Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

If `{x}` and `[x]` represent fractional and integral part of x respectively, find the value of `[x]+sum_(r=1)^(2000)({x+r})/2000`

Answer» `[x]+sum_(r=1)^(2000)({x+r})/2000=[x]+sum_(r=1)^(2000)({x})/2000` [from property (i)]
`=[x]+({x})/2000sum_(r=1)^(2000)1=[x]+({x})/2000xx2000=[x]+{x}=x`
252.

Prove that the following equations has no solutions. (i) `sqrt((2x+7))+sqrt((x+4))=0` (ii) `sqrt((x-4))=-5` (iii) `sqrt((6-x))-sqrt((x-8))=2` (iv) `sqrt(-2-x)=root(5)((x-7))` (v) `sqrt(x)+sqrt((x+16))=3` (vi) `7sqrt(x)+8sqrt(-x)+15/(x^(3))=98` (vii) `sqrt((x-3))-sqrt(x+9)=sqrt((x-1))`

Answer» (i) We have `sqrt((2x+7))+sqrt((x+4))=0`
This equation is defined for `2x+7ge0`
and `x+4ge0implies{(xge-7/2),(xge-4):"`
`:.xge-7/2`
For `xge-7/2` , the left hand side of the original equation is positive, but right hand side is zero. Therefore, the equation has no roots.
(ii) We have `sqrt(x-4))=-5`
The equation is defined for `x-4ge0`
`:.xge4`
For `xge4`, the left hand side of the original equation is positive but right hand side is negative.
Therefore, the equation has no roots.
(iii) We have `sqrt((5-x))-sqrt(x-8)=2`
The equation is defined for
`6-xge0` and `x-8ge0`
`:.{(xle6),(xge8):}`
Consequently, there is no `x` for which both expressions would have sense. Therefore, the equation has no roots.
(iv) We have `sqrt((-2-x))=root(5)((x-7))`
This equation is defined for
`-2-xge0impliesxle-2`
For `xle-2` the left hand side is positive, but right hand side is negative.
Therefore, the equation has no roots.
(v) We have `sqrt(x)+sqrt((x+16))=3`
The equation is defined for
`xge0` and `x+16ge0implies{(xge0),(xge-16):}`
Hence `xge0`
For `xge0` the left hand side `ge4`, but right hand side is 3. Therefore, the equation has no roots.
(vi) We have `7sqrt(x)+8sqrt(-x)+15/(x^(3))=98`
For `xlt0` the expression `7sqrt(x)` is meaningless,
For `xgt0`, the expressionn `8sqrt(-x)` is meaningles
and for `x=0` the expression `15/(x^(3))` is meaningless.
Consequently the left hand side of the original equation ils meaningless for any `x epsilonR`. Therefore the equation has no roots.
(vii) We have `sqrt((x-3))-sqrt((x+9))=sqrt(x-1)`
This equation is defined for
`{(x-3ge0),(x+9ge0),(x-1ge0):}implies{(xge3),(xge-9),(xge1):}`
Hence `xge3`
For `xge3, sqrt(x-3)ltsqrt(x+9)` i.e. `sqrt((x-3))-sqrt((x+9))lt0`
Hence for `xge3`,the left hand side of the original equation is negative and right hand side is positive.
Therefore, the equation has no roots.
253.

The equation `(x)^(2)=[x]^(2)+2x` where `[x]` and `(x)` are the integers just less than or equal to `x` and just greater than or equal to `x` respectively, then number of values of `x` satisfying the given equation

Answer» Case I If `x epsilonI` then
`x=[x]=(x)`
The given equation reduces to
`x^(2)=x^(2)+2x`
`implies2x=0` or `x=0`….i
Case II If `x!inI`, then `(x)=[x]+1`
The given equation reduces to
`([x]+1)^(2)=[x]^(2)+2x`
`implies1=2(x-[x])` or `{x}=1/2`
`:.x=[x]+1/2=n+1/2,n epsilonI`............ii ,brgt Hence the solution of the original equation is `x=0, n+1/2, n epsilon I`.
254.

Let `x^2+y^2+x y+1geqa(x+y)AAx ,y in R ,`then the number of possible integer (s) in the range of `a`is___________.

Answer» Correct Answer - 3

`rArr (y-a)^(2)=4(y^(2)-ay+1)le0`
`rArr -3y^(2)+2ay+a^(2)-4le0AAy inR`
`therefore 3y^(2)-2ay+4-a^(2)ge0AAy in R`
`Dle0`
`rArr4a^(2)-4 " . "3(4-a^(2))le0`
`rArra^(2)-3(4-a^(2))le0rArr4a^(2)-12le0`
`therefore " Range of " a in [-sqrt3, sqrt3]`
`rArr " number of integer " {-1,0,1}`
255.

If the roots of the equation `(b-c)x^2+(c-a)x+(a-b)=0` are equal then `a,b,c` will be in

Answer» Give equation is
`a(b-c)x^(2)+b(c-a)x+c(a-b)=0`…………i
Here, coefficient of `x^(2)+` coefficient of `x+` constant term `=0`
i.e. `a(b-c)+b(c-a)+c(a-b)=0`
The, 1 is a root of Eq. (i)
Since, its roots are equal.
Therefore its other root will be also equal to 1.
Then product of roots `=1xx1=(c(a-b))/(a(b-c))`
`impliesab-ac=ca-bc`
`:.b=(2ac)/(a+c)`
Hence a,b,c are in HP.
256.

If one roots of the equation `x^(2)-sqrt(5)x-19=0` is `(9+sqrt(5))/2` then find the other root.

Answer» All coefficients of the given equation are not rationa, then other root `!=(9-sqrt(5))/2`
Let other root be `alpha` sum of roots `=sqrt(5)`
`=(9+sqrt(5))/2+alpha=sqrt(5)impliesalpha=(-9+sqrt(5))/2`
Hence other root is `(-9+sqrt(5))/2`
257.

Find all roots of the equation `x^4+2x^3-16x^2-22x+7=0`, if one root is `2+sqrt3`

Answer» All coefficients are teal, irrational roots will occur in congugate pairs.
Hence another root is `2-sqrt(3)`.
`:.` Product of these roots `=(x-2-sqrt(3))(x-2+sqrt(3))`
`=(x-2)^(2)-3=x^(2)-4x+1`
On dividing `x^(4)+2x^(3)-16x^(2)-22x+7` by `x^(2)-4x+1`, then the other quadratic factor is `x^(2)+6x+y`.
Then the given equation reduce in the form
`(x^(2)-4x+1)(x^(2)+6x+7)=0`
`:.x^(2)+6x+7=0`
Then `x=(-6+-sqrt(36-28))/2=-3+-sqrt(2)`
Hence the other roots are `2-sqrt(3),-3+-sqrt(2)`
258.

Let `alpha,beta`be the roots of the equation`(x-a)(x-b)=c ,c!=0`Then the roots of the equation `(x-alpha)(x-beta)+c=0`are`a ,c`(b) `b ,c``a ,b`(d) `a+c ,b+c`

Answer» Since `alpha, beta` are the roots fo
`(x-a)(x-b)=c`
or `(x-a)(x-b)-c=0`
Then `(x-a)(x-b)-c-(x-alpha)(x-beta)`
`implies(x-alpha)(x-beta)+c=(x-a)(x-b)`
Hence roots of `(x-alpha)(x-beta)+c=0` are a,b.
259.

Solve for `x(5+2sqrt(6))^x^(2-3)+(5-2sqrt(6))^x^(2-3)=10`(1985,5M)

Answer» `(5+2sqrt(6))(5-2sqrt(6))=1`
`:.(5-2sqrt(6))=1/((5+2sqrt(6)))`
`:.(5+2sqrt(6))^(x^(2)-3)+(5-2sqrt(6))^(x^(2)-3)=10`
reduces to `(5+2sqrt(6))^(x^(2)-3)+(1/(5+2sqrt(6))))^(x^(2)-3)=10`
Put `(5+2sqrt(6))^(x^(2)-3)=t`, then `t+1/t=10`
`impliest^(2)-10t+1=0`
or `t=(10+-sqrt((100-4)))/2=(5+-2sqrt(6))`
`implies(5+2sqrt(6))^(x^(2)-3)=(5+-2sqrt(6))=(5+2sqrt(6))^(+-1)`
`:.x^(2)-3=+-1`
`impliesx^(2)-3=1` or `x^(2)-3=-1`
`impliesx^(2)=4` or `x^(2)=2`
Hence `x=+-2, +-sqrt(2)`.
260.

If `alpha,beta ` be the roots of the equation `3x^2+2x+1=0,` then find value of `((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3`

Answer» Let `(1-alpha)/(1+alpha)=ximpliesa=(1-x)/(1+x)`
So replacing `x` by `(1-x)/(1+x)` in the given equation we get
`3((1-x)/(1+x))^(2)+2((1-x)/(1+x))|+1=0impliesx^(2)-2x+3=0` …….i
It is clear that `(1-alpha)/(1+alpha)` and `(1-beta)/(1+beta)` are the roots fo Eq. (i)
`:.((1-alpha)/(1+alpha))+((1-beta)/(1+beta))=2`..........ii
and `((1-alpha)/(1+alpha))((1-beta)/(1+beta))=3`.......iii
`:.((1-alpha)/(1+alpha))^(3)+((1-beta)/(1+beta))^(3)=((1-alpha)/(1+alpha) +(1-beta)/(1+beta))^(3)-3`
`((1-alpha)/(1+alpha))((1-beta)/(1+beta))((1-alpha)/(1+alpha)+(1-beta)/(1+beta))=2^(3)-3.3.2=8-18=-10`
261.

Solve the equation `log_(3)(5+4log_(3)(x-1))=2`

Answer» We have `log_(3)(5+4log_(3)(x-1))=2`
is equivalent ot the equation(here base `!=1,gt0`)
`:.5+4log_(3)(x-1)=3^(2)`
`implieslog_(3)(x-1)=1impliesx-1=3^(1)`
`:.x=4`
Hence `x_(1)=4` is the solution of the original equation.
262.

Fill in the blanksIf the product of the roots of the equation `x^2-3k x+2e^(21 nk)-1=0`is 7, then the roots are real for____________.

Answer» Correct Answer - `k=2`
Since, `x^(2)-3kx+2e^(2logk)-1=0` has product of roots 7.
`implies2e^(2logh)-1=7`
`impliese^(2log_(e)k)=4`
`impliesk^(2)=4`
`impliesk=2" "["neglectig-2"]`
263.

Solve the equation `log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)`

Answer» The equation is equivalent to
`{(x^(2)-1gt0),(2x^(2)+5xgt0),(2x^(2)+5x!=1),(x^(3)+6=2x^(2)+5x):}`
`implies{(xlt-1 "and"xgt1),(xlt-5/2"and"xgt0),(x!=(-5+-sqrt(3))/4),(x=-2,1,3):}`
Hence `x_(1)=3` is only root of the original equation.
264.

If one root of the equation `(x-1)(7-x)=m` is three times the other, then `m` is equal toA. `-5`B. `0`C. `2`D. `5`

Answer» Correct Answer - C
`(c )` `-x^(2)+8x-7=m implies x^(2)-8x+7+m=0`
`alpha+3alpha=8 implies alpha=2`
`alpha*3alpha=7+mimplies12=7+mimpliesm=5`
265.

Solve the equationi `log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)`

Answer» This equation is equivalent to the system
`{(2x^(2)+5xgt0),(x^(2)-1gt0),(x^(2)-1!=1),(x^(3)+6=2x^(2)+5x):}`impliesP(xlt-5/2` "and" xgt0),(xlt-1 "and "xgt1),(x!=+-sqrt(2)),(x=-2,1,3):}`
Hence `x_(1)=3` is only root of the original equation.`
266.

Statement -1 If the equation `(4p-3)x^(2)+(4q-3)x+r=0` is satisfied by `x=a,x=b` nad `x=c` (where a,b,c are distinct) then `p=q=3/4` and `r=0` Statement -2 If the quadratic equation `ax^(2)+bx+c=0` has three distinct roots, then a, b and c are must be zero.A. Statement -1 is true, Statement -2 is true, Statement -2 is a correct explanation for Statement-1B. Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement -1C. Statement -1 is true, Statement -2 is falseD. Statement -1 is false, Statement -2 is true

Answer» Correct Answer - D
If quadratic equation `ax^(2)+bx+c=0` is satisfied by more than two values of `x` then it must be an identity.
Therefore `a=b=c=0`
`:.` Statement -2 is true.
But in Statement -1
`4p-3=4q-3=r=0`
Then `p=q=3/4,r=0`
which is false
Since at one valueof `p` or `q` or `r` al coefficients at a time `!=0`
`:.` Statement -1 is false.
267.

Let `a`, `b`, `c` and `m in R^(+)`. The possible value of `m` (independent of `a`, `b` and `c`) for which atleast one of the following equations have real roots is `{:(ax^(2)+bx+cm=0),(bx^(2)+cx+am=0),(cx^(2)+ax+bm=0):}}`A. `(1)/(2)`B. `(1)/(8)`C. `(1)/(12)`D. `(1)/(4)`

Answer» Correct Answer - B::C::D
`(b,c,d)` If at least one of the equations has real roots, then
`D_(1)+D_(2)+D_(3) ge 0`
`(b^(2)-5acm)+(c^(2)-4bam)+a^(2)-4cbm ge 0`
`a^(2)+b^(2)+c^(2) ge 4(ab+bc+ca)m`
`4m ge (a^(2)+b^(2)+c^(2))/(ab+bc+ca)`………`(1)` `AA a,b,c in R+`
but `a^(2)+b^(2) ge 2ab` etc.
`:. a^(2)+b^(2)+c^(2) ge ab+bc+ca`
`(a^(2)+b^(2)+c^(2))/(ab+bc+ca) ge 1`
`:.(a^(2)+b^(2)+c^(2))/(ab+bc+ca)|_(min)=1` , Hence `4m` must be less than or equal to the minimum value.
`:. 4m le 1` gtbrgt `implies m le (1)/(4)`
`implies m in (0,(1)/(4)]`
268.

Fill in the blanksThe coefficient of `x^(99)`in the polynomial `(x-10(x-2)(x-100)i s______dot`

Answer» Correct Answer - `-5050`
The coefficient of `x^(99)"in" (x-1)(x-2)...(x-100)`
`=-(1+2+3...100)`
`=-(100)/(2)(1+100)=-50(101)=-5056`
269.

Solve the equation `log_(((2+x)/10))7=log_((2/(x+1)))7`.

Answer» The given equation is equivalent to
`{(2/(x+1)gt0),(2/(x+1)!=1),((2+x)/10=2/(x+1)):}implies{(x+1gt0),(x!=1),(x=-6,3):}`
`:.x_(1)=3` is root of the original equation.
270.

Column I contains rational algebraic expressions and Column II contains possible integers of a.

Answer» Correct Answer - `(A)to(q,r,s,t),(B)to(q,r),(C)to(p,q)`
`Ato(q,r,s,t), Bto(q,r,):Cto(p,q)`
(A) We have `y=(ax^(2)+3x-4)/(3x-4x^(2)+a)`
`impliesx^(2)(a+4y)+3(1-y)x-(ay+4)=0`
As `x epsilon R ` we get
`Dge0`
`implies9(1-y)^(2)+4(a+4y)(ay+4)ge0`
`implies(9+16a)y^(2)+(4a^(2)+46)y+(9+16a)ge0,AA y espsilon R`
`implies` If `9+16agt0` then `Dle0`
Now `D le0`
`implies(4a^(2)+46)^(2)-4(9+16a)^(2)le0`
`implies4[(2a^(2)+23)^(2)-(9+16a)^(2)]le0`
`implies[(2a^(2)+23)+(9+16)][(2a^(2)+23)-(9+16a)]le0` ltbRgt `implies(2a^(2)+16a+32)(2a^(2)-16a+14)le0`
`implies4(a+4)^(2)(a^(2)-8a+8)le0`
`impliesa^(2)-8a+8le0`
`implies(a-1)(a-8)le0` ltbr `implies1leale7`
`:.9+16ag0` and 1leale7`
`implies1leale7`
(B) we have `y=(ax^(2)+x-2)/(a+x-2x^(2))`
`impliesx^(2)(a+2y)+x(1-y)-(2+ay)=0`
As `x epsilonR` we get
`Dge0`
`implies(1-y)^(2)+4(2+ay)(a+2y)ge0`
`implies(1+8a)y^(2)+(4a^(2)+14)y+(1+8a)ge0`
`implies` If `1+8agt0` then `Dle0`
`implies(4a^(2)+14)^(2)-4(1+8a)^(2)le0`
`implies4[(2a^(2)+7)^(2)-(1+8a)^(2)]le0`
`implies[(2a^(2)+7)+(1+8a)][(2a^(2)+7)-(1+8a)]le0`
`implies(2a^(2)+8a+8)(2a^(2)-8a+6)le0`
`implies4(a+2)^(2)(a^(2)-4a+3)le0`
`impliesa^(2)-4a+3le0`
`implies(a-1)(a-3)le0`
`implies1leale3`
Thus `1+8agt0` and `1leale3`
`implies1leale3`
(C)We have `y=(x^(2)+2x+a)/(x^(2)+4x+3a)`
`impliesx^(2)(y-1)+2(2y-1)x+a(3y-1)=0`
As `x epsilon R` We get
`Dge0` ltbRgt `implies4(2y-1)^(2)-4(y-1)a(3y-1)ge0`
`implies(4-3a)y^(2)-(4-4a)y+(1-a)ge0`
`implies` If `4-3agt0` then `Dle0`
`implies(4-4a)^(2)-4(4-3a)(1-a)le0`
`implies4(2-2a)^(2)-4(4-3a)(1-a) le 0`
`implies4+4a^(2)-8a-(4-8a+3a^(2))le0`
`implies a^(2)-ale0`
`impliesa(a-1)le0` ltbRgt `implies0leale1`
271.

If `alpha,beta`are the roots of the equation `a x^2+b x+c=0,`then find the roots of the equation `a x^2-b x(x-1)+c(x-a)^2=0`in term of `alphaa n dbetadot`

Answer» `ax^(2) - bx (x - 1) + c (x -1)^(2) = 0`
`rArr (ax)/((1-x)^(20)) + (bx)/( 1- x) + c = 0` (1)
Now , `alpha` is a root of `ax^(2) +bx + c = 0 `. Then let
`alpha = (x) /(1-x)`
`rArr x = (alpha)/(alpha + 1)`
Hence, the roots of (1) are `alpha //(1 + alpha ),beta//(1 + beta)`.
272.

Let a, b, c be real numbers with a = 0 and let `alpha,beta ` be the roots of the equation `ax^2 + bx + C = 0`. Express the roots of `a^3x^2 + abcx + c^3 = 0` in terms of `alpha,beta`

Answer» `alpha + beta = (-b)/(a), alpha beta = (c) /(a)`
Roots of the equation `a^(3) x^(2) + abcx + c^(3) = 0` are :
`x=(-abcpmsqrt((abc)^(2) - 4a^(2) c^(3)))/(2a^(3))`
`= (-(b)/(a))((c)/(a)) pm(sqrt(((b)/(a))^(2)((c)/(a))^(2) - 4 ((c)/(a))^(3)))/(2)`
`=(alpha beta) (((alpha + beta)pmsqrt((alpha - beta)^(2))))/(2)`
`=alpha beta (((alpha + beta)(alpha - beta)))/(2)`
`alpha^(2) beta, alphabeta^(2)`
273.

If `P(x)=a x^2+b x+c&Q(x)=-a x^2+dx+c ,a c!=0,`then the equation `P(x)dotQ(x)=0`hasExactly two real rootsAtleast two real rootsExactly four real roots(d) No real roots

Answer» Correct Answer - 1
`P(x).Q(x)=(ax^(2)+bx+c)(-ax^(2)+bx+c)`
Now, `D_(1)=b^(2)-4ac and D_(2)=b^(2)+4ac`
Clearly, ` D_(1)+D_(2)=2b^(2)ge0`
`therefore` Atleast one of `D_(1) and D_(2)` is (+ve). Hence, atleast two real roots.
Hene, stamement is true.
274.

Find the set of all solutions of the equation `2^|y| -|2^(y -1) -1| = 2^(y -1) +1 `

Answer» Correct Answer - `y in{-1}uu[1,oo)`
Given, ` 2^(|y|)-|2^(y-1)-1|=2^(y-1)+1`
Case I When `y in (-oo, 0]`
`therefore 2^(-y)+(2^(y-1)-1)2^(y-1)+1`
`implies 2^(-y)=2`
`impliesy=-1 in (-oo,0]" "...(i)`
Case II When `y in (0,1]`
`therefore2^(y)+(2^(y-1)-1)=2^(y-1)+1`
`implies 2^(y)=2`
`impliesy=1 in (0,1] " "...(ii)`
Case III When `y in (1, oo)`
`therefore2^(y)-2^(y-1)+1=2^(y-1)+1`
`implies 2^(y)-2.2^(y-1)=0`
implies 2^(y)-2^(y)=0 "true for all" y gt 1 " "...(iii)`
From Eqs. (i), (ii), (iii), we get
`y in{-1}uu[1,oo).`
275.

The quadratic `x^2+a x=b+1=0`has roots which are positive integers, then `(a^2+b^2)`can be equal to`50`b. `37`c. `61`d. `19`A. 50B. 37C. 61D. 19

Answer» Correct Answer - 1
`x^(2) + ax + b + 1 = 0` has positive integral roots `alpha and beta`.
Now, `(alpha + beta) = -a and alphabeta = b + 1`
`rArr (alpha + beta)^(2) + (alphabeta - 1)^(2) = a^(2) + b^(2)`
`rArr a^(2) +b^(2) = (alpha^(2) + 1)(beta^(2) + 1).`
`rArr a^(2) + b^(2)` can be equal to 50 (since other options have prime numbers)
276.

Solve the equation `log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]`

Answer» The given equation is equivalent to
`{(2(1/2)^(x)-1gt0),(2(1/2)^(x)-1=(1/4)^(x)-4):}`
`implies{((1/2)^(x)gt1/2),((1/2)^(2x)-2(1/2)^(x)-3=0):}`
`implies{(xlt1),([(1/2)^(x)-3][(1/2)^(x)+1]):}=0`
`implies{(xlt1),((1/2)^(x)=3,(1/2)^(x)+1!=0):}implies{(xlt1),(x=(-log_(2)3)):}`
Hence `x_(1)=-log_(2)3` is the root of the original equation.
277.

Let `alpha and beta` be the roots of `x^2 - 5x - 1 = 0` then the value of `(alpha^15 + alpha^11 + beta^15 + beta^11)/(alpha^13 + beta^13)` is

Answer» `(alpha ^(15)+ alpha^(11) + alpha^(15) + beta^(11))/(alpha^(13) + beta^(13))`.
= `(alpha ^(15)+ alpha^(15) + alpha^(2) beta^(2)(alpha^(11)+beta^(2)))/(alpha^(13) + beta^(13))" "( because alpha beta = -1)`
`(alpha ^(15)+ alpha^(13) + beta^(2)beta^(15)+alpha^(2)beta^(13))/(alpha^(13) + beta^(13))`
`((alpha ^(13)+ alpha^(13)) ( alpha^(2)+beta^(2)))/(alpha^(13) + beta^(13))`
`alpha^(2) + beta^(2) = (alpha + beta)^(2) - 2alpha beta = 27`
278.

If `alpha,beta` are the roots of `ax^2 + c = bx`, then the equation `(a + cy)^2 =b^2y` in y has the rootsA. `alpha beta^(-1), alpha^(-1)beta`B. `alpha^(-2), beta_(-2)`C. `alpha^(-1), beta^(-1)`D. `alpha^(2), beta^(2)`

Answer» Correct Answer - 2
`ax^(2) - bx + c = 0`
`alpha + beta = b/a, abeta = c/a`
Also, `(a + cy)^(2) = b^(2)y`
`rArr c^(2)y^(2) - (b^(2) - 2ac)y + a^(2) = 0`
`rArr (c/a)^(2)y^(2) - ((b/a)^(2) - 2(c/a))y + 1 = 0`
`rArr (alphabeta)^(2)y^(2) - (alpha^(2) + beta^(2))y + 1 = 0`
`rArr y^(2) - (alpha^(-2) + beta^(-2))y + alpha^(-2)beta^(-2) = 0`
`rArr (y - alpha^(-2)) (y - beta^(-2)) = 0`
Hence, the roots are `alpha^(-2), beta^(-2)`.
279.

The equation `2x^(2)+3x+1=0` has an irrational root.

Answer» Given `2x^(2)+3x+1=0`
Here, `D=(3)^(2)-4.2.1=1` which is a perfect square.
`therefore` Roots are rational.
Hence, statement is false.
280.

Solve the equation `(1-2(2logx)^(2))/(logx-2(logx)^(2))=1`

Answer» The given equation can rewrite in the form
`(1-2(2logx)^(2))/(logx-2(logx)^(2))=1`
`implies(1-8(logx)^(2))/(logx-2)(logx)^(2))-1=0`
Let `logx=t`
then `(1-8t^(2))/(5-2t^(2))-1=0implies(1-8t^(2)-t+2t^(2))/(t-2t^(2))=0`
`implies(1-t-6t^(2)/((t-2t^(2))=0implies((1+2t)(1-3t))/(t(1-2t))=0`
`implies{(t=-1/2),(t=1/3):}implies{(logx=-1/2),(logx=1/3):}implies{:(x_(1)=10^(-1//2)),(x_(2)=10^(1//3)):}`
Hence `x_(1)=1/(sqrt(10))` and `x_(2)=root(3)(10)` are the roots of the original equation.
281.

If `alphaa n dbeta`are roots of the equation `a x^2+b x+c=0,`then the roots of the equation `a(2x+1)^2-b(2x+1)(3-x)+c(3-x)^2=0`are`(2alpha+1)/(alpha-3),(2beta+1)/(beta-3)`b. `(3alpha+1)/(alpha-2),(3beta+1)/(beta-2)`c. `(2alpha-1)/(alpha-2),(2beta+1)/(beta-2)`d. none of theseA. `(2alpha + 1)/(alpha - 3), (2beta + 1)/(beta - 3)`B. `(3alpha + 1)/(alpha - 2), (2beta + 1)/(beta - 2)`C. `(2alpha - 1)/(alpha - 2), (2beta + 1)/(beta - 2)`D. none of these

Answer» Correct Answer - 2
`a((2x + 1)^(2))/((x - 3)^(2)) + b((2x + 1))/((x - 3)) + c = 0`
`rArr (2x + 1)/(x - 3) = alpha` or `(2x + 1)/(x - 3) = beta`
or `2x + 1 = alphax - 3alpha`
or `x(alpha - 2) = 1 + 3alpha`
or `x = (1 + 3alpha)/(alpha - 2), (1 + 3beta)/(beta - 2)`
282.

Solve the equation `log_((log_(5)x))5=2`

Answer» We have `log_((log_(5)x))5=2`
Base of logarithm `gt0` and `!=1`
`:.log_(4)xgt0` and `log_(5)x!=1`
`impliesxgt1` and `x!=5`
`:.` The original equation is equivalent to
`log_(5)x=5^(1//2)=sqrt(5)` ltrgt `:.x_(1)=5^(sqrt(5))`
Here `5^(sqrt(5))` is the only root of the original equation.
283.

The number of irrational roots of the equation `4x//(x^2+x+3)+5x//(x^2-5x+3)=-3//2`is`4`b. `0`c. `1`d. `2`A. 4B. 0C. 1D. 2

Answer» Correct Answer - 4
Here, x = 0 is not a root, Divide both the numerator and denominator by x and put x + 3/x = y to obtain
`(4)/(y + 1) + (5)/(y - 5) = - 3/2 rArr y = -5, 3`
x + 3/x = -5 has two irrational roots and x + 3/x = 3 ahs imaginary roots.
284.

Solve the equation `2x^(log_(4)^(3))+3^(log_(4)^(x)=27`

Answer» The domain of the admissible value of the equation is `xgt0`. The given equation is equivalent to
`2.3^(log_(4)x)+3^(log_(4)^(x))=27` [from above result (v)]
`=3.3^(log_(4)^(x)=27`
`=3^(log_(4)x)=9`
`implies3^(log_(4)x)=3^(2)`
`implieslog_(4)x=2`
`impliesx_(1)=4^(2)=16` is its only root.
285.

If `a gt 0 and b^(2) - 4 ac = 0` then solve `ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0` .

Answer» We must have `ax^(3) + (a + b)x^(2) + (b + c ) x + c gt 0`
`rArr ax^(2) (x-1) + bx (x-1) + c (x + 1) gt 0`
`rArr (x + 1) (ax^(2) + bx + c ) gt 0`
`rArr a(x + 1 ) (x + (b)/(2a))^(2) gt 0 as b^(2) = 4ac`
`rArr x gt -1 and x ne - (b)/(2a)`
286.

Solve the inequation `log_(((x^2-12x+30)/10))(log_2((2x)/5))gt0`

Answer» This inequation is equivalent to the collection of two systems
`{((x^(2)-12x+30)/10gt1),(log_(2)((2x)/5)gt1):}`
`{(0lt(x^(2)-12x+30)/10lt1),(0ltlog_(2)((2x)/5)lt1):}`
On solving the first system, we have
`implies{(x^(2)-12x+20gt0),((2x)/5gt2):}`
`hArr{((x-10)(x-2)gt0),(xgt5):}`
`hArr{(xlt2 "and" xgt10),(xgt5):}`
Therefore the system has solution `x gt10`
On solving the second system, we have
`implies{(0ltx^(2)-12x+30lt10),(1lt(2x)/5lt2):}`
`hArr{(x^(2)-12x+30gt0 "and" x^(2)-12x=20lt),(5//2ltxlt5):}`
`hArr {(xlt6-sqrt(6) "and "xgt6+sqrt(6) "and" 2ltxlt10),(0lt xlt5):}`
Therefore the system has solution `2ltxlt6-sqrt(6)` combining both system, then solution of the original inequations is
` x epsilon (2,5,sqrt(6))uu(10,oo)`
287.

If `alpha,beta and gamma` are roots of equation `x^(3)-3x^(2)+1=0`, then the value of `((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3)` is __________.

Answer» Correct Answer - -1
Let `alpha_(1)=(alpha)/(1+alpha),beta_(1)=(beta)/(1+beta),andgamma_(1)=(gamma)/(1+gamma)`,
Also, let `y=alpha_(1),beta_(1) and gamma_(1)` be roots of an equation is y.
Then `y=(x)/(1+x)`
`therefore x =(y)/(1-y)`
Now,`x^(3)-3x^(2)+1=0`
`rArr((y)/(1-y))^(3)-3((y)/(1-y))^(2)+1=0`
`rArr3y^(3)-3y+1=0`
`rArralpha_(1)+beta_(1)+gamma_(1)=0 and alpha_(1)beta_(1)gamma_(1)=-(1)/(3)`
`therefore alpha_(1)^(3)+beta_(1)^(3)+gamma_(1)^(3)=3alpha_(1)beta_(1)gamma_(1)=3(-(1)/(3))=-1`
288.

The sum of the non-real root of `(x^2+x-2)(x^2+x-3)=12`is`-1`b. `1`c. `-6`d. `6`A. -1B. 1C. -6D. 6

Answer» Correct Answer - 1
Put `x^(2) + x = y`, so that Eq. (1) becomes
`(y -2)(y - 3) = 12`
or `y^(2) -5y -6 =0`
or `(y - b)(y + 1) = 0` or y = 6, -1
When y = 6, we get
`x^(2) + x - 6 = 0`
`rArr (x + 3)(x - 2) = 0` or x = -3, 2
When y = -1, we get
`x^(2) + x + 1 = 0`
which has nonreal roots and sum of roots is -1.
289.

Let `alphaa n dbeta`be the solutions of the quadratic equation `x 62-1154 x+1=0`, then the value of `alpha4+beta4`is equal to ______.

Answer» Correct Answer - 6
`alpha+beta=1154andalphabeta=1`
`(sqrtalpha+sqrtbeta)^(2)=alpha+beta+2sqrt(alphabeta)=1154+2=1156=(34)^(2)`
`impliessqrtalpha+sqrtbeta=34`
Again `(alpha^(1//4)+beta^(1//4))^(2)=sqrtalpha+sqrtbeta+2(alphabeta)^(1//4)=34+2=36`
`alpha^(1//4)+beta^(1//4)=6`
290.

If `a ,b ,a n dc`are odd integers, then prove that roots of `a x^2+b x+c=0`cannot be rational.

Answer» Here, discriminant `D =b^(2) - 4ac.` Suppose the roots are rational. Thus , D will be a perfect square.
Let `b^(2) - 4 ac = d^(2)` . Since a, b and c are odd integers, d will be odd .Now,
`b^(2) - d^(2) = 4ac`
Let b = 2k + 1 and d = 2m + 1 . Then
`b^(2) - d^(2) = (b -d) (b + d)`
`2(k -m) 2(k + m + 1)`
Now, either (k - m) or (k + m + 1) is always even. Hence, `b^(2)-d^(2)` is always a multiple of 8. But , 4ac is a multiple of 4 (not of 8 ), Which is a contradiction. Hence, the roots of `ax^(2) + bx + c =0` connot be rational.
291.

Integral part of the product of non-real roots of equation `x^(4)-4x^(3)+6x^(2)-4x=69` is _______.

Answer» Correct Answer - 9
We have `x^(4)-4x^(3)+6x^(2)-4x=69`
`rArrx^(4)-4x^(3)+6x^(2)-4x+1=70`
`rArr (x-1)^(4)=70`
`rArr (x-1)^(2)=pm sqrt70`
For the product of non-real roots, consider
`(x-1)^(2)=-sqrt70`
`rArr x^(2)-2x+1+sqrt70=0`
Therefore, product is `1+sqrt70`,whose intgral part is 9.
292.

If `f(x)=x^2+b x^2+c x+da n df(0),f(-1)`are odd integers, prove that `f(x)=0`cannot have all integral roots.

Answer» `f(0) = d, f(-1) = -1 + b - c + d`
`rArr d = odd and - 1 + b - c + d = odd`
`rArr b - c = 1 + odd -d`
`= (1+ odd) -(odd) = even - odd = odd` (1)
Thus, both d and b - c are odd
If possible let the three roots `alpha, beta, gamma` be all integers. Now,
`alpha beta gamma = - (d)/(1) = -d =` negative odd integers (2)
`rArr alpha, beta, gamma` are three integers whose product is odd
`rArr alpha, beta, gamma `all are odd
Again `alpha+ beta + gamma = - b and alpha beta + beta gamma + alpha gamma = c` (3)
`rArr ` b and c both will be odd
`rArr (b - c)` will be even which contradicts with (1)
Hence, the three roots connot be all integers.
293.

If `alpha,beta`are the roots of lthe equation `2x 62-3x-6=0,`find the equation whose roots are `alpha^2+2a n dbeta^2+2.`

Answer» Since `alpha, beta ` are roots of the equation `2x^(2) - 3x - 6 = 0, ` we have
`alpha + beta = 3//2 and alpha beta = -3`
`rArr alpha^(2) + beta^(2) = (alpha + beta)^(2) - 2alpha beta`
= `(90/(4)+6 = (33)/(4)`
Now , `(alpha^(2)+beta^(2))+(beta^(2)+2) = (alpha^(2)+ beta^(2)) + 4`
`=(33)/(4) + 4 = (49)/(4)`
and `(alpha ^(2) + 2 ) (beta^(2)+2)= alpha^(2) + beta^(2) + 2(alpha^(2)+ beta^(2))+4`
`=(-3)^(2) + 2((33)/(4)) + 4`
`= (59)/(2)`
So , the equatioon whose roots are `alpha^(2) + 2 and beta^(2) + 2` is given by
`x^(2) - x [(alpha^(2) + 2) + (beta^(2) + 2)] + (alpha^(2) + 2 ) (beta^(2) + 2 ) = 0`
`rArr x^(2) - (49)/(4)x+(59)/(2) = 0`
or `4x^(2) - 49x + 118 = 0`
294.

Find the largest natural number a for which the maximum value of `f(x)=a-1+2x-x^2`is smaller thante ninimum value of `g(x)=x^2-2a x=10-2adot`

Answer» `f(x) = a - 1 + 2x - x^(2)`
`= a - (x^(2)-2x + 1)`
`= a (x - 1) ^(2)`
Hence, the maximum value of `f(x)` is a when `(x - 1)^(2) = 0 or x = 1`
`g(x) = x^(2) - 2ax + 10 -2a`
`=(x - a)^(2) + 10 - 2a - a^(2)`
Hence, the minimum value of `g(x) is 10 -2a - a^(2)` when `(x - a)^(2) = 0 or x= a`.
Now given that maximum of `f(x)` is smaller than the minimum of g(x) . Thus,
`a lt - a^(2)+ 10 - 2a`
or `a^(2) + 3a - 10 lt 0`
or ` (a + 5) (a - 2) lt 0`
`therefore -5 lt a lt 2`
So, The largest natural number a = 1.
295.

If `x^2+ax+1=0` is a factor of `ax^3+ bx + c`, then which of the following conditions are not valid

Answer» Correct Answer - `b - a + a^(3) = 0, a^(2) + c = 0`
`x^(2) + ax + 1` must divide `ax^(3) + bx + c .` Now
`(ax^(3) +bx + c)/(x^(2) + ax + 1)= a (x - a) + ((b - a + a)^(3) x+c + a^(2))/(x^(2) + ax + 1)`
Ther remainder must be zero . Hence, `(b - a + a^(3)) x + c + a^(2) = 0 AA x in` R
So, `b - a + a^(3) = 0, a^(2) + c = 0`
296.

Q. Let p and q real number such that `p!= 0`,`p^2!=q` and `p^2!=-q`. if `alpha` and `beta` are non-zero complex number satisfying `alpha+beta=-p` and `alpha^3+beta^3=q`, then a quadratic equation having `alpha/beta` and `beta/alpha` as its roots isA. `(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`B. `(p^(3)+q)x^(2)-(p^(3)-2q)x+(p^(3)+q)=0`C. `(p^(3)-q)x^(2)-(5p^(3)-2q)x+(p^(3)-q)=0`D. `(p^(3)-q)x^(2)(5p^(3)+2q)x+(p^(3)-q)=0`

Answer» Correct Answer - C
`(alpha)/(beta)+(beta)/(alpha)=(alpha^(2)+beta^(2))/(alpha beta)=((alpha +beta)^(2)-2 alpha beta)/(alpha beta)`……….i
and given `alpha^(3)+beta^(3)=q, alpha + beta=-p`
`implies(alpha+beta^(3)=q,alpha + beta=-p`
`=(alpha +beta)^(3)-3alpha beta(alpha +beta)=q`
`implies-p^(3)+3p alpha beta=q` ltbr or `alpha beta=(q+p^(3))/(3p)`
`:.` From eq. (i) we get
`(alpha)/(beta)+(beta)/(alpha)=(p^(2)-(2(q+p^(3)))/(3p)/(((q+p^(3)))/(3p))=(p^(3)-2q)/((q+p^(3)))`
and product of the roots `=(alpha)/(beta). (beta)/(alpha)=1`
`:.` Required equation is `x^(2)-((p^(3)-2q)/(q+p^(3)))x+q=0`
or `(q+p^(3))x^(2)-(p^(3)-2q)x+(q+p^(3))=0`
297.

Q. Let p and q real number such that `p!= 0`,`p^2!=q` and `p^2!=-q`. if `alpha` and `beta` are non-zero complex number satisfying `alpha+beta=-p` and `alpha^3+beta^3=q`, then a quadratic equation having `alpha/beta` and `beta/alpha` as its roots isA. `(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`B. `(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`C. `(p^(3)-q)x^(2)-(5p^(3)-2q)x+(p^(3)-q)=0`D. `(p^(3)-q)x^(2)-(5p^(3)+2q)x+(p^(3)-q)=0`

Answer» Correct Answer - B
Sum of roots `=(alpha^(2)+beta^(2))/(alphabeta)` and product = 1
Given, `alpha+beta=-pand alpha^(3)+beta^(3)=q`
`implies(alpha+beta)(alpha^(2)-alphabeta+beta^(2))=q`
`thereforealpha^(2)+beta^(2)-alphabeta=(-q)/(p)" "....(i)`
and `(alpha+beta)^(2)=p^(2)`
`impliesalpha^(2)+beta^(2)+2alphabeta=p^(2)" "(ii)`
From Eqs. (i) and (ii) we get
`alpha^(2)+beta^(2)=(p^(a)-2q)/(3p)and alpha beta=(p^(3)+q)/(3p)`
`therefore` Required equation is, `x^(2)((p^(3)-2q)x)/((p^(3)+q))+1=0`
`implies(p^(3)+q)x^(2)-(p^(3)-2q)x+(p^(3)+q)=0`
298.

Suppose `a ,b ,c in I`such that the greatest common divisor fo `x^2+a x+ba n dx^2b x+ci s(x+1)`and the least common ultiple of `x^2+a x+ba n dx^2+b x+c`is `(x^3-4x^2+x+6)dot`Then the value of `|a+b+c|`is equal to ___________.

Answer» Correct Answer - 6
`x^(2)+ax+b-=(x+1)(x+b)rArrb+1=a" "(1)`
also `x^(2)+bx+c-=(x+1)(x+c)rArrc+1=b`
or `b+1=c+2" "(2)`
Hence `b+1=a=c+2`
Also `(x+1)(x+b)(x+c)-=x^(3)-4x^(2)+x+6`
`rArrx^(3)+(1+b+c)x^(2)+(b+bc+c)x+bc-=x^(3)-4x^(2)+x+6`
`rArr1+b+c=-4`
`rArr 2c+2=-4`
`rArr c=-3,b=-2 and a =-1`
`rArr a+b+c=-6`
299.

If G and L are the greatest and least values of the expression `(x^(2)-x+1)/(x^(2)+x+1), x epsilon R` respectively then `G` and `L` are the roots of the equationA. `3x^(2)-10x+3=0`B. `4x^(2)-17x+4=0`C. `x^(2)-7x+10=0`D. `x^(2)-5x+6=0`

Answer» Correct Answer - Eq
300.

If `a`is the root (having the least absolute value) or the equation `x^2-b x-1=0(b in R^+)`, then prove that `-1

Answer» Let `f(x) = x^(2) - bx - 1 (b in R^(+))`
`f( -1) = b + ve`
`f(0) = - 1= - ve`
`f(1) = - b = -ve `
Clearly, one root lies in `(-1,0)` and the other in `(1,infty)` . Now , sum
of roots is b, which is positive . So .`alpha ` (having the least absolute
value) `in (-1, 0)` .