Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

In triangle `A B C ,`if `sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A`is equal toA. 2B. 3C. 4D. 5

Answer» Correct Answer - B
`3 sin A cos B=sin B cos A`
`rArr cos A sin B =(3)/(4)`
`rArr C=(pi)/(2).B=(pi)/(2)-A`
`rARr 3tan A=tan ((pi)/(2)-A)`
`rArr 3=cot^(2)A`.
2.

The value of `(cos25^(@))/(sin70^(@)sin85^(@))+(cos70^(@))/(sin 25^(@)sin85^(@))+(cos85^(@))/(sin25^(@)sin70^(@))` isA. `1//2`B. 1C. 2D. `3//2`

Answer» Correct Answer - C
Given expression `=(sin 50^(@)+sin 140^(@)+sin 170^(@))/(2sin 25^(@)sin 70^(@)sin 85^(@))`
`=(4)/(2)` (Using sin 2A + sin 2B + sin 2C =4 sin A sin B sin C, where `A+B+c=180^(@)`)
= 2
3.

If `tantheta=a/b` , show that `(asintheta-bcostheta)/(asintheta+bcostheta)=(a^2-b^2)/(a^2+b^2)`

Answer» `((asin theta- b cos theta ))/(( a sin theta+b cos theta ))=((atan theta-b))/((a tan theta +b))" " ["dividing num , and denom , by cos "theta]`
`=((axx(a)/(b)-b))/((axx(a)/(b)+b))=((a^(2)-b^(2)))/((a^(2)+b^(2))).`
4.

In a triangle `tan A+ tan B + tan C=6` and `tan A tan B= 2,` then the values of `tan A, tan B` and `tan C` areA. 1,2,3B. `3,2//3,7//3`C. `4,1//2,3//2`D. none of these.

Answer» Correct Answer - A
In triangle.
`tanA+tanB+tanC=tanA tan B tan C`
`rARr 6=2tanC`
or `tanC=3`
Also `an A+tanB=6-3=3`
By Eqs. I and ii, `tanA` and `tanB` are roots of `x^(2)-3x+2=0`.
thus,
`tanA,tanB=2,1` or `2,2` and `tanC=3`.
5.

If `cos x+cos y-cos(x+y)=(3)/(2)`, thenA. `x+y=0`B. x=2yC. x=yD. 2x=y

Answer» Correct Answer - B
`cos x+cosy-cos(x+y)=(3)/(2)`
or `2cos((x+y)/(2))cos((x-y)/(2))-2cos^(2)((x+y)/(2))+1=(3)/(2)`
or `2cos^(2)((x+y)/(2))-2cos((x+y)/(2))cos((x-y)/(2))+(1)/(2)=0`.
Now `cos((x+y)/(2))` is always real, then discriminant `ge0`. Thus,
`4cos^(2)((x-y)/(2))-4ge0`
or `cos^(2)((x-y)/(2))ge1`
or `cos^(2)((x-y)/(2))=1`
or `(x-y)/(2))=0` or x=y.
6.

If `alpha and beta` are non-zero real number such that `2(cos beta-cos alpha)+cos alpha cos beta=1.` Then which of the following is treu?A. `tan ((alpha )/(2)) + sqrt3 tan ((beta)/(2)) =0`B. `sqrt3 tan ((alpha)/(2)) + tan ((beta)/(2)) =0`C. `tan ((alpha )/(2)) - sqrt3 tan ((beta)/(2)) =0`D. `sqrt3 tan (( alpha )/(2)) - tan ((beta)/(2))= 0`

Answer» Correct Answer - A::C
`cos beta ( 2+ cos alpha ) = 1+ 2 cos alpha `
`rArr (cos beta)/(1) = (1+2 cos alpha )/(2 + cos alpha )`
`rArr (1-cos beta)/(1+cos beta) = (1-cos alpha )/(3(1+cos alpha ))`
`rArr tan ^(2) ""(alpha )/(2) = 3 tan ^(2) ""(beta)/(2)`
`rArr tan ""(alpha )/(2) = pm sqrt3 tan ""(beta)/(2)`
7.

In a `DeltaPQR`. if `3 sinP +4 cosQ=6` and `4sinQ+3cosP=1`, then the angle `R` is equal to:A. `( 5pi)/(6)`B. `(pi)/(6)`C. `(pi)/(4)`D. `(3pi)/(4)`

Answer» Correct Answer - B
`3 sin P + 4 cos Q =6" " `(i)
`4 sin Q + 3 cos P =1" " `(ii)
Squaring and adding (i) and (ii) we get ` sin (P+Q) = (1)/(2)`
`rArr P + Q = (pi)/(6) or (5pi)/(6)`
`rArr R =(5pi)/(6) or (pi)/(6)`
If `R = (5pi)` then `0 lt P, Q lt (pi)/(6)`
`rArr cos Q lt 1 and sin P lt (1)/(2)`
`rArr 3 sin P + 4 cos Q lt (11)/(2)`, which is not possible
So `R= (pi)/(6)`
8.

If `A = sin^2x + cos^4 x`, then for all real x :A. `(3)/(4) le A le (13)/(16)`B. `(3)/(4) le A le 1`C. `(13)/(16) le A le 1`D. `1 le A le 2`

Answer» Correct Answer - B
`A = sin ^(2) x + cos ^(4) x `
`= 1- cos ^(2) x + cos ^(4)x`
`= 1 - cos ^(2) x (1- cos ^(2)x)`
` = 1- cos^(2)x sin ^(2) x `
` = 1- ( sin ^(2) 2x)/( 4)`
Now, `0 le sin ^(2) 2 x le 1`
`rArr - (1)/(4) le - ( sin^(2) 2x )/(4) le 0`
`rArr (3)/(4) le 1 - ( sin ^(2)2x)/(4x) le 1 `
`rArr 3//4 le A le 1`
9.

Let `A and B` denote the statements `A : cos alpha + cos beta + cos gamma =0` `B : sin alpha + siin beta + sin gamma = 0` If `cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2)`, thenA. `A` is true and `B` is false.B. `A` is false and `B` is true.C. Both `A and B` are true.D. Both `A and B` are false.

Answer» Correct Answer - C
` cos (beta -gamma) +cos (gamma - alpha ) + cos (alphea - beta) =-(3)/(2)`
`rArr 2 [cos (beta -gamma) +cos (gamma -alpha ) + cos (alpha - beta)] + 3 =0`
`rArr 2 [cos (beta -gamma ) + cos (gamma -alpha) + cos (alpha -beta)] + sin ^(2) alpha + cos ^(2) alpha + sin ^(2) beta + cos ^(2) beta + sin ^(2) gamma + cos ^(2) gamma =0`
`rArr (sin alpha + sin beta + sin gamma)^(2) + ( cos alpha + cos beta + cos gamma)^(2) =0`
`rArr cos alpha + cos beta + cos gamma =0`
and `sin alpha + sin beta + sin gamma =0`
10.

If `alpha,beta,gamma,delta` are the four solutions of the equation `tan(theta+pi/4)=3 tan 3theta.` No two of which have equal tangents, then the value of `tan alpha+tan beta+tan gamma+tan delta=`A. `1//3`B. `8//3`C. `-8//3`D. 0

Answer» Correct Answer - D
We have `tan( theta + (pi)/(4))= 3tan 3 theta `
or `(1+ tan theta)/(1-tan theta) = 3 xx (3tan theta - tan^(3) theta)/(1-3tan^(2) theta)`
`rArr (1+t)/(1-t) = 3 ((3t-t^(3))/(1-3t^(2)))" "` (putting `t = tan theta`)
`or 3t^(4) - 6t^(2) + 8t- 1 =0`
Hence,
`S_1 `= sum of roots `=t_1 + t_2 + t_3 + t_4 =0`
`S_2 ` = sum of product of roots taken two at a time = -2
`S_3` = sum of product of roots taken three at time `= -8//3`
`S_4` = product of all roots `=-1//3`
`(1)/(t_1) + (1)/(t_2) + (1)/(t_3) + (1)/(t_4) = (sum t_1 t_2 t_3)/(t_2t_2t_3t_4) = (-8//3)/(-1//3) =8`
11.

If `alpha, beta,gamma` are the solutions of the equation `tan (theta+(pi)/(4))=3tan 3theta`, no two of which have equal tangents. The value of `(1)/(tan alpha)+(1)/(tan beta)+(1)/(tan gamma)+(1)/(tan delta)` isA. `-8`B. `8`C. `2//3`D. `1//3`

Answer» Correct Answer - B
We have `tan( theta + (pi)/(4))= 3tan 3 theta `
or `(1+ tan theta)/(1-tan theta) = 3 xx (3tan theta - tan^(3) theta)/(1-3tan^(2) theta)`
`rArr (1+t)/(1-t) = 3 ((3t-t^(3))/(1-3t^(2)))" "` (putting `t = tan theta`)
`or 3t^(4) - 6t^(2) + 8t- 1 =0`
Hence,
`S_1 `= sum of roots `=t_1 + t_2 + t_3 + t_4 =0`
`S_2 ` = sum of product of roots taken two at a time = -2
`S_3` = sum of product of roots taken three at time `= -8//3`
`S_4` = product of all roots `=-1//3`
`(1)/(t_1) + (1)/(t_2) + (1)/(t_3) + (1)/(t_4) = (sum t_1 t_2 t_3)/(t_2t_2t_3t_4) = (-8//3)/(-1//3) =8`
12.

If `alpha,beta,gamma,delta` are the four solutions of the equation `tan(theta+pi/4)=3 tan 3theta.` No two of which have equal tangents, then the value of `tan alpha+tan beta+tan gamma+tan delta=`A. `-1//3`B. `-2`C. 0D. none of these

Answer» Correct Answer - A
We have `tan( theta + (pi)/(4))= 3tan 3 theta `
or `(1+ tan theta)/(1-tan theta) = 3 xx (3tan theta - tan^(3) theta)/(1-3tan^(2) theta)`
`rArr (1+t)/(1-t) = 3 ((3t-t^(3))/(1-3t^(2)))" "` (putting `t = tan theta`)
`or 3t^(4) - 6t^(2) + 8t- 1 =0`
Hence,
`S_1 `= sum of roots `=t_1 + t_2 + t_3 + t_4 =0`
`S_2 ` = sum of product of roots taken two at a time = -2
`S_3` = sum of product of roots taken three at time `= -8//3`
`S_4` = product of all roots `=-1//3`
`(1)/(t_1) + (1)/(t_2) + (1)/(t_3) + (1)/(t_4) = (sum t_1 t_2 t_3)/(t_2t_2t_3t_4) = (-8//3)/(-1//3) =8`
13.

Let ` cos (alpha+beta) = 4/5` and `sin(alpha-beta)=5/13 ` where `0

Answer» Correct Answer - C
`cos (alpha + beta )=(4)/(5)`
`rArr tan (alpha + beta) = (3)/(4)`
`" " sin (alpha - beta) = (5)/(13)`
`rArr tan (alpha - beta) = (5)/(12)`
` therefore tan 2 alpha = tan (alpha + beta + alpha - beta)`
` " "= ((3)/(4)= (5)/(12))/(1-(3)/(4)(5)/(12)) = (56)/(33)`
14.

If `x , y , z`are in A.P., then `(sinx-sinz)/(cosz-cosx)`is equal to`tany`(b) `coty`(c) `siny`(d) `coty`A. `tan y`B. `cot y`C. `sin y`D. `cos y`

Answer» Correct Answer - B
`(sinx-sinz)/(cosz-cosx)=(2cos((x+z)/(2))sin((x-z)/(z)))/(2sin((x+z)/(z))sin((x-z)/(z)))`
`=cot((x+z)/(2))=cot(y)`
15.

If `cosx=(2cosy-1)/(2-cosy),`where `x , y in (0,pi)`then `tanx/2coty/2`is equal to`sqrt(2)`(b) `sqrt(3)`(c) `1/(sqrt(2))`(d) `1/(sqrt(3))`A. `sqrt(2)`B. `sqrt(3)`C. `(1)/sqrt(2)`D. `(1)/sqrt(3)`

Answer» Correct Answer - B
`cos x=(2cos y-1)/(2-cosy)`
`rArr(1-tan^(2)((x)/(2)))/(1+tan^(2)((X)/(2)))=((2(1-tan^(2)y//2))/(1+tan^(2)y//2))/(2-(1-tan^(2)y//2)/(1+tan^(2)y//2))=((1-3tan^(2)((y)/(2)))/(1+3tan^(2)((y)/(2))))`
`rArr tan^(2)((x)/(2))=3tan^(2)((y)/(2))`
or `tan((x)/(2))cot((y)/(2))=sqrt(3)`.
16.

Given that `(1+sqrt(1+x))tany=1+sqrt(1-x)`. Then `sin4y`is equal to`4x`(b) `2x`(c) `x`(d) none of theseA. 4xB. 2xC. xD. none of these.

Answer» Correct Answer - C
`tan y=(1+sqrt(1-x))/(1+sqrt(1+x))`
Let `x=cos theta,` then
`sqrt(1-x)=sqrt(2)sin(theta//2),sqrt(1+x)=sqrt(2)cos(theta//2)`
`rArr tany=(sqrt(2)[(1)/sqrt(2)+sin((theta)/(2))])/(sqrt(2)[(1)/sqrt(2)+cos((theta)/(2))])``=(sin((pi)/(4))+sin((theta)/(2)))/(cos((pi)/(4))+cos((theta)/(2)))`
`=(2sin((pi)/(8)+(theta)/(4))cos((pi)/(8)-(theta)/(4)))/(2cos((pi)/(8)+(theta)/(2))cos((pi)/(8)-(theta)/(4)))`
`=tan((pi)/(8)+(theta)/(4))`
17.

If `(tan(alpha+beta+gamma))/("tan"(alpha-beta-gamma))=(tangamma)/(tanbeta),(beta!=gamma)`then `sin2alpha+s in2beta+s in2gamma=`0 (b) 1(c) 2 (d)

Answer» Correct Answer - A
`(tan (alpha+beta-gamma))/(tan(alpha-beta+gamma))=(tan gamma)/(tan beta)`
`rArr(sin(alpha+beta-gamma)cos(alpha-beta+gamma))/(sin(alpha-beta+gamma)cos(alpha+beta-gamma))=(sin gamma cos beta)/(sin beta cos gamma)`
Applying componendo and dividendo, we get
`(sin 2alpha)/(sin 2(beta-gamma))=(sin(gamma+beta))/(sin(gamma-beta))`
`rArr sin2(beta-gamma)sin(beta+gamma)+sin 2alpha sin(beta-gamma)=0`
`rArr sin(beta-gamma)(sin 2alpha+sin2beta+sin2gamma)=0`
`rArr sin2alpha+sin 2beta+sin 2y=0` (as `beta ne gamma`)
18.

If `cos (x-y),, cosx and cos(x+y)` are in H.P., are in H.P., then `cosx*sec(y/2)`=A. `-sqrt(3)`B. `-sqrt(2)`C. `sqrt(2)`D. `sqrt(3)`

Answer» Correct Answer - B::C
We have,
`" " (2)/(cosx ) = (1)/(cos(x-y)) + (1)/(cos(x+y)) = ( 2cosx*cosy)/( cos^(2)x - sin^(2)y)`
`rArr cos^(2) x - sin^(2)y = cos^(2) x * cos y`
`rArr cos^(2)x ( 1-cosy) = sin^(2)y`
`rArr cos^(2) x* 2 sin^(2)""(y)/(2) = 4 sin^(2) ""(y)/(2)cos^(2)""(y)/(2)`
`rArr cos ^(2)x= 2 cos^(2)""(y)/(2)`
`rArr cos^(2)x sec^(2) ""(y)/(2)= 2`
`rArr cosx * sec""(y)/(2) = pm sqrt2`
19.

If `sin(y+z-x),sin(z+x-y),"sin"(x+y-z)`are in A.P., then `t a n x ,tany ,tanz`are inA.P. (b)G.P. (c) H.P.(d) none of theseA. APB. GPC. HPD. none of these.

Answer» Correct Answer - A
Applying `b-a=c-b` for AP we get
`2cos sin(x-y)=2cos x sin(y-z)`
Dividing by `2 cos x cos y cos z`, etc, we get
`tan x-tan y=tan y-tan z`.
20.

If `(sinx)/(siny)=1/2,(cosx)/(cosy)=3/2,` where `x,y in (0,pi/2),` then the value of `tan(x+y)` is equal toA. `sqrt(13)`B. `sqrt(14)`C. `sqrt(17)`D. `sqrt(15)`

Answer» Correct Answer - D
`(sinx)/(siny)=(1)/(2),(cos x)/(cosy)=(3)/(2)`
`rArr (tan x)/(tany)=(1)/(3)`
`rArr tan(x+y)=(tan x+tany)/(1-tan xtany)=(4tan x)/(1-3tan^(2)x)`
Also `siny=2sinx, cos y=(2)/(3)cosx`
or `sin^(2)y+cos^(2)y=4sin^(2)x+(4cos^(2))/(9)=1`
or `36tan^(2)x+4=9sec^(2)x=9(1+tan^(2)x)`
or `27tan^(2)x=5`
or `tan x=(sqrt(5))/(3sqrt(3))`
`rArr tan(x+y)=((4sqrt(5))/(3sqrt(3)))/(1-(15)/(27))=(4sqrt(5)xx27)/(12xx3sqrt(3))=sqrt(15)`
21.

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6)))` is equal toA. ` 3-sqrt3`B. `2(3-sqrt3)`C. `2(sqrt3-1)`D. `2(2+sqrt3)`

Answer» Correct Answer - C
`2 overset(13) underset(k=1) (sum) (sin((pi)/(6)))/(sin ((pi/(4) + ((k-1)pi)/(6)) sin ((pi)/(4) +(kpi)/(6))))`
`" " = 2 sum (sin{((pi)/(4) + (kpi)/(6))- ((pi)/(4) + ((k-1)pi)/(6))})/(sin ((pi)/(4) + ((k-1)pi)/(6))* sin ((pi)/(4)+ (kpi)/(6)))`
`" " = 2 overset(13)underset(k=1) (sum)(cot((pi)/(4)+ ((k-1)pi)/(6)) - cot ((pi)/(4)+ (k pi)/(6)))`
`= 2[ cot ((pi)/(4)) - cot ((pi)/(4) + (13pi)/(6))]`
`= 2[1-(2-sqrt3)]`
`= 2 (sqrt3-1)`
22.

If `cos^3xsin2x=sum_(r=0)^n a_xsin(r x),AAx in R` thenA. `n=5,a_(1)=1//2`B. `n=5,alpha_(1)=1//4`C. `n=5,a_(2)=1//8`D. `n=5,a_(2)=1//4`

Answer» Correct Answer - B
`cos^(3)xsin2x=cos^(2)x cos x sin 2x`
`=((1+cos 2x)/(2))(2sin2xcosx)/(2))`
`=(1)/(4)(1+cos 2x)(sin3x+sinx)`
`=(3)/(4)[sin3x+sinx+(1)/(2)(2sin 3xcos2x)`
`=(1)/(2)(2cos 2xsin x]`
`=(1)/(4)[sin3x+sinx+(1)/(2)(sin5x+sinx)+(1)/(2)(sin3x-sinx)]`
`=(!)/(4)[sinx+((3)/(2))sin3x+((1)/(2))sin5x]`
`rARr a_(1)=1//4,a_(3)=3//8,n=5`
23.

If `x_(1)` and `x_(2)` are two distind roots of the equation `a cos x+b sinx=c`, then `tan"" (x_(1)+x_(2))/(2)` is equal toA. `(a)/(b)`B. `(b)/(a)`C. `(c)/(a)`D. `(a)/(c)`

Answer» Correct Answer - B
`a cos x+b sin x=c`
`rArr (a(1-tan^(2)(x)/(x)))/(1+tan^(2)(x)/(2))+(2btan((x)/(2)))/(1+tan^(2)((x)/(2)))=c`
`rArr(c+a)tan^(2)((x)/(2))-2btan((x)/(2))+c-a=0`
`rARr tan((x_(1))/(2))+tan ((x^(2))/(2))=(2b)/(c+a)`
and `tan((x_(1))/(2))tan((x_(2))/(2))=(c-a)/(c+a)`
`rArr tan((x_(1)+x_(2))/(2))=((2b)/(c+a))/(1-(c-a)/(c+a))=(2b)/(2a)=(b)/(a)`
24.

The roots of the equation `4x^2-2sqrt5 x +1=0` are .A. `sin36^(@),sin18^(@)`B. `sin18^(@),cos36^(@)`C. `sin36^(@),cos18^(@)`D. `cos 18^(@),cos36^(@)`

Answer» Correct Answer - B
`4x^(2)-2sqrt(5)x+1=0`
`therefore x=(2sqrt(5)+-2)/(8)=(sqrt(5)+-1)/(4)`
`therefore` Roots are `sin 18^(@)` and `cos36^(@)`
25.

Difference between maximum and minimum values of `(60sin alpha+p cos alpha)` is 122 then p can beA. 61B. 11C. `-61`D. `-11`

Answer» Correct Answer - B::D
`E= 60 sin alpha + pcosalpha `
Maximum value of `E = sqrt(3600 + p^(2))`
Minimum value of E `=-sqrt(3600 + p^(2))`
`sqrt(3600 + p^(2)) + sqrt(3600 + p^(2)) = 122" "` (given)
`therefore 2 sqrt ( 3600 + p^(2)) = 122`
`rArr p^(2) = 121`
`rArr p = pm 11`
26.

In ` A B C`Prove that `cos^2A/2+cos^2B/2+cos^2C/2lt=9/4dot`In `cos^2A/2+cos^2B/2+cos^2C/2=y(x^2+1/(x^2))`then find the maximum value of `ydot`

Answer» Correct Answer - `9//8`
(a) In `triangle ABC`, we know that
`cosA+cosB+cos Cle(3)/(2)`
`cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)`
`=(1+cosA)/(2)+(1+cosB)/(2)+(1+cosC)/(2)`
`=(3)/(2)+(cos A+cosB+cosC)/(2)le(3)/(2)+(3)/(4)` (using eq. i)
`therefore cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)le(9)/(4)`.
(b) `cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)=y(x^(2)+(1)/(x^(2)))`
`therefore y(x^(2)+(1)/(x^(2)))le(9)/(4)`.
`therefore yle(9)/(4(x^(2)+(1)/(x^(2)))`
Now `x^(2)+(1)/(x^(2))ge2`
`therefore yle(9)/(8)`.
thus, maximum value of `y` is `(9)/(8)`.
27.

The value of `sum_(r=0)^10cos^3((rpi)/3)` isA. `1//4`B. `1//8`C. `-1//4`D. `-1//8`

Answer» Correct Answer - D
`sum_(r=0)^(10)cos^(3)((rpi)/(3))=(1)/(4)sum_(r=0)^(10)(3cos((rpi)/(3))+cos rpi)`
`=(1)/(4)[3(cos0+cos((pi)/(3))+.......+cos((10pi)/(3)))+(1-1+.....-1+1])`
`=(3)/(4)((cos((10pi)/(6))sin((11pi)/(6)))/(sin((pi)/(6))))+(1)/(4)=(1)/(8)`
28.

In a triangle `A B C ,/_C=pi/2dot`If `tan(A/2)a n dtan(B/2)`are the roots of the equation `a x^2+b x+c=0,(a!=0),`then the value of `(a+b)/c`(where `a , b , c ,`are sides of ``opposite to angles `A , B , C ,`respectively) is

Answer» Correct Answer - 1
`tan ((A)/(2)) + tan ((B)/(2)) = - (b)/(a)`
`tan ((A)/(2)) xx tan ((B)/(2)) = (c ) /(a)`
`A + B = 90^(@) or (A+B)/(2) = 45^(@)`
`rArr tan ((A+B)/(2)) =1= (-(b)/(a))/(1-(c )/(a))`
or `1- (c )/(a) = - (b)/(a)`
or ` a +b = c`
or `(a+b)/(c ) =1`.
29.

The maximum value of `y=1/(sin^6x+cos^6x)`is ______

Answer» Correct Answer - 4
`sin ^(6)x + cos ^(6)x = ( sin ^(2)x + cos ^(2)x ) ( sin ^(4)x + cos ^(4)x - sin ^(2)x cos ^(2)x)`
` " " = 1-3 sin^(2)x cos ^(2) x =1 - ( 3(sin 2 x )^(2))/(4)`
`rArr y = (4)/(4-3( sin 2x)^(2))`
`rArr y_(max) =m (4)/(4-3(1)) = 4`.
30.

Let `0lt=a , b , c ,dlt=pi,`where `ba n dc`are not complementary, such that `2cosa+6cosb+7cosc+9cosd=0a n d2sina-6sinb+7sinc-9a n dd=0,`then the value of `3(cos(a+d))/("cos"(b+c))`is_____

Answer» Correct Answer - 7
From the given equations, we have
` " " (2 cos a + 9 cos d)^(2) = (6 cos b + 7 cos c)^(2) `
`and ( 2 sin a - 9 sin d)^(2) = (6 sin b - 7 sin c )^(2)`
Adding, we have `36 cos (a+d) = 84 cos (b+c)`
or `(cos(a+d))/(cos (b+c)) = (7)/(3)`
31.

If `x , y in R`satisfies `(x+5)^2+(y-12)^2=(14)^2,`then the minimum value of `sqrt(x^2=y^2)`is__________

Answer» Correct Answer - 1
Let `x = 5 = 14 cos theta and y -12 = 14 sin theta`
`therefore x ^(2) +y^(2) = (14 cos theta - 5)^(2) + (14 sin theta + 12)^(2)`
`" " = 196 + 25 + 144 + 28 ( 12 sin theta - 5 cos theta)`
` " "= 365 + 28(12 sin theta - 5 cos theta)`
` therefore sqrt(x^(2) + y^(2)) :|_(min)= sqrt(365- 28 xx 13)`
`" " =sqrt(365 - 364) = 1`
32.

If the angles `alpha, beta, gamma` of a triangle satisfy the relation, `sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then Triangle isA. acute angledB. right angled but not isoscelesC. isoscelesD. isosceles right angled

Answer» Correct Answer - C
We have `sin((alpha - beta)/(2)) + sin ((alpha - gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`
`therefore sin (((pi-(beta+gamma))-beta)/(2))+ sin (((pi-(gamma +beta))-gamma)/(2)) + sin((3pi-3(beta+gamma))/(2)) = (3)/(2)`
`therefore cos((2beta + gamma)/(2)) + cos((2gamma + beta)/(2)) - cos((3(beta+gamma))/(2)) = (3)/(2)`
`therefore 2cos ((3)/(4)(beta + gamma)) cos ((beta-gamma)/(4)) +1 - 2cos^(2)((3)/(4)(beta +gamma)) = (3)/(2)`
`therefore 4 cos^(2) ((3)/(4) (beta + gamma)) - 4cos((3)/(4) (beta + gamma)) cos ((beta-gamma)/(4)) +1 =0`...(1)
Above equation is quadratic in `cos((3)/(4)(beta +gamma))`
Since `cos((3)/(4)(beta+gamma))` is a real number,
Discriminant `D ge 0`
`therefore 16 cos^(2)((beta-gamma)/(4)) -16 ge 0`
`rArr cos ^(2)((beta -gamma)/(4)) ge 1`
`rArr cos^(2)((beta -gamma)/(4)) =1 `
`rArr beta = gamma `
From equation (1) for `beta = gamma`, we get
`[ 2 cos((3)/(4)(beta+gamma)) -1]^(2) =0`
`rArr 2cos""(3)/(4) (beta + gamma) = 1`
`rArr cos""(3)/(4) (beta +gamma) = (1)/(2)`
`rArr (3)/(4) (beta +gamma) = 60^(@)`
`therefore beta +gamma = 80^(@)`
`therefore alpha = 100^(@)`
`therefore beta = 40^(@), gamma = 40^(@)`
33.

`alphaa n dbeta`are the positive acute angles and satisfying equation `5sin2beta=3s in2alphaa n dtanbeta=3tanalpha`simultaneously. Then the value of `tanalpha+tanbeta`is _________

Answer» Correct Answer - 4
`5 xx (2 tanbeta)/( 1+ tan^(2) beta ) = 3xx ( 2tan alpha)/(1+tan^(2) alpha )`
or ` ( 5tan beta)/( 1+ tan^(2) beta ) = (3 tan alpha )/( 1+ tan^(2) alpha)`
Substituting `tan beta = 3 tan alpha`, we have
`" " ( 5xx 3 tan alpha ) /( 1+9 tan^(2) alpha ) = ( 3tan alpha )/( 1+ tan^(2) alpha)`
or `5 +5 tan^(2) alpha = 1+ 9 tan ^(2) alpha `
or `4 tan ^(2) alpha = 4`
or `tan alpha = 1`, i.e., `tan beta = 3`
`therefore tan alpha + tan beta = 4`
34.

`sin alpha+ sinbeta=(1)/(4)` and `cos alpha+cos beta=(1)/(3)` The value of `tan (alpha+beta)` isA. `(25)/(7)`B. `(25)/(12)`C. `(25)/(13)`D. `(24)/(7)`

Answer» Correct Answer - D
`sin alpha + sin beta = (1)/(4)" "`...(i)
`rArr 2 sin((alpha + beta)/(2)) cos ((alpha -beta)/(2))= (1)/(4)" "`...(ii)
`rArr cosalpha + cos beta = (1)/(3)" " `...(iii)
`rArr 2 cos ((alpha + beta )/(2) ) cos((alpha -beta) /(2)) = (1)/(3)" "` (iv)
Dividing Eq. (ii) by Eq. (iv), we have
`" " tan((alpha + beta) /(2)) = (3)/(4)`
`rArr sin(alpha + beta) = (2tan((alpha + beta)/(2)))/(1+tan^(2)((alpha + beta)/(2)))`
`" " = (2xx (3)/(4))/(1+((3)/(4))^(2)) = (24)/(25)`
`therfore cos (alpha + beta) = (7)/(25) and tan(alpha + beta) = (24)/(7)`
35.

If `f(x)=2(7cos x +24 sin x) (7 sinx -24 cos x)`, for even `x in R` then maximum value of f(x) is __________

Answer» Correct Answer - 625
`f(x) = 2(7 cos x + 24 sin x ) (7 sinx - 24 cos x )`
Let `r cos theta = 7 , r sin theta = 24`
`therefore r ^(2) = 625 , tan theta = (24)/(7)`
`therefore f(x) = 2rcos (x- theta) xx r sin (x- theta)`
`= r^(2) ( sin 2 (x - theta))`
`f(x)_(max)= 25^(2)`
36.

If the angles `alpha, beta, gamma` of a triangle satisfy the relation, `sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`, then The measure of the smallest angle of the triangle isA. `30^(@)`B. `40^(@)`C. `45^(@)`D. `50^(@)`

Answer» Correct Answer - B
We have `sin((alpha - beta)/(2)) + sin ((alpha - gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2)`
`therefore sin (((pi-(beta+gamma))-beta)/(2))+ sin (((pi-(gamma +beta))-gamma)/(2)) + sin((3pi-3(beta+gamma))/(2)) = (3)/(2)`
`therefore cos((2beta + gamma)/(2)) + cos((2gamma + beta)/(2)) - cos((3(beta+gamma))/(2)) = (3)/(2)`
`therefore 2cos ((3)/(4)(beta + gamma)) cos ((beta-gamma)/(4)) +1 - 2cos^(2)((3)/(4)(beta +gamma)) = (3)/(2)`
`therefore 4 cos^(2) ((3)/(4) (beta + gamma)) - 4cos((3)/(4) (beta + gamma)) cos ((beta-gamma)/(4)) +1 =0`...(1)
Above equation is quadratic in `cos((3)/(4)(beta +gamma))`
Since `cos((3)/(4)(beta+gamma))` is a real number,
Discriminant `D ge 0`
`therefore 16 cos^(2)((beta-gamma)/(4)) -16 ge 0`
`rArr cos ^(2)((beta -gamma)/(4)) ge 1`
`rArr cos^(2)((beta -gamma)/(4)) =1 `
`rArr beta = gamma `
From equation (1) for `beta = gamma`, we get
`[ 2 cos((3)/(4)(beta+gamma)) -1]^(2) =0`
`rArr 2cos""(3)/(4) (beta + gamma) = 1`
`rArr cos""(3)/(4) (beta +gamma) = (1)/(2)`
`rArr (3)/(4) (beta +gamma) = 60^(@)`
`therefore beta +gamma = 80^(@)`
`therefore alpha = 100^(@)`
`therefore beta = 40^(@), gamma = 40^(@)`
37.

In a `Delta ABC`, if `cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8)`, then The value of `tan A tan B tanC ` isA. `5-4sqrt3`B. `5+4sqrt3`C. `6+sqrt3`D. `6-sqrt3`

Answer» Correct Answer - B
`because cos A cos B cos C = (sqrt3 -1)/(8)`
`sin A sin B sin C = (3+sqrt3)/(8)`
`therefore tanA tan B tan C = (3+ sqrt3)/(sqrt3-1)" " `...(1)
`therefore tan A+ tanB + tan C = tan A tan B tan C `
`" " = (3 + sqrt3)/(sqrt3 -1) " "` ...(2)
Now `A + B +C= pi`
`therefore cos(A+B +C) = -1 `
`therefore cos A cos B cos C [1 -sum tan A tan B] =-1`
`therefore sum tanA tan B = 5 + 4sqrt3" "` ...(3)
Form (1), (2) and (3), we get
`tanA, tan B, tanC` are roots of
`x^(3)- ((3+sqrt3)/( sqrt3-1)) x^(2) + (5+4sqrt3)x - ((3+sqrt3))/(sqrt3-1)=0`
or `x^(3) - (2+ sqrt3)sqrt3 x^(2) + (5+4sqrt3)x - (2+ sqrt3) sqrt3 =0`
or ` x^(3) - (3 + 2 sqrt3)x^(2) + (5+ 4sqrt3)x - (3+ 2sqrt3)=0`
or `(x-1)(x-sqrt3)(x-(2+sqrt3)) =0`
`therefore tanA =1, tan B = sqrt3, tan C = 2 + sqrt3`
38.

To find the sum `sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7)`, we follow the following method. Put `7theta = 2npi`, where `n ` is any integer. Then `" " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta` This means that `sin theta` takes the values `0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7)`. From Eq. (i), we now get `" " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta ` or `4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3)` Rejecting the value `sin theta =0`, we get `" " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3` or ` 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2)` or `16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta)` `" " = 16 sin ^(4) theta - 24 sin ^(2) theta +9` or `" " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0` This is cubic in `sin^(2) theta` with the roots `sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7)`. The sum of these roots is `" " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4)`. The value of `tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7)` isA. `-3`B. `7`C. `-5`D. none of these

Answer» Correct Answer - B
Let `theta = (npi)/(7)` (so that `7theta = npi`), `n in Z`
`rArr 4theta + 3theta = npi`
`or 4theta = tan (npi - 3theta ) = -tan 3theta`
or ` (4tan theta - 4tan^(3)theta)/(1-6tan^(2) theta + tan^(4)theta) =- (3tan theta - tan^(3) theta)/(1-3tan^(2) theta )`
or ` " " ( 4z - 4z^(3))/(1-6z^(2)+ z^(4)) = - (3z-z^(3))/(1-3z^(2))" "` [where `tan theta =z` (say)]
or `(4-4z^(2)) (1-3z^(2))= -(3-z^(2)) (1-6z^(2)+z^(4))`
or ` z^(6) - 21 z^(4) = 35 z^(2) - 7 =0" "` ... (i)
This is a cubic equation in `z^(2)`, i.e., in `tan^(2)theta`.
The roots of this equation are therefore
`" " tan ^(2)pi//7, tan^(2) 2pi//7, and tan^(2) 3pi//7`. From Eq. (i),
`" "` Sum of the roots `= (-(-21))/(1) = 21`
`rArr tan^(2)""(pi)/(7) + tan^(2) ""(2pi)/(7) + tan^(2)"" (3pi)/(7) = 21" " `...(ii)
Putting `1//y` in place of z in Eq. (i), we get
`" " -7y^(6) + 35y^(4)- 21y^(2) +1 =0`
`or 7y^(6)- 35 y^(4)+ 21y^(2) -1=0" "`...(iii)
This is a cubic equation in `y^(2)`, i.e., in `cot^(2) theta`.
The roots of this equation are therefore `cot^(2)pi//7, cot^(2) 2pi//7, and cot^(2)3pi//7`.
Sum of the roots of Eq. (iii) = `(35)/(7) =5`
`rArr cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) +cot ^(2)""(3pi)/(7)=5" "` ...(iv)
By multiplying Eqs. (ii) and (iv), we get
`(tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2) ""(3pi)/(7))(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7))`
`= 21xx5 = 105`
39.

In a `Delta ABC`, if `cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8)`, then The value of `tan A + tan B + tan C` isA. `(3+ sqrt3)/(sqrt3-1)`B. `(sqrt3 +4)/(sqrt3-1)`C. `(6-sqrt3)/(sqrt3-1)`D. `(sqrt3+ sqrt2)/(sqrt3-1)`

Answer» Correct Answer - A
`because cos A cos B cos C = (sqrt3 -1)/(8)`
`sin A sin B sin C = (3+sqrt3)/(8)`
`therefore tanA tan B tan C = (3+ sqrt3)/(sqrt3-1)" " `...(1)
`therefore tan A+ tanB + tan C = tan A tan B tan C `
`" " = (3 + sqrt3)/(sqrt3 -1) " "` ...(2)
Now `A + B +C= pi`
`therefore cos(A+B +C) = -1 `
`therefore cos A cos B cos C [1 -sum tan A tan B] =-1`
`therefore sum tanA tan B = 5 + 4sqrt3" "` ...(3)
Form (1), (2) and (3), we get
`tanA, tan B, tanC` are roots of
`x^(3)- ((3+sqrt3)/( sqrt3-1)) x^(2) + (5+4sqrt3)x - ((3+sqrt3))/(sqrt3-1)=0`
or `x^(3) - (2+ sqrt3)sqrt3 x^(2) + (5+4sqrt3)x - (2+ sqrt3) sqrt3 =0`
or ` x^(3) - (3 + 2 sqrt3)x^(2) + (5+ 4sqrt3)x - (3+ 2sqrt3)=0`
or `(x-1)(x-sqrt3)(x-(2+sqrt3)) =0`
`therefore tanA =1, tan B = sqrt3, tan C = 2 + sqrt3`
40.

In a `Delta ABC`, if `cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8)`, then the respective values of `tan A, tan B and tanC` areA. `1, sqrt3, sqrt2`B. `1, sqrt3, 2`C. `1, 2, sqrt3`D. `1, sqrt3, 2+sqrt3`

Answer» Correct Answer - D
`because cos A cos B cos C = (sqrt3 -1)/(8)`
`sin A sin B sin C = (3+sqrt3)/(8)`
`therefore tanA tan B tan C = (3+ sqrt3)/(sqrt3-1)" " `...(1)
`therefore tan A+ tanB + tan C = tan A tan B tan C `
`" " = (3 + sqrt3)/(sqrt3 -1) " "` ...(2)
Now `A + B +C= pi`
`therefore cos(A+B +C) = -1 `
`therefore cos A cos B cos C [1 -sum tan A tan B] =-1`
`therefore sum tanA tan B = 5 + 4sqrt3" "` ...(3)
Form (1), (2) and (3), we get
`tanA, tan B, tanC` are roots of
`x^(3)- ((3+sqrt3)/( sqrt3-1)) x^(2) + (5+4sqrt3)x - ((3+sqrt3))/(sqrt3-1)=0`
or `x^(3) - (2+ sqrt3)sqrt3 x^(2) + (5+4sqrt3)x - (2+ sqrt3) sqrt3 =0`
or ` x^(3) - (3 + 2 sqrt3)x^(2) + (5+ 4sqrt3)x - (3+ 2sqrt3)=0`
or `(x-1)(x-sqrt3)(x-(2+sqrt3)) =0`
`therefore tanA =1, tan B = sqrt3, tan C = 2 + sqrt3`
41.

If `sin^(-1)a+sin^(-1)b+sin^(-1)c=pi,`then `asqrt(1-a^2)+bsqrt(1-b^2)+csqrt(1-c^2)`is equal to`a+b+c`(b) `a^2b^2c^2``2a b c`(d) `4a b c`A. a+b+cB. `a^(2)b^(2)c^(2)`C. 2abcD. 4abc

Answer» Correct Answer - C
Let `A=sin^(-1)a,B=sin^(-1)b` and `C=sin^(-1)C`
we have `A+B+C=pi`.
`asqrt(1-a^(2))+bsqrt(1-b^(2))+csqrt(1-c^(2))`
`=(1)/(2)(sin 2A+sin2B+sin2C)`
`=(1)/(2)(4sin A sin B sin C)=2abc`.
42.

The value of `cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11),` is

Answer» Correct Answer - `1//2`
We have
`cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11)`
`=(cos((5pi)/(11)).sin((pi)/(11)+(9pi)/(1))/(2))/(sin((pi)/(11)))`
`=(cos""(5pi)/(11)sin""(5pi)/(11))/(sin""(pi)/(11))=(1)/(2)((10pi)/(11))/(sin((pi)/(1)))=(1)/(2)`
43.

In any triangle `A B C ,sin^2A-sin^2B+sin^2C`is always equal to`2sinAsinBcosC`(b) `2sinAcosBsinC``2sinAcosBcosC`(d) `2sinAsinBsinC`A. `2sin A sin B cosC`B. `2 sin A cos B sinC`C. `2 sin A cos B cos C`D. `2 sin A sin B sinC`

Answer» Correct Answer - B
`sin^(2)A-sin^(2)sin^(2)C`
`=sin(A+B)sin(A-B)+sin^(2)C`
`=sinC(sin(A-B)+sinC)`
`=sinC(sin(A-B)+sin(A+B))`
`=2sin A cos B sin C`.
44.

If `A+B+C=3pi/2`. Then `cos 2A +cos 2B+cos2C` is equal toA. `1-4cos A cos B cos C`B. `4 sin A sin B sinC`C. `1+2cos A cos B cos C`D. `1-4sin A sin B sinC`

Answer» Correct Answer - D
`cos 2A+cos2B+cos 2C`
`=2cos(A+B)cos(A-B)+cos2C`
`=2cos(A+B)cos(A-B)+cos2C`
`=2cos((3pi)/(2)-C)cos(A-B)+cos2C`
`=2cos((3pi)/(2)-C)cos(A-B)+cos2C`
`=-2sin C cos (A-B)+1-2sin^(2)C`
`=1-2sinC cos(A-B)+sinC)`
`=1-2sinC(cos(A-B)+sin[3pi//2-(A+B)]]`
`=1-2sinC[cos(A-B)-cos(A+B)]`
`=1-4sinA sin B sin C`.
45.

If `cosx-sinalphacotbetasinx=cosa ,`then the value of `tan(x/2)`is`-tan(alpha/2)cot(beta/2)`(b) `tan(alpha/2)tan(beta/2)``-cot((alphabeta)/2)tan(beta/2)`(d) `cot(alpha/2)cot(beta/2)`A. `-tan (alpha2)cot(beta2)`B. `tan (alpha//2)tan(beta//2)`C. `-cot(alpha//2)tan(beta//2)`D. `cot(alpha//2)cot(beta//2)`

Answer» Correct Answer - A::B
`cos x - sin alpha cos beta sinx = cos alpha `
`rArr (1-tan^(2)(x//2))/(1+tan^(2)(x//2)) - sin alpha cos beta (2tan(x//2))/(1+tan^(2)(x//2)) = cos alpha`
`rArr tan^(2) ""(x)/(2) (1+ cosalpha ) + 2 sin alpha cos beta tan ""(x)/(2) - (1- cos alpha) =0`
`rArr tan ^(2)""(x)/(2) + (2sinalpha cos beta)/(1+ cos alpha) tan""(x)/(2) - (1-cos alpha)/( 1+cos alpha) =0`
`rArr tan^(2)""(x)/(2) + 2 tan""(alpha)/(2) cos beta tan ""(x)/(2) - tan^(2) ""(alpha)/(2)=0`
`rArr tan^(2""(x)/(2) + 2 tan""(alpha)/(2)*(1)/(2)(cot""( beta)/(2) - tan ""(beta)/(2)) tan ""(x)/(2) - tan^(2) (alpha)/(2) =0`
`rArr (tan ""(x)/(2) + cot""(beta)/(2) tan""(alpha)/(2)) (tan""(x)/(2) - tan""(beta)/(2) tan""(alpha)/(2)) =0`
`rArr tan((x)/(2)) = - tan((alpha)/(2)) cot((beta)/(2))`
or `" " tan ((x)/(2)) = tan((alpha)/(2) tan((beta)/(2))`
46.

If sin A + sin 2A = x and cos A + cos 2A = y, then `(x^(2)+y^(2)) (x^(2)+y^(2)-1)=`A. 2yB. yC. 3yD. none of these

Answer» Correct Answer - A
Squaring and adding, we get
`x^(2)+y^(2)=1+1+2 cos (2A-A)`
`therefore (x^(2)+y^(2)-2)/(2)=cos A` ….(1)
Also `cos A + 2 cos^(2)A-1=y`
or `(cos A+1)(2cos A-1)=y`
Put value of cos A from (1) and and get the answer.
47.

If the value of `cot(11 1/4^@)+tan(112 1/2^@)-cot(112 1/2^@)-tan(11 1/4^@)=sqrtn` where `n in N` then find the value of `n`

Answer» Correct Answer - `2sqrt(2)`
`cot(11(1^(@))/(4))+tan(112(1^(@))/(2))-cot(112(1^(@))/(2))-tan(11(1^(@))/(4))`
`=(cot11(1^(@))/(4)-tan11(1^(@))/(4))+tan(90^(@)+22(1^(@))/(2))-cot(90^(@)+22(1^(@))/(2))`
`=(2(1-tan^(2)11(1^(@))/(4)))/(2tan11(1^(@))/(4))-cot22(1^(@))/(2)+tan22(1^(@))/(2)`
`=2cot22(1^(@))/(2)-cot22(1^(@))/(2)+tan22(1^(@))/(2)`
`cot 22(1^(@))/(2)+tan22(1^(@))/(2)`
`=(sqrt(2)+1)+(sqrt(2)-1)`
`=2sqrt(2)`.
48.

`sin(9pi)/14sin(11pi)/14sin(13pi)/14` is equal to

Answer» Correct Answer - `1//8`
`sin""(9pi)/(14)sin""(11pi)/(14)sin""(13pi)/(14)`
`=sin""(5pi)/(14)sin""(3pi)/(14)sin""(pi)/(14)`
`=cos""(pi)/(8)cos""(2pi)/(7)cos""(3pi)/(7)`
`=-cos""(pi)/(7)cos""(2pi)/(7)cos ""(4pi)/(7)`
`-(sin""(8pi)/(7))/(8sin""(pi)/(7))=(1)/(8)`
49.

If `x =cos alpha+cos beta-cos(alpha+beta)` and `y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2))`, then (x-y) equals

Answer» Correct Answer - A
`y=4 sin.(alpha)/(2)sin.(beta)/(2)cos((alpha+beta)/(2))`
`=2[cos.(alpha-beta)/(2)-cos.(alpha+beta)/(2)]cos((alpha+beta)/(2))`
`= cos alpha + cos beta - (1+cos (alpha + beta))=x-1`
`rArr x-y=1`
`cos 5^(@)cos 20^(@)+cos 35^(@)cos 50^(@)`
50.

Find the value of `(tan 9^(@)+cot9^(@))/(tan27^(@)+cot27^(@))`.

Answer» Correct Answer - `(3+sqrt(5))/(2)`
`(tan9^(@)+cot9^(@))/(tan27^(@)+cot27^(@))=(tan9^(@)+(1)/(tan9^(@)))/(tan27^(@)+(1)/(tan27^(@)))`
`=(Tan^(2)9^(@)+1)/(2 tan 9^(@))(2tan 27^(@))/((tan^(2)27^(@)+1)`
`=(sin 54^(@))/(sin18^(@))=(cos 36^(@))/(sin18^(@))`
`=(sqrt(5)+1)/(4).(4)/(sqrt(5)-1)`
`=(sqrt(5)+1)/(sqrt(5)-1)xx(sqrt(5)+1)/(sqrt(5)+1)=(3+sqrt(5))/(2)`.