Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

निम्नलिखित के मुख्य मानो को ज्ञात कीजिए : `cot^(-1)(sqrt(3))`

Answer» Correct Answer - `(pi)/(6)`
2.

यदि `cot^(-1)(sqrt(cos alpha ))- tan^(-1)(sqrt(cos alpha))=x` तब `sin x=`A. `tan^(1)""(alpha)/(2)`B. `tan alpha `C. `cot^(2)""(alpha)/(2)`D. `cot alpha `

Answer» Correct Answer - A
3.

निम्नलिखित के मुख्य मानो को ज्ञात कीजिए : ` sin^(-1)""((-1)/(2))`

Answer» Correct Answer - `-(pi)/(6)`
4.

सरलतम रूप में लिखिए - `cot^(-1)((1)/(sqrt(x^(2)-1))), |x| gt1`

Answer» माना `x=sec theta,` तब `theta=sec^(-1)x`
`therefore cot^(-1)((1)/(sqrt(x^(2)-1)))=cot^(-1)((1)/(sqrt(sec^(2)theta-1)))`
`=cot^(-1)((1)/(tan theta))`
`=cot^(-1)(cot theta)`
`=theta=sec^(-1)x`
चूँकि अब जो कि अभीष्ट सरलतम रूप है।
5.

सरलतम रूप व्यक्त कीजिए - `tan^(-1)((cosx)/(1-sinx))`

Answer» यहाँ `tan^(-1)((cosx)/(1-sinx))`
`=tan^(-1){(cos^(2).(x)/(2)-sin^(2).(x)/(2))/(cos^(2).(x)/(2)+sin^(2).(x)/(2)-sin.(x)/(2)cos.(x)/(2))}`
`=tan^(-1){((cos.(x)/(2)+sin.(x)/(2))(cos.(x)/(2)-sin.(x)/(2)))/((cos.(x)/(2)-sin.(x)/(2))^(2))}`
`=tan^(-1){((cos.(x)/(2)+sin.(x)/(2)))/((cos.(x)/(2)-sin.(x)/(2)))}`
`=tan^(-1){(1+tan.(x)/(2))/(1-tan.(x)/(2))}`
`=tan^(-1){tan((pi)/(4)+(x)/(2))}`
`=(pi)/(4)+(x)/(2)`जो कि अभीष्ट सरलतम रूप है।
6.

`tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))),agt0 , = (a)/(sqrt(3)) lt x lt (a)/(sqrt(3))` को सरलतम रूप में लिखे |

Answer» `x = a tan theta` रखें | `because - (a)/(sqrt(3)) lt x lt (a)/(sqrt(3))` तथा `a gt 0`
`therefore - (a)/(sqrt(3)) lt a tan theta lt (a)/(sqrt(3)) rArr - (1)/(sqrt(3)) lt tan theta lt (1)/(sqrt(3))`
`rArr - (pi)/(3) lt theta lt (pi)/(3)" "...(1)`
`because x = a tan theta therefore tan theta = (x)/(a) rArr theta = tan^(-1)""(x)/(a)" "...(2)`
अब, `tan^(-1)[(3a^(2)x - x^(3))/(a^(3) - 3ax^(2))] = tan^(-1)[(3a^(2)a tan theta - a^(3)tan^(3)theta)/(a^(3)-3a a^(2)tan^(2)theta)]`
` = tan^(-1)[(a^(2)(3 tan theta-tan^(3)theta))/(a^(3)(1-3tan^(2)theta))] = tan^(-1)(tan 3theta)`
`= (3theta) = 3 tan^(-1)""(x)/(a)" "`[(2) से]
7.

`tan^(-1)""(1)/(sqrt(x^(2)-1)),|x|gt1`

Answer» `tan^(-1)""(1)/(sqrt(x^(2)-1))" "" माना "{:(x=cosectheta),(impliestheta=cosec^(-1)x):}`
`=tan^(-1)(1)/(sqrt(cosec^(2)theta-1))=tan^(-1)((1)/(cottheta))`
`=tan^(-1)(tantheta)=theta=cosec^(-1)x`
8.

`tan^(-1)""((sqrt(1-cosx))/(1+cosx)),0ltxltpi`

Answer» `tan^(-1)(sqrt((1-cosx)/(1+cosx)))`
`=tan^(-1)(sqrt((2sin^(2)""(x)/(2))/(2cos^(2)""(x)/(2))))=tan^(-1)((sin""(x)/(2))/(cos""(x)/(2)))`
`=tan^(-1)(tan""(x)/(2))=(x)/(2)`
9.

`tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lta` को सरलतम रूप में लिखे |

Answer» `x = a sin theta,` रखने पर,
`tan^(-1)""(x)/(sqrt(a^(2)-x^(2)))=tan^(-1)""(asintheta)/(sqrt(a^(2) - a^(2) sin^(2)theta)) = tan^(-1) ""(a sin theta)/(sqrt(a^(2) (1-sin^(2)theta)))`
` = tan^(-1)((a sin theta)/(a cos theta)) = tan^(-1) (tan theta) = theta = sin^(-1)""(x)/(a)`
10.

`tan^(-1)((cosx - sinx)/(cosx + sinx)), - (pi)/(4)ltxlt(3pi)/(4)` को सरलतम रूप में लिखे |

Answer» `tan^(-1)((cosx -sinx)/(cosx + sinx)) = tan^(-1)((1-tanx)/(1+tanx))`
` = tan^(-1)((tan""(pi)/(4)-tanx)/(1+tan""(pi)/(4)*tanx)) = tan^(-1)tan((pi)/(4)-x) = (pi)/(4)-x`
11.

`tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lta`

Answer» `tan^(-1)""(x)/(sqrt(a^(2)-x^(2)))=tan^(-1)""(asintheta)/(sqrt(a^(2)-a^(2)sin^(2)theta))`
`=tan^(-1)""(asintheta)/(sqrt(a^(2)(1-sin^(2)theta)))" "" माना " {:(x=asintheta),(impliessintheta=(x)/(a)):}`
`=tan^(-1)""(asintheta)/(sqrt(a^(2)cos^(2)theta))" "impliestheta=sin^(-1)((x)/(a))`
`=tan^(-1)""(asintheta)/(acostheta)=tan^(-1)(tantheta)`
`=theta=sin^(-1)""(x)/(a)`
12.

`tan^(-1)[2cos(2sin^(-1)""(1)/(2))]`

Answer» `tan^(-1)[2cos(2sin^(-1)""(1)/(2))]`
`=tan^(-1)[2cos(2sin^(-1)sin""(pi)/(6))]`
`=tan^(-1)[2cos(2.(pi)/(6))]`
`=tan^(-1)[2.cos""(pi)/(3)]`
`=tan^(-1)(2.(1)/(2))=tan^(-1)(1)`
`tan^(-1)(tan""(pi)/(4))=(pi)/(4)`
13.

`tan^(-1)((cosx-sinx)/(cosx+sinx)),(-pi)/(4)ltxlt(3pi)/(3)`

Answer» `tan^(-1)((cosx-sinx)/(cosx+sinx))`
`=tan^(-1)(((cosx)/(cosx)-(sinx)/(cosx))/((cosx)/(cosx)+(sinx)/(cosx)))`
`=tan^(-1)((1-tanx)/(1+tanx))`
`=tan^(-1){tan((pi)/(4)-x)}=(pi)/(4)-x`
14.

सरलतम रूप में लिखिए - `sin^(-1)((sinx+cosx)/(sqrt2)),-(pi)/(4) lt x lt(pi)/(4).`

Answer» `sin^(-1)((sinx+cosx)/(sqrt2))`
`=sin^(-1)[(1)/(sqrt2)sinx+(1)/(sqrt2)cosx]`
`=sin^(-1)[sinx cos.(pi)/(4)+cosx sin .(pi)/(4)]`
`=sin^(-1)(sin(x+(pi)/(4))),`
`[because -(pi)/(4) lt x lt (pi)/(4) rArr 0 lt x +(pi)/(4) lt (pi)/(2)]`
`=x+(pi)/(4).`
15.

`sin[(1)/(2)cos^(-1)""((4)/(5))]` का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(1)/(sqrt(10))`
16.

`tan""(1)/(2)(cos^(-1)""(sqrt(5))/(3))` का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(3-sqrt(5))/(2)`
17.

सरलतम रूप में लिखिए - `cos^(-1)((sinx+cosx)/(sqrt2)).

Answer» `cos^(-1)((sinx+cosx)/(sqrt2))`
`=cos^(-1)((1)/(sqrt2)sinx+(1)/(sqrt2)x)`
`=cos^(-1)(sin x sin.(pi)/(4)+cosx cos.(pi)/(4))`
`=cos^(-1)(cosx cos.(pi)/(4)+sinx sin.(pi)/(4))`
`=cos^(-1)(cos(x-(pi)/(4))),`
`" "[because (pi)/(4)lt x lt (5pi)/(4) rArr 0 lt x lt -(pi)/(4) lt pi]`
`=x-(pi)/(4).`
18.

यदि `sin^(-1)x=(1)/(3)" तो " sin^(-1)(2xsqrt(1-x^(2)))` का मान ज्ञात कीजिए।

Answer» Correct Answer - `(2)/(3)`
19.

`cos^(-1)(cos680^(@))` का मुख्य मान ज्ञात कीजिए ।

Answer» Correct Answer - `40^(@)`
20.

यदि `sin^(-1)""((1)/(3))+cos^(-1)""(1)/(x)=(pi)/(2)`, तब x का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(1)/(3)`
21.

`tan^(-1)""(1)/(2)+tan^(-1)""(1)/(3)`

Answer» `tan^(-1)""(1)/(2)+tan^(-1)""(1)/(3)=tan^(-1)""((1)/(2)+(1)/(3))/(1-(1)/(2)xx(1)/(3))`
`=tan^(-1)1=tan^(-1)tan""(pi)/(4)=(pi)/(4)`
22.

मान ज्ञात कीजिए - `tan^(-1)sqrt(3)`

Answer» Correct Answer - `(pi)/(3)`
23.

`cos(2cos^(-1)0.8)` का मान है -A. `0.28`B. `0.48`C. `0.60`D. इनमे से कोई नहीं

Answer» Correct Answer - A
24.

सिद्ध कीजिए कि `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3tan^(-1)""(x)/(a)`

Answer» माना `tan^(-1)""(x)/(a)=thetaimplies tan theta=(x)/(a)`
`:.` दायाँ पक्ष `=3 tan^(-1)""(x)/(a)=3theta`
अब, बायाँ पक्ष `tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]`
=`tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=tan^(-1)[(3(x)/(a)-(x^(3))/(a^(3)))/(1-3(x^(2))/(a^(2)))]`
`=tan^(-1)[(3 tan theta -tan^(3)theta)/(1-3tan^(2)theta)]`
`=tan^(-1)[tan 3 theta ]=3 theta =3 tan^(-1)""(x)/(a)`
`:. tan^(-1)""[(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))]=3 tan^(-1)""(x)/(a)`
25.

x के लिए हल करें : `cot^(-1) 2x + tan^(-1) 3x = (pi)/(4)`

Answer» Correct Answer - 3
26.

`sin[cot^(-1){cos(tan^(-1)x)}]` का सरलतम रूप है -A. `sqrt((x^(2)+2)/(x^(2)+1))`B. `(x)/(sqrt(x^(2))+1)`C. `(x)/(sqrt(x^(2)+2))`D. `sqrt((x^(2)+1)/(x^(2)+2))`

Answer» Correct Answer - D
27.

`cot^(-1)"" (1)/(sqrt(x^(2)-1)),|x| gt 1` का सरलतम रूप में लिखें

Answer» Correct Answer - `sec^(-1)x`
28.

`tan ^(-1)""(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)), (-1)/(sqrt(2)) lexle 1` का सरलतम रूप में लिखें

Answer» Correct Answer - `(pi)/(4)-(1)/(2) cos^(-1)x`
`(pi)/(4)-(1)/(2) cos^(-1)x`
29.

`tan^(-1)((a cos x - b sin x)/(b cos x + a sin x)), (a)/(b) sin x gt-1` को सरलतम रूप में लिखें |

Answer» दिया गया व्यंजक
`=tan^(-1)[(a cos x-b sinx)/(b cos x + a sinx)] = tan^(-1)[((acosx-bsinx)/(bcosx))/((bcosx + a sinx)/(b cosx))] = tan^(-1)[((a)/(b)-tanx)/(1+(a)/(b)tanx)]`
` = tan^(-1)""(a)/(b)(tanx) = tan^(-1) ""(a)/(b) -x`
30.

यदि `sin(sin^(-1)""(1)/(5)+cos^(-1) x)=1 ` तो x का मान ज्ञात कीजिए ।

Answer» Correct Answer - `(1)/(5)`
31.

`sin((pi)/(3)-sin^(-1)(-(1)/(2))) ` का मान है ।A. `(1)/(2)` हैB. `(1)/(3)` हैC. `(1)/(4)` हैD. 1

Answer» Correct Answer - D
32.

सिद्ध कीजिए कि ` tan^(-1)""(1)/(2)+tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=(pi)/(4)`

Answer» `tan^(-1)x +tan^(-1)y+tan^(-1)z=tan^(-1)""(x+y+x-xyz)/(1-xy-yz-zx)`
`tan^(-1)""((1)/(2)+(1)/(5)+(1)/(8)-(1)/(2)xx(1)/(5)xx(1)/(8))/(1-(1)/(2)xx(1)/(5)-(1)/(5)xx(1)/(8)-(1)/(8)xx(1)/(2))`
` =tan^(-1)""((40+16+10-1)/(80))/((80-8-2-5)/(80))`
` =tan^(-1)""((65)/(65))=(pi)/(4)`
33.

सिद्ध कीजिए कि ` tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`

Answer» हमें सिद्ध करना है कि
` tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`
माना `sin^(0-1)""(x)/(a)=theta` तब `(x)/(a)=sin thetaimpliesx=a sin theta`
` :. (x)/(sqrt(a^(2)-x^(2)))=(a sin theta)/(sqrt(a^(2)-x^(2)sin^(2)theta))`
`= (a sin theta)/(a cos theta)=tan theta `
`implies tan^(-1)((x)/(sqrt(a^(2)-x^(2))))= tan^(-1)(tan theta)=theta`
तथा `theta=sin^(-1)""(x)/(a)`
`implies tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`
34.

यदि `tan^(-1)""(x-1)/(x-2) +tan^(-1)""(x+1)/(x+2)=(pi)/(4) `, तो x का मान ज्ञात कीजिए ।

Answer» Correct Answer - `pm(1)/(sqrt(2))`
35.

सिद्ध कीजिए कि ` cos[tan^(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))`

Answer» सर्वप्रथम माना `cot^(-1)x=theta`
`implies x= cot theta `
`:. " cosec" theta=sqrt(1+cot^(2)theta)=sqrt(1+x^(2))`
` implies sin theta = (1)/(sqrt(1+x^(2)))`
`implies sin (cot^(-1)x)=(1)/(sqrt(1+x^(2)))`
`= tan^(-1)[sin(cot^(-1)x)]=tan^(-1)""(1)/(sqrt(1+x^(2)))= phi` (say)
तब `, cos[tan^(-1){sin(cot^(-1)x)}]=cos phi" "`......(1)
अब , चूँकि `tan^(-1)""(1)/(sqrt(1+x^(2)))=phi` ,
तब ` tan phi=(1)/(sqrt(1+x^(2)))`
`:. sec phi=sqrt(1+tan^(2)phi)=sqrt(1+(1)/((1+x^(2))))=sqrt((x^(2)+1)/(x^(2)+2))`
`:. cos phi= sqrt((1+x^(2))/(2+x^(2)))" " `.....(2)
अतः समीकरण ( 1 ) व ( 2 ) से ,
` cos[tan^(-1){sin(cot^(-1)x)}]=sqrt(x^(2)+1)/(x^(2)+2)`
36.

मान ज्ञात कीजिए - `cos(sec^(-1)x+"cosec"^(-1)x),|x| ge 1.`

Answer» `cos(sec^(-1)x+"cosec"^(-1)x)=cos((pi)/(2))=0.`
37.

मान ज्ञात कीजिए - `sin[sin^(-1)x+cos^(-1)x]`

Answer» `sin[sin^(-1)x+cos^(-1)x]=sin.(pi)/(2),`
`" "[because sin^(-1)x+cos^(-1)x=(pi)/(2)]`
= 1
38.

मान ज्ञात कीजिए - `sin[sin^(-1)x+cos^(-1)x]`

Answer» `sin[sin^(-1)x+cos^(-1)x]=sin.(pi)/(2),`
`" "[because sin^(-1)x+cos^(-1)x=(pi)/(2)]`
= 1
39.

मान ज्ञात कीजिए - `cos[tan^(-1)a+cot^(-1)a]`

Answer» `cot[tan^(-1)a+cot^(-1)a]`
`=cot.(pi)/(2)=0," "[because tan^(-1)x+cot^(-1)x=(pi)/(2)]`
40.

`cos(sin^(-1).(3)/(5)+sin^(-1).(5)/(13))` का मान है -

Answer» माना `sin^(-1).(3)/(5)=A` और `sin^(-1).(5)/(13)=B,` जहाँ `A,B in [-(pi)/(2),(pi)/(2)]`
तब `sinA=(3)/(5)` और `sinB=(5)/(13).`
चूँकि `A, B in [-(pi)/(2),(pi)/(2)]` इसलिए `cosA, cosB gt 0`
`therefore" "cosA=sqrt(1-sin^(2)A)`
`=sqrt(1-(9)/(25))=(4)/(5)`
`cosB=sqrt(1-sin^(2)B)`
`=sqrt(1-(25)/(169))=(12)/(13).`
अब, `cos(sin^(-1).(3)/(5)+sin^(-1).(5)/(13))=cos(A+B)`
`=cosAcos B-sinAsinB`
`=((4)/(5)xx(12)/(13))-((3)/(5)xx(5)/(13))`
`=(48)/(65)-(15)/(65)`
`=(33)/(65)`.
41.

`cos[sin^(-1)""(3)/(5)+sin^(-1)""(5)/(13)]` का मान ज्ञात कीजिए ।

Answer» माना `sin^(-1)""(3)/(5)=A` तथा `sin^(-1)""(5)/(13)=B`
` implies sinA=(3)/(5),sinB=(5)/(13)`
`implies cos A=(4)/(5), cosB=(12)/(13)`
अब `cos[A+B]=cosA cos B- sinA sinB`
`=(4)/(5)xx(12)/(13)-(3)/(5)xx(5)/(13)=(48)/(65)-(15)/(65)=(33)/(65)`
42.

सिद्ध कीजिए कि `tan""((1)/(2)cos^(-1)""(sqrt(5))/(3))=(3-sqrt(5))/(2)`

Answer» मान ` cos^(-1)""(sqrt(5))/(3)=theta implies cos theta =(sqrt(5))/(3)`
`implies tan""(1)/(2)(cos^(-1)""(sqrt(5))/(3))=tan""(theta)/(2)`
`=sqrt((1-cos theta )/(1+cos theta))=sqrt((1-sqrt(5)//3)/(1+sqrt(5)//3))=sqrt((3-sqrt(5))/(3+sqrt(5)))`
`implies tan""(1)/(2)(cos^(-1)""(sqrt(5))/(3))=(3-sqrt(5))/(2)`
43.

सिद्ध कीजिए कि ` sin((1)/(2)cos^(-1)""(4)/(5))=(1)/(sqrt(10))`

Answer» मान `cos^(-1)""(4)/(5)=theta implies cos theta =(4)/(5)`
` :. sin((1)/(2)cos^(-1)""(4)/(5))=sin""(theta)/(2)=sqrt((1-cos theta)/(2))=(1)/(10)`
`implies sin((1)/(2)cos^(-1)""(4)/(5))=(1)/(sqrt(10))`
44.

सिद्ध कीजिए कि - ` sin(cot^(-1)x)=(1)/(sqrt(1+x^(2)))`

Answer» मान `cot^(-1)x= theta implies cot theta =x`
अब ` sin(cot^(-1)x)=sin theta =(1)/("cosec" theta)=(1)/(sqrt(1+cot^(2)theta))`
`implies sin(cot^(-1)x)=(1)/(sqrt(1+x^(2)))`
45.

सिद्ध कीजिए कि - `sin(cos^(-1)""(3)/(5))=(4)/(5)`

Answer» मान `cos^(-1)""(3)/(5)=thetaimplies cos theta =(3)/(5)`
` :. sin (cos^(-1)""(3)/(5))=sin theta =sqrt(1-cos^(2)theta)=sqrt(1-(9)/(25))`
`implies sin(cos^(-1)""(3)/(5))=(4)/(5)`
46.

`cos[tan^(-1)""(3)/(4)]=`

Answer» मान `tan^(-1)""(3)/(4)=thetaimplies tan theta =(3)/(4)`
`implies cos[tan^(-1)""(3)/(4)]=cos theta =(1)/(sec theta )`
`= (1)/(sqrt(1+tan^(2)theta))=(1)/(sqrt(1+(9)/(16)))`
`:. cos[ tan^(-1)""(3)/(4)]=(4)/(5)`
47.

`cot^(-1)[cot(-(pi)/(3))]=`

Answer» मान `y=cot^(-1)[cot(-(pi)/(3))]`
अब
` cot(-(pi)/(3))=cot((2pi)/(3)-pi)=cot(-pi+(2pi)/(3))=cot""(2pi)/(3)`
`:. cot^(-1)[cot(-(pi)/(3))]=cot^(-1)[cot""(2pi)/(3)]`
` implies cot^(-1)[cot(-(pi)/(3))]=(2pi)/(3)`
48.

सिद्ध कीजिए - `sin^(-1)(sin""(3pi)/(3))=(pi)/(4)`

Answer» मान `y=sin^(-1)(sin""(3pi)/(4))`
अब ` sin((3pi)/(4))=sin(pi-(pi)/(4))implies sin((3pi)/(4))=sin""(pi)/(4)`
`:. sin^(-1)(sin""(3pi)/(4))=sin^(-1)(sin""(pi)/(4))`
`implies sin^(-1)(sin""(3pi)/(4))=(pi)/(4)`
49.

सिद्ध कीजिए - ` sec^(-1)(sec""(11pi)/(3))=(pi)/(3)`

Answer» `sec^(-1)(sec""(11pi)/(3))=y`
अब `sec""(11pi)/(3)=sec(4pi-(pi)/(3))implies sec""(11pi)/(3)=sec""(pi)/(3)`
` :. sec^(-1)(sec""(11pi)/(3))=sec^(-1)(sec""(pi)/(3))`
` sec^(-1)(sec""(11pi)/(3))=(pi)/(3)`
50.

निम्न का मान ज्ञात कीजिए । ` cos^(-1)(cos""(7pi)/(6))`

Answer» मान ` y= cos^(-1)(cos""(7pi)/(6)), 0 le y le pi`
` y=cos^(-1)[cos(2pi-(5pi)/(6))]`
`implies y = cos^(-1)[cos""((5pi)/(6))]`
`:. cos^(-1)(cos""(7pi)/(6))=(5pi)/(6)`