Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

The number of points of discontinuity of `f(x)=[2x]^(2)-{2x}^(2)` (where [ ] denotes the greatest integer function and { } is fractional part of x) in the interval `(-2,2)`, isA. 1B. 6C. 2D. 5

Answer» Correct Answer - B
Given, `f(x)=([2x]+{2x})([2x]-{2x})=4x-4x{2x}`
`2x in (-4,4)`
Hence f(x) is discontinuous when `2x=-3, -2, -1, 1,2,3.`
At `x=0,f(x)` is continuous
2.

The function `f(x)=(x^3)/8-s inpix+4in[-4,4]`does not take the value`-4`b. `10`c. `18`d. `12`A. `-4`B. 10C. 18D. 12

Answer» Correct Answer - C
`f(x)=(x^(3))/(8)-sinpix+4`
`f(-4)=-4,f(4)=12`
`rArr f(x)` can take value 10 as f(x) is continuous function
`(x^(3))/(8)+4lt 12 and |sin pix|le 1 AA x in [-4,4]`
`therefore `f(x) cannot take the value 18
3.

Let `f(x)={{:(-3+|x|",",-ooltxlt1),(a+|2-x|",",1lexltoo):}` and `g(x)={{:(2-|-x|",",-ooltxlt2),(-b+"sgn(x),",2lexltoo):}` where sgn(x) denotes signum function of x. If `h(x)=f(x)+g(x)` is discontinuous at exactly one point, then which of the following is not possible?A. `a=-3,b=0`B. `a=0,b=1`C. `a=2,b=1`D. `a=-3,b=1`

Answer» Correct Answer - D
`h(x)=f(x)+g(x)`
`={{:(-1",",-ooltxlt1),(a+4-2x",",1lexlt2),(a-b-1+x",",2lexltoo):}`
`therefore" We must have either "a=-3, b ne 1 or b=1, a ne -3`
4.

If `f(x) = sgn(x^5)`, then which of the following is/are false (where sgn denotes signum function)A. continuous and differentiableB. continuous but not differentiableC. differentiable but not continuousD. neither continuous nor differentiable

Answer» Correct Answer - A
We have
`sgn(x)={{:(,1,x gt0),(,0,x=0),(,-1,x lt 0):}`
`therefore f(x)=x^(5)sgn(x)={{:(,x^(5),x gt 0),(,0,x=0),(,-x^(5),x lt 0):}`
Clearly f(x) is continuous and differentiable at x=0.
5.

If x = `a cos^(3) theta, y = a sin ^(3) theta` then `sqrt(1+((dy)/(dx))^(2))`=?A. `tan^(2) theta`B. `sec ^(2) theta`C. `sec theta`D. `|sec theta|`

Answer» Correct Answer - D
6.

If `y=[x+sqrt(x^2+a^2)]^n` then prove that `(dy)/dx=(ny)/sqrt(x^2+a^2)`

Answer» `y= [x+ sqrt(x^2 + a^2)]^n`
`dy/dx = n(x+ sqrt(x^2 + a^2))^(n-1) (1 + (2x)/(2sqrt(x^2+a^2)))`
`= n(x+ sqrt(x^2 + a^2))^(n-1) ((sqrt(a^2+x^2) + x)/(sqrt(a^2+x^2)))`
`= (n(x+ sqrt(a^2+x^2))^n)/(sqrt(a^2+x^2))`
`= (ny)/sqrt(a^2+x^2)`
Answer
7.

`x=2 cos^2 t, y= 6 sin ^2 t `

Answer» Correct Answer - -3
8.

`x=sqrt(sin 2t),y=sqrt(cos 2 t)`

Answer» Correct Answer - `-(tan 2 t )^3/2`
9.

If `x=sin^-1""(2t)/(1+t^2)` and `y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.`

Answer» `x=sin^-1""(2t)/(1+t^2)=sin^-1""(2 tan theta)/(1+tan ^2)`
`=sin ^-1(sin 2 theta)`
`2 theta=2tan^-1 t`
Let t= tan `theta `
`rArr dxdy=(2)/(1+t^2)`
and `y =tan ^-1""(2t)/(1-t^2)=2 tan ^-1 t `
`rArr dy/dx =2/(1+t^2)`
`therefore (dx)/(dy)=(dy//dt)/(dx//dt)=(2//(1+t^2))/(2//(1+t^2))=1.`
10.

`x = "sin" t, y = "cos" 2t`

Answer» `{:(x = "sin"t,|,y = "cos" 2t),(rArr (dx)/(dt) = "cos"t,|,rArr (dy)/(dt) = -2"sin" 2t):}`
`therefore (dy)/(dx) = (dy//dt)/(dx//dt) = -(2"sin"2t)/("cos" t)`
`= - (2 * 2 "sin"t "cos"t)/("cos"t) = -4"sin" t`
11.

`x=a (t-sin t) , y =a (1-cos t) `

Answer» Correct Answer - `cot t/2`
12.

`x= 2 cos t -cos 2t ,y=2 sin t-sin 2t ` Find dy/dx

Answer» Correct Answer - `tan (3t)/(2)`
13.

If `x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx` is

Answer» Correct Answer - `(t(2- t^3))/(1-2t^3)`
14.

Find the values of a and b such that the function defined by `f(x)={{:(5, if xle2), (a x+b , if 2 lt x lt10 ),(21 , ifx ge10):}` is a continuous function.

Answer» Here, value of `f(x)` is changing at `x = 2` and `x = 10`.
So, `f(x)` to be continuous,
`f(2^-) = f(2^+)`
`=>5 = a(2)+b`
`=>2a+b = 5->(1)`
Also, `f(x)` to be continuous,
`f((10^-) = f(10^+)`
`=>a(10) + b = 21`
`=>10a+b = 21->(2)`
Subtracting (2) -(1),
`=>10a+b-2a-b = 21-5`
`=>8a = 16`
`=> a= 2`
`:. 2(2)+b = 5`
`=>b = 1`
`:.` For, `a = 2, b =1, f(x)` will be continuous.
15.

The number of points at which `g(x)=1/(1+2/(f(x)))`is not differentiable, where `f(x)=1/(1+1/x)`, is`1`b. `2`c. `3`d. `4`A. 1B. 2C. 3D. 4

Answer» Correct Answer - C
`f(x)=(1)/(1+(1)/(x))=(x)/(x+1)` is not differentiable at `x=0,-1.`
Also, `g(x)=(1)/(1+(2)/(f(x)))=(1)/(1+(2(x+1))/(x))=(x)/(3x+2)`
Thus, the point where g(x) is not differentiable are x = 0, `-1, -2//3`.
16.

Statement-1: If f and g are differentiable at x=c, then min (f,g) is differentiable at x=c. Statement-2: min (f,g) is differentiable at `x=c if f(c ) ne g(c )`A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
Let f(x)=x nd g(x)=`x^(2)` then,
`min (f(x),g(x))={{:(,x,x lt 0),(,x^(2),0 le x lt 1):}`
Clearly, f(x) and g(X) are differentiable at x=0. But, min [f(x),g(x)] is not differentiable at x=0.
So, statement-1 is not true. However, statement-2 is true.
17.

Find all points of discontinuity of f, where f is defined by`f(x)={(|x|)/x , ifx!=0 0, ifx=0`

Answer» We know that the identity function x is continuous and the modulus function |x| is continuous . ltrgt So, the quotient funcation ` x/|x|` is continuous at eath ` x ne 0`
It has already been proved that f(x) is discontinuous at x=0.
Hence, the given function is continuous at each point, except at x=0.
18.

Find all points of discontinuity of f, where f is defined by`f(x)={{:(x^(10)-1, ifxlt=1),(x^2, ifx >1):}`

Answer» `f(1)= (1)^10 - 1 = 0`
LHL `= lim_(x->1^-)f(x) = lim_(x->1^-) x^10 - 1 = 0`
RHL `= lim_(x->1^+)f(x) = lim_(x->1^+) x^2 = 1`
LHL`cancel(=) `RHL
19.

If `y=3e^(2x)+2e^(3x)`. Prove that `(d^2y)/(dx^2)-5(dy)/(dx)+6y=0`.

Answer» `y = 3e^(2x)+2e^(3x)`
`=> dy/dx = 3e^(2x)(2)+2e^(3x)(3)`
`=> dy/dx = 6(e^(2x)+e^(3x))`
`=>(d^2y)/dx^2 = 6(2e^(2x)+3e^(3x))`
Now,`L.H.S. = (d^2y)/dx^2-5dy/dx+6y `
`=12e^(2x)+18e^(3x)-30e^(2x)-30e^(3x)+18e^(2x)+12e^(3x)`
`=0 = R.H.S.`
20.

The following functions are differentiable on (-1,2)A. `underset(x)overset(2x)int (log t)^(2)dt`B. `underset(x)overset(2x)int (sin t)/(t)dt`C. `underset(x)overset(2x)int (1-t+t^(2))/(1+t+t^(2))dt`D. None of these

Answer» Correct Answer - C
21.

If `x^3+y^3=3a x y`, find `(dy)/(dx)`

Answer» Correct Answer - `(ay-x^2)/(y^2-ax)`
22.

If `x+4|y|-6y`, then y as a function of x isA. continuous at x=0B. derivable at x=0C. `(dy)/(dx)=(1)/(2)` for all xD. none of these

Answer» Correct Answer - A
23.

Find all the points of discontinuity of f defined by`f(x)" "=" "|" "x" "|" "" "|" "x" "+" "1" "|`.

Answer» Let `g(x) =|x| - |x +1|`
We know that the modulus function `g(x) = |x|` and
`h(x) = |x +1|` are continuous for all x`ne` R.
`rArr f(x) ` is not discontinuous at any point.
24.

`f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):}`` at x = (pi)/(2)` .

Answer» `f(pi//2) = 3 `
R.H.L = `underset(x to (pi^(+))/(2))("lim") f(x) = underset(x to 0)("lim")f((pi)/(2) + h)`
`= underset(h to 0)("lim") (k cos ((pi)/(2) + h))/(pi -2 ((pi)/(2) + h)) = underset(h to 0)("lim") (-k sin h)/(-2h) = (k)/(2)`
`(because underset(h to 0)("lim") (sinh)/(h) =1)`
and L.H.L =` underset(x to pi//2^(2))(lim)f(x)= underset(h to 0)(lim)f((pi)/(2)-h)`
`underset (h to 0)(lim)(k cos((pi)/(2)-h))/(pi-2((pi)/(2)-h))`
`= underset(h to 0 )(lim)(k sin h)/(2h)= (k)/(2)`
`because` Function is continuous at x = (`pi)/(2)`.
`:.` R.H.L. = `f ((pi)/(2)) = LI. `
`rArr (k)/(2) = 3 rArr k = 6`
25.

If the function `f(x)` given by `f(x)={(3a x+b,"if "x >1), (11,"if "x=1), (5a x-2b ,"if "x

Answer» Correct Answer - a=3, b=2
26.

Discuss the continuity of the following functions:(a) `f(x) = s in x + cos x` (b) `f(x) = s in x cos x` (c) `f(x) = s in x dot cos x`

Answer» (a) sin x and cos x are always continuous functions.
`:.` sin x + cos x is also a continuous function.
(b) `f(x) - sin x - cos x`
`= sqrt(2)((1)/(sqrt(2))sin x (1)/sqrt(2)cosx )`
`= sqrt(2)("cos"(pi)/(4) sin x - "sin" (pi)/(4) cosx)`
`= sqrt(2)sin(x -(pi)/(4) )`
we know that sine function is always continuous.
`:. sin (x - (pi)/(4)` is continuous function.
`rArr sqrt (2)"sin" (x - (pi)/(4))` is continuous function.
`rArr f(x) `is continuous function
(c) `f(x) = sin x cos x`
`=(1)/(2).2 "sin x cos x"= (1)/(2)" sin " 2x`
we know that sine function is always continuous.
`:. sin 2x` is a continuous.
`rArr (1)/(2) "sin "2x` is a continuous function.
`rArr f(x) ` is a continuous functions.
27.

Determine the value of `k`for which the following function is continuous at `x=3.``f(x)={(x^2=9)/(x-3),x!=3k ,x=3`

Answer» Correct Answer - k = 6
28.

For what value of `k`is thefollowing function continuous at `x=2?``f(x)={2x+1; x2}`

Answer» Correct Answer - k =5
29.

Discuss the continuity of the function `f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):},` `at =pi`.

Answer» Correct Answer - continuous
30.

Discuss the continuity of the function `f(x) ={:{((Sinx)/(x) ", "x lt0 ),(x+1 ", " x ge0):},` at =0.

Answer» Correct Answer - discontinuous
31.

Show that the function `f(x)=2x-|x|`is continuous at `x=0`.

Answer» we have, ` f(0) =(2xx 0) -|0|=0`
`lim_( x to 0+) f(x) = lim_(h to 0) f( 0+h) `
` lim_(h to 0) ( 2h-|h|) = lim_( h to 0) ( 2h-h) = lim_( h to 0) h =0`
` lim_(x to 0-) f(x) - lim_(hto0) f( 0-h)`
`lim_(hto0) {2(-h)-|-h|}=lim_(hto0)(-2h-h) = lim_(hto0) (-3h) =0`
Thus, ` lim_(xto0+) f(x) = lim_(xto0+) f(x)=0and " therefore " , lim_(xto0) f(x)=0`
` lim_(x to 0) f(x) = f(0) =0`
Hence, f(x) is continuous at x =0
32.

Examine the following functions for continuity.(a) `f(x)=x-5` (b) `f(x)=1/(x-5)` (c) `f(x)=(x^2-25)/(x+5)`(d) `f(x)=|x-5|`

Answer» (a) f(x) = x - 5 is a polynomial function.
`:.` f(x) is contnuous for each real value .
(b) f(x) ` = (1)/(x - 5) , x ne 5 `
which is the quotient of two polynomials and is not
defined at x = 5
`:.` f(x) is contnuous for each real value of x (except x = 5).
(c) f(x) = `(x^(2) - 25)/(x + 5), x ne - 5`
`= ((x - 5) (x + 5))/(x + 5) = x -5`
which is a polynomial function .
`:.` f(x) is continous for all real value x = -5 .
(d) f(x) =`|x - 5| `
`{:={(x -5, if x ge 5),(5 - x, if x lt 5):}`
For x `ge ` 5, f (x) = x - 5
which is a polynomial function.
`:.` f(x) is continuous for x `ge `5.
For x `lt ` 5, f(x) = 5 - x
which is a polynomial function.
`:.` f(x) is ontinuous for x `lt` 5
Therefore, f(x) is continuous for all real value of x .
33.

Show that the funcation ` f(x) = {{:( sinx",", if , x lt 0),( x"lt", if, x ge 0):} ` is continuous.

Answer» Let ` at ne R`
Case I When ` a gt 0 , " then ", lim_( x to a+) f(x) = lim_( x to a-) f(x) = f(a) =a`
Case II When ` a gt 0 , " then " lim_( x to a+) f(x) = lim_( x to a-) f)(x) = f(a) = sin a`
Case III When ` a = 0 "then " , lim_( x to 0+) f(x) = lim_( x to 0-) f(x) = f(0) =0`
34.

If the function ` f(x) = (( 3x + 4 tan x))/x ` continuous at x=0? If not, hwo may the funcation be defined to make it continuous at this point ?

Answer» Since f(x) is not defined at x = 0 , it cannot be continuous at x=0
However, ` lim_(x to 0) f(x) = lim_(x to 0) (( 3x + 4 tan x)/x) = lim_( x to 0) [ 3+4 .( sin x)/ . 1/ (cos x) ]`
` = 3+4. lim_( x to 0) { ( sin x)/x } . { lim_( x to 0) 1/ ( cos x)} =7 `
So, in order to make f(x) continuous at x =0 , we define it as
`f(x)= {{:(((3x + 4 tanx))/(x)",","when", x ne0),(7",","when" , x=0):}`
35.

Examine the continuity of the funcation `f(x)={{: ((|sinx|)/x",", xne0),(1",",x=0 " at " x=0):}`

Answer» we have f(0) =1
`lim_(xto0+)f(x)=lim_(hto0)f(0+h)`
`lim_(hto0)(|sin(0 +h)|)/(( 0+h))=lim_(h to 0) (|sin h|)/(h) = lim_(h to0) (sinh)/h=1`
`lim_(xto0-)f(x)=lim_(hto0) f(0-h)`
` lim_(h to0) (|sin (-h)|)/ (-h) =lim_(hto0) (|-sin h|)/(-h)=lim_(hto0) (sinh)/(-h)=-1`
`lim_(xto0+) f(x)ne lim_(xto0-) f(x) . " so" , lim_(xto0) f(x)` does not exist.
Hence, f(x) is discontinuous at x=0.
36.

Show that the funcation `f(x)={{:(3x-2",", " when ", x le0),(x+1",", " when ", x gt 0):}` is discontinuous at x =0

Answer» we have ` f(0) = (3 xx 0-2) = -2`
` lim_(x to 0+) f(x) = lim_(h to 0) f( 0+h)`
` lim_(h to 0) ( h+1) =1`
` lim_(x to 0-) f(x) = lim_(h to 0) f( 0-h)`
` lim_(h to 0) [ 3 (-h) -2] = lim_( h to 0) (-3 h-2) = -2`
` lim_(x to 0 +) f(x) ne lim_( x to 0-) f(x) and " therefore, " lim_(x to 0) f(x) ` does not exist.
Hence, f(x) is discontinuous at x=0
37.

Show that the funcation `f(x)={{:(x","," if x is an intger ") ,( 0",", " if x is not an integer "):}` is discontinuous at each integral value of x.

Answer» Let x= n when n is an integer. Then , f(n) =n
` lim_(x to n+) f(x) = lim_(h to 0) f( n +h) =0 `
[ ( n +h) is not an integer ` Rightarrrow ` f( n +h) =0]
` and lim_(x to n-) f(x)( = lim( h to 0) f( n -h) =0`
[ ( n-h) is not an interger ` Rightarrow ` f ( n -h) =0]
` lim_(x to n +) f(x) = lim_( x to n-) f(x) =0 `
So, ` lim_( x to n) f(x) = 0 ne f( n)`
Hence, f(x) is discontinuous at x = n
38.

Statement-1: The function `f(x)=[x]+x^(2)` is discontinuous at all integer points. Statement-2: The function g(x)=[x] has Z as the set of points of its discontinuous from left.A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
Let k be an integer. Then, `underset(x to k^(-))lim g(x)=k-1 and g(k)=k Rightarrow underset(x to k^(-))lim g(x) ne g(k)`
So, k is a point of left discontinuity of g.
Hence, the points of discontinuous from left of function g is the set Z of all integers.
So, statement-2 is true.
We have `f(x)={{:(,k-1+x^(2),"if "k-1 le x lt k),(,k+x^(2),"if "k le x lt k+1):}`
Clearly, f(x) is discontinuous at all integers points as g(x)=[x] is discontinuous there at.
39.

The function `f(x) = (4-x^(2))/(4x-x^(3))` isA. discontinuous at only one pointB. discontinuous at exactly two pointsC. discontinuous at exactly three pointsD. None of the above

Answer» Correct Answer - C
We have, `f(x) = (4-x^(2))/(4x-x^(2))=((4-x^(2)))/(x(4-x^(2)))`
` = ((4-x^(2)))/(x(2^(2)-x^(2))) = (4-x^(2))/(x(2+x)(2-x))`
Clearly , `f(x)` is discontinuous at exactly three points `x = 0, x = - 2` and `x = 2`.
40.

The function `f(x) =cot x` is discontinuous on setA. `{x=npi:ninZ }`B. `{x = 2npi : n in Z }`C. ` {x =(2n+1)(pi)/(2),n in Z}`D. `{x=(npi)/(2), n in Z}`

Answer» Correct Answer - A
We know that, `f(x) = cotx` is continuous in `R-{npi:ninZ}`.
Since, `f(x) = cotx = (cosx)/(sinx)`, [since, `sinx = 0` at `n pi, n in Z`]
Hence`f(x)= cotx` is discontinuous on the set ` {x=npi : n in Z}`.
41.

If `f(x)={(x^2+1", "x ne 1),(" "3 ", "x=1):}` , then check whether the function f(x) is continuous or discontinuous at x=1

Answer» Correct Answer - discontinuous
42.

If `f(x) = 2x` and `g(x) = (x^(2))/(2)+1` , then which of the following can be a discontinuous functions?A. `f(x)+g(x)`B. `f(x)-g(x)`C. `f(x).g(x)`D. `(g(x))/(f(x))`

Answer» Correct Answer - D
We know that, if f and g be continuous functions, then
(a) `f+g` is continuous , (b) `f-g` is continuous
(c ) `fg` is continuous , (d) `(f)/(g)` is continuous at these points, where ` g(x) ne 0`.
Here, ` (g(x))/(f(x)) = ((x^(2))/(2)+1)/(2x)=(x^(2)+2)/(4x)`
Which is discontinuous at `x = 0`.
43.

`f:R->R` is defined by `f(x)={(cos3x-cosx)/(x^2), x!=0lambda, x=0` and `f` is continuous at `x=0;` then `lambda=`A. `-2`B. `-4C. `-6`D. `-8`

Answer» Correct Answer - B
If f is continous x=0 then,
`underset(x to 0)lim f(x)=f(8)`
`Rightarrow underset(x to 0)lim (cos 3x-cosx)/(x^(2))=lambda`
`Rightarrow underset(x to 0)lim (-2sin 2x sinx)/(x^(2))=lambda`
`Rightarrow -4 underset(x to 0)lim ((sin 2x)/(2x))((sin x)/(2x))=lambdaRightarrow -4xx1xx1=-4`
44.

(i) Dissusse the continuity of the function `f(x)={(|x-a|", " xne a ),(" "0 ", "x=a):}` at `x=a` (ii) Discuss the continutiy of the function `f(x)={(|x-3|/(x-3)", " xne 3 ),(" "0 ", "x=3):}` at `x=3`

Answer» Correct Answer - (i) continuous (ii) discontinuous
45.

Disuss the continutiy of `f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0", " x= 0):},` at x=0

Answer» Correct Answer - discontinuous
46.

Discuss the continutiy of the function `f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}`

Answer» Correct Answer - everywhere continuous
47.

If the function f(x) is given by `f(x)={{:(,2^(1//(x-1)),x lt 1),(,ax^(2)+bx,x ge 1):}` is everywhere differentiable, thenA. a=0, b=1B. a-0, b=0C. a=1, b=0D. none of these

Answer» Correct Answer - B
Clearly, f(x) is everywhere continuous and differentiable except possible at x=1.
At x=1, we have
`underset(x to 1^(-))lim f(x)=underset(x to 1^(-))lim 2^(1//(x-1))=underset(h to 0)lim 2^(-1//h)=0`
`underset(x to 1^(+))lim f(x)=underset(x to 1^(+))lim (ax^(2)+bx)=a+b`
and
f(1)=a+b
For f(x) to be differentiable at x=1, it must be continuous there at .
`therefore underset(x to 1^(-))lim f(x)=underset(x to 1^(+))lim f(x)=f(1)`
`Rightarrow 0=a+b........(i)`
Also,
`("LHD at x=1")=underset(x to 1^(-))lim (f(x)-f(1))/(x-1)a`
`Rightarrow ("LHD at x=1")=underset(h to 0)lim (f(1-h)-f(1))/(-h)`
`Rightarrow ("LHD at x=1")=underset(h to 0)lim (2^(-1//h)-(a+b))/(-h)a`
`Rightarrow ("LHD at x=1")=underset(h to 0)lim (2^(-1//h))/(-h)" "[therefore a+b=0]`
`Rightarrow ("LHD at x=1")=-underset(h to 0)lim (1//h)/(2^(1//h))" "[(oo)/(oo)"form"]`
`Rightarrow ("LHD at x=1")=-underset(h to 0)lim (-1//h^(2))/(2^(1//h)"log_(e) 2(-(1)/(h^(2))))`
`Rightarrow ("LHD at x=1")=-underset(h to 0)lim (2^(-1//h))/(log_(e)2)=(0)/(log_(e)2)=0`
and
`("RHD at x=1")=underset(x to 1^(+))lim (f(x)-f(1))/(x-1)`
`Rightarrow ("RHD at x=1")=underset(h to 0)lim (f(1+h)-f(1))/(h)`
`Rightarrow ("RHD at x=1")=underset(h to 0)lim (a(1+h)^(2)+b(1+h)-(a+b))/(h)`
`Rightarrow ("RHD at x=1")=underset(h to 0)lim (ah^(2)+2ah+bh)/(h)`
`Rightarrow ("RHD at x=1")=underset(h to 0)lim ah+2a+b=2a+b`
For f(x) to be differentiable at x=1, we must have (LHD at x=1)=(RHD at x=1)
`Rightarrow 0=2a+b......(ii)`
Solving (i) and (ii) we get a=b=0.
48.

If `f(x)={{:(,e^(x),x lt 2),(,ax+b,x ge 2):}` is differentiable for all `x in R`, themA. `a=e^(2),b=-e^(2)`B. `a=-e^(2),b=e^(2)`C. `a=b=e^(2)`D. none of these

Answer» Correct Answer - A
Clearly, f(x) is everywhere continuous and differentiable except possible at x=2.
At x=2, we have
`underset(x to 2^(-))lim f(x)=underset(x to 2^(-))lim e^(x)=e^(2)`
`underset(x to 2^(+))lim f(x)=underset(x to 2^(+))lim ax+b=2a+b`
`f(2)=2a+b` Also,
`("LHD at x=2")=((d)/(dx)(e^(x)))_(x=2)=e^(2)`
`("RHD at x=2")=((d)/(dx)(ax+b))_(x=2)=a`
For f(x) to be differentiable at x=2, it should be both continuous and differentiable at x=2
`therefore underset(x to 2^(-))lim f(x)=underset(x to 2^(+))lim f(x)=f(2)`
and (LHD at x=2)=(RHD at x=2)
`Rightarrow e^(2)=2a+b and a=e^(2) Rightarrow a=e^(2) and b=-e^(2)`
49.

Let a function f(x) defined on [3,6] be given by `f(x)={{:(,log_(e)[x],3 le x lt5),(,|log_(e)x|,5 le x lt 6):}` then f(x) isA. continuous and differentiable on [3,6]B. continuous on [3,6] but not differentiable at x=4,5C. differentiable on [3,6] but not continuous at x=4,5D. none of these

Answer» Correct Answer - D
We have
`f(x)={{:(,log_(e)3,3 le x lt 4),(,log_(e)4,4 le x lt 5),(,log_(e)x,5 le x lt 6):}`
Clearly, f(x) is continuous and differentiable `[3,4) uu (4,5) uu (5,6)`
At x=4, we have
`underset(x to 4^(-))lim f(x)=log_(e) 3 and underset(x to 4^(+))lim f(x)=log_(e)4`
`therefore underset(x to 4^(-))lim f(x)ne underset(x to 4^(+))lim f(x)`
Thus, f(x) is neither continuous nor differentiable at x=4, At x=5, we have
So, f(x) is neither continuous nor differentiable at x=5.
50.

The fuction f(x) is defined in the interval [0,1] as follows: `f(x)={:{(0", "x=0),(1/2-x", " 0ltxlt1/2),(1/2", " x=1/2),(2/3-x", " 1/2 lt x lt1),(1"," " "x=1):}` Discuss the continuity of the function at `x=1/2`

Answer» Correct Answer - discontinuous at `x=1/2`