold true for n = k, i.e., let T (k) be true, i.e., a + ar + ar2 + ... + ark–1 = \(\frac{a(1-r^k)}{(1-r)}\) 

Then to show T(k + 1) holds, add the (k + 1)th term = ar(k + 1)–1 = ark to both the sides of T(k), i.e.,

a + ar + ar2 + ... + ark – 1 + ark =\(\frac{a(1-r^k)}{(1-r)}\) + ark   

\(\frac{a-ar^k+ar^k(1-r)}{(1-r)} = \frac{a-ar^k+ar^k-ar^{k+1}}{(1-r)}\)  =  \(\frac{a-ar^{k+1}}{(1-r)}\) = \(\frac{a(1-r^{k+1})}{(1-r)}\) 

Thus, T(k + 1) is true, whenever T(k) holds true.

49.

Prove by the principle of mathematical induction: a + ar + ar2 + … + arn – 1 = a[(rn – 1)/(r – 1)], r ≠ 1

Answer»

Suppose P (n): a + ar + ar2 + … + arn – 1 = a[(rn – 1)/(r – 1)]

Now let us check for n = 1,

P (1): a = a (r1 – 1)/(r - 1)

: a = a

P (n) is true for n = 1.

Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): a + ar + ar2 + … + ark – 1 = a[(rk – 1)/(r – 1)] … (i)

Therefore,

a + ar + ar2 + … + ark – 1 + ark

Then, substituting the value of P (k) we get,

= a[(rk – 1)/(r – 1)] + ark by using equation (i)

= a[rk – 1 + rk(r - 1)]/(r-1)

= a[rk – 1 + rk + 1 – r‑k]/(r - 1)

= a[rk + 1 – 1]/(r-1)

P (n) is true for n = k + 1

Thus, P (n) is true for all n ∈ N.