InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The angles of a triangle `A B C`are in `AdotPdot`and it is being given that `b : c=sqrt(3):sqrt(2)`, find `/_Adot` |
|
Answer» As angles are in A.P., `:. 2/_B = /_A+/_C` Now, `/_A+/_B+/_C = 180` `/_B+2/_B = 180` `/_B = 60^@` Now, from sine law, `b/sinB = c/sinC` `b/c = sinB/sinC` `=>sqrt3/sqrt2 = sin60^@/sinC` `sinC = sqrt3/2*sqrt2/sqrt3 = 1/sqrt2` `:. C = 45^@` `/_A = 180-(60+45) = 75^@` |
|
| 2. |
If `a^2,b^2,c^2`are in A.P., prove that `cotA ,cotB ,cotC`are in `AdotPdot` |
|
Answer» Let `cotA,cotB and cotC` are in `A.P.` Then, `2cotB = cotA+cotC` `=>2cosB/sinB = cosA/sinA+cosC/sinC->(1)` We know, `sinA/a = sinB/b = sinC/c = k` `=>sinA = ka, sinB = kb, sinC = kc` So, (1) becomes, `2[(a^2+c^2-b^2)/(2ac)]*1/(kb) = [(b^2+c^2-a^2)/(2bc)]*1/(ka) +[(a^2+b^2-c^2)/(2ab)]*1/(kc) ` `=>2a^2+2c^2-2b^2 = b^2+c^2-a^2+a^2+b^2-c^2` `=>2a^2+2c^2 = 4b^2` `=>(a^2+c^2)/2 = b^2` So, `a^2,b^2 and c^2` are in A.P., which is true. So, our assumption is correct that `cotA,cotB and cotC` are in A.P. |
|
| 3. |
If in a triangle `A B C ,cosA+2cosB+cosC=2`prove that the sides of the triangle are in `AP` |
|
Answer» `cosA+2cosB+cosC = 2` `=>cosA+cosC = 2(1-cosB)` `=>2cos((A+C)/2)cos((A-C)/2) = 2(2sin^2(B/2))` `=>2cos((pi-B)/2)cos((A-C)/2) = 2(2sin^2(B/2))` `=>sin(B/2)cos((A-C)/2) = 2sin^2(B/2)` `=>cos((A-C)/2) = 2sin(B/2)` `=>cos(B/2)cos((A-C)/2) = 2sin(B/2)cos(B/2)` `=>cos((pi-(A+C))/2)cos((A-C)/2) = sinB` `=>sin((A+C)/2)cos((A-C)/2) = sinB` `=>2sin((A+C)/2)cos((A-C)/2) = 2sinB` `=>sinA+sinC = 2sinB->(1)` Now, from sine rule, `sinA/a = sinB/b = sinC/c = k` `=>sinA = ka, sinB = kb,sinC = kc` So, (1) becomes, `=>ka +kc = 2kb` `=>(a+c)/2 = b` So, sides of the triangle are in A.P. |
|
| 4. |
In any triangle `A B C ,`prove that:`a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3a b c` |
|
Answer» From sine law, we have, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` Now, `L.H.S. = a^3cos(B-C)+b^3os(C-A)+c^3cos(A-B)` `=a^2(ksinAcos(B-C))+b^2(ksinBcos(C-A))+c^2(ksinCcos(A-B))` `=a^2(ksin(pi-(B+C))cos(B-C))+b^2(ksin(pi-(C+A))cos(C-A))+c^2(ksin(pi-(A+B))cos(A-B))` `=k/2[a^2(2sin(B+C)cos(B-C))+b^2(2sin(C+A)sin(C-A))+c^2(2sin(A+B)cos(A-B))]` `=k/2[a^2(sin2B+sin2C)+b^2(sin2C+sin2A)+c^2(sin2A+sin2B]` `=k/2[a^2(2sinBcosB+2sinCcosC)+b^2(2sinCcosC+2sinAcosA)+c^2(2sinAcosA+2sinBcosB]` `=[a^2(ksinBcosB+ksinCcosC)+b^2(ksinCcosC+ksinAcosA)+c^2(ksinAcosA+ksinBcosB]` `=[a^2(bcosB+c cosC)+b^2( c cosC+acosA)+c^2(acosA+bcosB]` `=[a^2bcosB+a^2c cosC+ b^2c cosC+b^2a cosA+c^2a cosA+c^2bcosB]` `=ab(acosB+bcosA)+bc(bcosC+c cosB) + ac(acosC + c cosA)` Using projection formulas, `=ab(c)+bc(a)+ac(b)` `=3abc = R.H.S.` |
|
| 5. |
With usual notations, if in a triangle `A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13)`, then prove that:`(cosA)/7=(cosB)/(19)=(cosC)/(25)` |
|
Answer» Let `(b+c)/11 = (c+a)/12 = (a+b)/13 = k` `=>b+c = 11k->(1)` `=>c+a = 12k->(2)` `=>a+b = 13k->(3)` Solving (1),(2) and (3), we get, `a = 7k, b = 6k, c = 5k` Now, `cosA = (b^2+c^2-a^2)/(2bc) = (36k^2+25k^2-49k^2)/(60k^2) = 1/5` `cosB = (a^2+c^2-b^2)/(2ac) = (49k^2+25k^2-36k^2)/(70k^2) = 38/70 = 19/35` `cos C = (a^2+b^2-c^2)/(2ab) = (49k^2+36k^2-25k^2)/(84k^2) = 60/84 = 5/7` `:. cosA:cosB:cosC = 1/5:19/35:5/7 = 7:19:25` `:. cosA/7 = cosB/19 = cosC/25.` |
|
| 6. |
If in a ` A B C ,(a^2-b^2)/(a^2+b^2)=(sin(A-B))/(sin(A+B)`, prove that it is either a right angled or an isosceles triangle. |
|
Answer» `(a^2-b^2)/(a^2+b^2) = (sin(A-B))/(sin(A+B))` `=>(a^2+b^2)/(a^2-b^2) = (sin(A+B))/(sin(A-B))` Using componendo and dividendo, `=>(2a^2)/(2b^2) = (sin(A+B)+sin(A-B))/(sin(A+B)-sin(A-B))` `=>a^2/b^2 = (2sinAcosB)/(2sinBcosA)` `=>a^2/b^2 = (sinAcosB)/(sinBcosA)` Now, from sine law, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` So, our equation becomes, `a^2/b^2 = (akcosB)/(bkcosA)` `=>cosB/cosA = a/b` `=>bcosB = acosA` `=>b((a^2+c^2-b^2)/(ac)) = a((b^2+c^2-a^2)/(bc))` `=>b^2a^2+b^2c^2-b^4 = a^2b^2+a^2c^2-a^4` `=>c^2(b^2-a^2) = b^4-a^4` `=>c^2(b^2-a^2) -(b^2+a^2)(b^2-a^2) = 0` `=>(b^2-a^2)(c^2-(b^2+a^2)) = 0` `=>(b^2-a^2) = 0 or (c^2-(b^2+a^2)) = 0` `=> b^2 = a^2 or c^2= (b^2+a^2)` `=>b = a or c^2= (b^2+a^2)` It means, either the `Delta ABC` is a right angle triangle or a isoceles triangle. |
|
| 7. |
If in a triangle`A B C ,``(2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a)`, then prove that the triangle is right angled. |
|
Answer» `(2cosA)/a+(cosB)/b +(2cosC)/c = a/(bc)+b/(ca)` `=>2[cosA/a+cosC/c]+cosB/b = a/(bc)+b/(ca)` `=>2[(c cosA+ acosC)/(ac)]+cosB/b = a/(bc)+b/(ca)` From projection formula, `acosA + c cosA = b` So, our equation becomes, `(2b)/(ac)+cosB/b = a/(bc)+b/(ca)` `=>cosB/b = a/(bc)-b/(ca)` `=>(a^2+c^2-b^2)/(2abc) = (a^2-b^2)/(abc)` `=>a^2+c^2-b^2 = 2a^2-2b^2` `=>c^2-a^2+b^2 = 0` `=>b^2+c^2 = a^2` It means, it satisfies pythagoras theorem, so it is a right angle triangle. |
|
| 8. |
In a triangle `A B C`, if `cos A=(sinB)/(2sinC)`, show that the triangle is isosceles. |
|
Answer» `cos A = sinB/(2sinC)` `=>sinB = 2sinCcosA` As, `A+B+C = pi =>B = pi-(A+C)` `=>sin(pi-(A+C)) = 2sinCcosA` `=>sin(A+C) = 2sinCcosA` `=>sinAcosC +cosAsinC = 2sinCcosA` `=>sinAcosC -cosAsinC` `=>sin(A-C) = 0` `=>sin(A-C) =sin 0^@` `=>A-C = 0` `=> A= C` As, two of the angles of the triangle are equal, it means `Delta ABC` is an isoceles triangle. |
|
| 9. |
In any ` DeltaABC`, prove that:`(sinB)/(sinC)=(c-acosB)/(b-acosC)` |
|
Answer» `R.H.S. = (c-acosB)/(b-acosC)` From projection formulas, `c = acosB + bcosA` `b = acosC+c cosA` `:.(c-acosB)/(b-acosC) = (acosB + bcosA-acosB)/(acosC+c cosA-acosC)` `=(bcosA)/(c cosA)` `=b/c` `L.H.S. = sin B/sinC` From Sine formulas,`sinA = ka, sinB = kb, sin C = kc` `:. sin B/sinC = (kb)/(kc) = b/c` `:. L.H.S. = R.H.S.` |
|
| 10. |
`cos(2A)/a^2-cos(2B)/b^2 = 1/a^2-1/b^2` |
|
Answer» `L.H.S. = (cos2A)/a^2-(cos2B)/b^2` `=(1-2sin^2A)/a^2 - (1-2sin^2b)/b^2` `=1/a^2-1/b^2-2(sin^2A/a^2 - sin^2B/b^2)` From sine law, `sinA/a = sinB/b = sinC /c` `:. sin^2A/a^2 = sin^2B/b^2 ` `:. 1/a^2-1/b^2-2(sin^2A/a^2 - sin^2B/b^2) = 1/a^2-1/b^2-2(0)` `1/a^2-1/b^2 = R.H.S.` |
|
| 11. |
`a(cosC-cosB)=2(b-c)cos^2A/2` |
|
Answer» From sine law, we have, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` Now, `L.H.S. = a(cosC-cosB) = ksinA(cosC-cosB)` `=k(2sin(A/2)cos(A/2))[2sin((B+C)/2)sin((B-C)/2)]` `=k(2sin(A/2)cos(A/2))[2sin((pi-A)/2)sin((B-C)/2)]...[As A+B+C = pi]` `=4ksin((pi-(B+C))/2)cos(A/2)cos(A/2)sin((B-C)/2)` `=4kcos^2(A/2)cos((B+C)/2)sin((B-C)/2)` `=2kcos^2(A/2)(2cos((B+C)/2)sin((B-C)/2))` `=2kcos^2(A/2)(sinB-sinC)` `=2kcos^2(A/2)(b/k-c/k)...[b = ksinB, c = ksinC]` `=2cos^(A/2)(b-c) = R.H.S.` |
|
| 12. |
In any ` A B C`, prove that:`2{asin^2C/2+csin^2A/2}=a+c-b` |
|
Answer» We know, `2sin^2x = 1-cos2x` `:. L.H.S. = 2(asin^2(C/2)+csin^2(A/2))` `=a(1-cosC)+c(1-cosA)` `=a+c -(acosC+c cosA)` From projection formula, `b = (acosC+c cosA)` `:. a+c -(acosC+c cosA) = a+c - b = R.H.S.` |
|
| 13. |
If any triangle `A B C`, that:`(asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)` |
|
Answer» From sine law, we have, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` Now, `(asin(B-C))/(b^2-c^2) = (ksinAsin(B-C))/(k^2(sin^2B-sin^2C))` `= sin(pi-(B+C)sin(B-C))/(k(sin^2B-sin^2C))` `= (sin(B+C)sin(B-C))/(k(sin^2B-sin^2C))` We know, `sin(B+C)sin(B-C) = sin^2B-sin^2C` So, it becomes, `=1/k(sin^2B-sin^2C)/(sin^2B-sin^2C) = 1/k` `:. (asin(B-C))/(b^2-c^2) = 1/k` Now, `(bsin(C-A))/(c^2-a^2) = (ksinBsin(C-A))/(k^2(sin^2C-sin^2A))` `= (sin(pi-(C+A))sin(C-A))/(k(sin^2C-sin^2A))` `= (sin(C+A)sin(C-A))/(k(sin^2C-sin^2A))` `=1/k(sin^2C-sin^2A)/(sin^2C-sin^2A) = 1/k` `:.(bsin(C-A))/(c^2-a^2) = 1/k` Now, `(csin(A-B))/(a^2-b^2) = (ksinCsin(a-b))/(k^2(sin^2A-sin^2B))` `= (sin(pi-(A+B))sin(A-B))/(k(sin^2A-sin^2B))` `= (sin(A+B)sin(A-B))/(k(sin^2A-sin^2B))` `=1/k(sin^2A-sin^2B)/(sin^2A-sin^2B) = 1/k` `:.(csin(A-B))/(a^2-b^2) = 1/k` `:. (asin(B-C))/(b^2-c^2) = (bsin(C-A))/(c^2-a^2) =(csin(A-B))/(a^2-b^2) = 1/k` | |
| 14. |
If any triangle `A B C`, that:`(b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0` |
|
Answer» From sine law, we have, `a/sinA = b/sinB = c/sinC = k` `=> a = ksinA, b = ksin B, c = ksinC` Now, `L.H.S. = (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)` `= (k^2(sin^2B-sin^2C))/(cosB+cosC)+ (k^2(sin^2C-sin^2A))/(cosC+cosA)+ (k^2(sin^2A-sin^2B))/(cosA+cosB)` `= (k^2((1-cos^2B)-(1-cos^2C)))/(cosB+cosC)+ (k^2((1-cos^2C)-(1-cos^2A)))/(cosC+cosA)+ (k^2((1-cos^2A)-(1-cos^2B)))/(cosA+cosB)` `=k^2[(cos^2B-cos^2C)/(cosB+cosC)+(cos^2C-cos^2A)/(cosC+cosA)+(cos^2A-cos^2B)/(cosA+cosB)]` `=k^2[((cosB+cosC)(cosB-cosC))/(cosB+cosC)+((cosC+cosA)(cosC-cosA))/(cosC+cosA)+((cosA+cosB)(cosA-cosB))/(cosA+cosB)]` `=k^2[cosB-cosC+cosC-cosA+cosA-cosB]` `=k^2[0] = 0 = R.H.S.` |
|