InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
Class 11 Maths MCQ Questions of Trigonometric Functions with Answers? |
|
Answer» Class 11 Maths MCQ Questions of Trigonometric Functions with Answers are prepared for college students of class 11 to assist them score better marks within the examination. the entire topic of trigonometric functions is meant by the topic experts following the newest guidelines of CBSE. The class 11 maths trigonometric functions important MCQ questions feature the step-by-step solutions for straightforward to difficult questions consistent with the understanding level of the students. These MCQ Questions can also help students to fast revision, because the students solve these important questions, they’re going to easily develop a command over the subject of trigonometric functions. Practice MCQ Questions for class 11 Maths Chapter-Wise 1. The value of cos2x + cos2 y – 2cosx × cosy × cos (x + y) is (a) sin (x + y) 2. If a×cos x + b × cos x = c, then the value of (a × sin x – b2cos x)2 is (a) a2 + b2 + c2 3. The value of cos 5π is (a) 0 4. In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals (a) none of these 5. The value of cos 180° is (a) 0 6. The perimeter of a triangle ABC is 6 times the arithmetic mean of the sines of its angles. If the side b is 2, then the angle B is (a) 30° 7. If 3 × tan(x – 15) = tan(x + 15), then the value of x is (a) 30 8. If the sides of a triangle are 13, 7, 8 the greatest angle of the triangle is (a) π/3 9. The value of tan 20 × tan 40 × tan 80 is (a) tan 30 10. The value of cos 20 + 2sin2 55 – \(\sqrt2\;sin65\) (a) 0 11. If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ ( = PR), then the angle P is (a) 2π/3 12. The value of 4 × sinx × sin(x + π/3) × sin(x + 2π/3) is (a) sin x 13. The value of (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) is (a) tan 6x 14. What is the value of cot (– 870°)? (a) \(\sqrt3\) 15. The value of cos2 48° - sin2 12° is (a) \(\frac{\sqrt{5}+1}{8}\) 16. The value of tan 20° + 2 tan 50° – tan 70° is : (a) 1 17. The value of tan 20° + 2 tan 50° – tan 70° is : (a) \(\frac{1}{\sqrt2}\) 18. If A = sin2 x + cos4x, then for all real x : (a) 13/16≤ A ≤ 1 19. The value of cos12° + cos84° + cos156° + cos 132° is (a) 1/2 20. The value of cos 420° is (a) 0 Answer: 1. Answer: (b) sin2 (x + y) Explanation: cos2x + cos2y – 2co x × cosy × cos(x + y) {since cos(x + y) = cosx x cos y – sin x × sin y } = cos2x + cos2y – 2cosx × cosy × (cosx × cosy – sinx × siny) = cos2x + cos2y – 2cos2x × cos2y + 2cosx × cosy × sinx × siny = cos2x + cos2y – cos2x × cos2y – cos2x × cos2y + 2cosx × cosy × sinx × siny = (cos2x – cos2 x × cos2 y) + (cos2y – cos2x × cos2y) + 2cosx × cosy × sinx × siny = cos2x(1- cos2y) + cos2 y(1 – cos2x) + 2cosx × cosy × sinx × siny = sin2y × cos2x + sin2x × cos2y + 2cosx × cosy × sinx × siny (since sin2x + cos2x = 1 ) = sin2x × cos2y + sin2y × cos2x + 2cosx × cosy × sinx × siny = (sinx × cosy)2 + (siny × cosx)2 + 2cosx × cosy × sinx × siny = (sinx × cosy + siny × cosx)2 = {sin (x + y)}2 = sin2 (x + y) 2. Answer: (d) a2 + b2 – c2 Explanation: a × cosx + b × sinx)2 + (a × sinx – b × cosx)2 = a2 + b2 ⇒ c2+ (a × sinx – b × cosx)2 = a2 + b2 ⇒ (a × sinx – b × cosx)2 = a2 + b2 – c2 3. Answer: (c) -1 Explanation: cos 5π = cos (π + 4π) cos ( 5 × 180° ) = cos 900° = cos ( 10 × 90° + 0° ) = - cos 0° = - 1 4. Answer: (c) 1 Explanation: Given cosec A (sin B cos C + cos B sin C) = cosecA × sin(B+C) = cosecA × sin(180 – A) = cosecA × sin A = cosecA × 1/cosec A = 1 5. Answer: (c) -1 Explanation: cos 180 = cos(90° + 90°) = -sin 90° = -1 {sin90° = 1} cos180° = -1 6. Answer: (b) 90° Explanation: Let the lengths of the sides if ∆ABC be a, b and c Perimeter of the triangle = 2s = a + b + c = 6(sinA + sinB + sinC)/3 ⇒ (sinA + sinB + sinC) = ( a + b + c)/2 ⇒ (sinA + sinB + sinC)/( a + b + c) = 1/2 From sin formula,Using sinA/a = sinB/b = sinC/c = (sinA + sinB + sinC)/(a + b + c) = 1/2 Now, sinB/b = 1/2 Given b = 2 So, sinB/2 = 1/2 ⇒ sinB = 1 ⇒ B = π/2 7. Answer: (b) 45 Explanation: Given, 3×tan(x – 15) = tan(x + 15) ⇒ tan(x + 15)/tan(x – 15) = 3/1 ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = (3 + 1)/(3 – 1) ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 4/2 ⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 2 ⇒ sin(x + 15 + x – 15)/sin(x + 15 – x + 15) = 2 ⇒ sin 2x/sin 30 = 2 ⇒ sin 2x/(1/2) = 2 ⇒ 2 × sin 2x = 2 ⇒ sin 2x = 1 ⇒ sin 2x = sin 90 ⇒ 2x = 90 ⇒ x = 45 8. Answer: (c) 2π/3 Explanation: Given, the sides of a triangle are 13, 7, 8 Since greatest side has greatest angle, Now Cos A = (b2 + c2 – a2)/2bc ⇒ Cos A = (72 + 88 – 132)/(2×7×8) ⇒ Cos A = (49 + 64 – 169)/(2×7×8) ⇒ Cos A = (113 – 169)/(2×7×8) ⇒ Cos A = -56/(2×56) ⇒ Cos A = -1/2 ⇒ Cos A = Cos 2π/3 ⇒ A = 2π/3 So, the greatest angle is = 2π/3 9. Answer: (b) tan 60 Explanation: tan20 × tan40 × tan80 = tan40 × tan80 × tan20 = [{sin40 × sin80}/{cos40 × cos80}] × (sin20/cos20) = [{2 x sin40 × sin80}/{2 × cos40 × cos80}] × (sin20/cos20) = [{cos40 – cos120}/{cos120 + cos40}] × (sin20/cos20) = [{cos40 – cos (90 + 30)}/{cos(90 + 30) + cos40}] × (sin 20/cos 20) = [{cos40 + sin30}/{-sin30 + cos40}] × (sin20/cos 20) = [{(2 × cos40 + 1)/2}/{(-1 + cos40)/2}] × (sin20/cos20) = [{2 × cos40 + 1}/{-1 + cos40}] × (sin 20/cos20) = [{2 × cos40 × sin20 + sin20}/{-cos20 + cos40 × cos20}] = (sin60 – sin20 + sin20)/(-cos20 + cos60 + cos20) = sin60/cos60 = tan 60 10. Answer: (b) 1 Explanation: Given, cos 20 + 2sin2 55 – \(\sqrt2\;sin65\) = cos20 + 1 – cos110 – \(\sqrt 2\;sin 65\) {since cos 2x = 1 – 2sin2 x} = 1 + cos20 – cos 110 – √\(\sqrt \;sin 65\) = 1 – 2 × sin {(20 + 110)/2 × sin{(20 – 110)/2} – \(\sqrt 2\;sin 65\) {Apply cos C – cos D formula} = 1 – 2 × sin65 × sin (-45) – \(\sqrt2\;sin 65\) = 1 + 2 × sin65 × sin45 – \(\sqrt 2\;sin 65\) = 1 + (2 × sin 65)/\(\sqrt2\) – \(\sqrt 2\;sin 65\) = 1 + \(\sqrt2\) ( sin 65 – √2 sin 65 = 1 11. Answer: (a) 2π/3 Explanation: In ΔPQR PQ = PR = R1 and Q = R where R1 is circumradius from sine rule: PQ/sin R = 2R1 Sin R = 1/2 R = 1/2 R = π/6 P = π−Q −R = π - 2R = 2π/3 12. Answer: (c) sin 3x Explanation: 4 × sinx × sin(x + π/3) × sin(x + 2π/3) = 4 × sinx × {sinx × cos π/3 + cosx × sin π/3} × {sinx × cos 2π/3 + cos x × sin 2π/3} = 4 × sin x × {(sin x)/2 + ((c) sin 3x cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2} = 4 × sin x × {-(sin 2x)/4 + (3 × cos 2x)/4} = sinx × {-sin 2x + 3 × cos 2x} = sinx × {-sin 2x + 3 × (1 – sin 2x)} = sinx × {-sin 2x + 3 – 3 × sin 2x} = sinx × {3 – 4 × sin 2x} = 3 × sinx – 4 sin 3x = sin 3x So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x 13. Answer: (b) 2 tan 6x Explanation: (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) ⇒ [{2 × sin(7x+5x)/2 × cos(7x-5x)/2}/{2 × cos(7x+5x)/2 × cos(7x-5x)/2}] + [{2 × sin(9x+3x)/2 × cos(9x 3x)/2}/{2 × cos(9x+3x)/2 × cos(9x-3x)/2}] ⇒ [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}] + [{2 × sin 6x × cosx}/{2 × cos6x × cosx}] ⇒ (sin 6x/cos 6x) + (sin 6x/cos 6x) ⇒ tan 6x + tan 6x ⇒ 2 tan 6x 14. Answer: (a) Explanation: cot(−870°)=−cot(2×360°+150°) =−cot150° =−cot(180°−30°) cot30° = \(\sqrt3\) 15. Answer: (a) Explanation: cos2 48°– sin2 12° = cos (48°+ 12°) cos (48° – 12°) = cos60° cos36° = \(\frac{1}{2}\times\frac{\sqrt5+1}{4}\) \(=\frac{\sqrt5+1}{8}\) 16. Answer: (b) 0 Explanation: 50°= 70° – 20° Taking “tan” on both sides, tan 50° = tan(70° – 20°) = (tan 70° – tan 20°)/(1 + tan 70° tan 20°) = (tan 70° – tan 20°)/ [1 + tan(90° – 20°) tan 20°] = (tan 70° – tan 20°)/ (1 + cot 20° tan 20°) = (tan 70° – tan 20°)/(1 + 1) 2 tan 50° = tan 70° – tan 20° 2 tan 50° + tan 20° – tan 70° = 0 17. Answer: (b) 0 Explanation: cos1°, cos2°, cos3° .............cos179° = cos1°, cos2°, cos3° .............cos90° .....cos179° = cos1°, cos2°, cos3° .............cos90° .....cos179° = 0 As [cos90°= 0] 18. Answer: (d) 3/4≤ A ≤ 1 Explanation: A = sin2x + cos2x We have cos4x ≤ cos2x sin2x = sin2x Adding sin2x + cos4x ≤ sin2x + cos2x ∴ A ≤ 1. Again A = t + (1 – t)2 = t2 – t + 1, t ≥ 0, where minimum is 3/4. Thus 3/4 ≤ A ≤ 1 . 19. Answer: (c) -1/2 Explanation: cos 12°+cos 84°+cos 156°+cos 132° = (cos 12°+cos 132°)+(cos 84°+cos 156°) = 2cos 72°cos 60°+2cos 120°cos 36° =cos 72°—cos 36° =sin18°—cos 36° =−1/2 20. Answer: (c) 1/2 Explanation: cos(360°+A) = cos(A) 420° = 360°+ 60° cos (420°) = cos(60°) = 1/2 Click here to practice MCQ Questions for Trigonometric Functions class 11 |
|
| 202. |
Which of the following equations have solutions ?2 sinθ = 3 |
|
Answer» 2 sin θ = 3 ∴ sin θ = \(\cfrac{3}{2}\) This is not possible because -1 ≤ sin θ ≤ 1 for any θ. ∴ 2 sin θ = 3 does not have any solution. |
|
| 203. |
Define general solution of trigonometric equation. |
|
Answer» The expression involving integer ‘n’ which gives all solutions of a trigonometric equation is called the general solution. |
|
| 204. |
Define trigonometric equations. |
|
Answer» Equations involving trigonometric functions of a variable are called trigonometric equations. |
|
| 205. |
Find the principal solutions of the following equation:sinθ = 1/2 |
|
Answer» The general solution of sin θ = sin \(\propto\) is θ = nπ + (-1 )n \(\propto\), n ∈ Z Now, sinθ = \(\cfrac{1}{2}\) = sin \(\cfrac{\pi}{6}\).....[∵ sin\(\cfrac{\pi}{6}\) = \(\cfrac{1}{2}\)] ∴ the required general solution is θ = nπ + (-1)n \(\cfrac{\pi}{6}\), n ∈ Z. |
|
| 206. |
Prove the following identities(secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2 = 1 |
|
Answer» LHS = (secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2 = [(secx sec y)2 + (tanx tan y)2 + 2 (secx sec y) (tanx tan y)] – [(secx tan y)2 + (tanx sec y)2 + 2 (secx tan y) (tanx sec y)] = [sec2x sec2 y + tan2x tan2 y + 2 (secx sec y) (tanx tan y)] – [sec2x tan2 y + tan2x sec2 y + 2 (sec2x tan2 y) (tanx sec y)] = sec2x sec2 y - sec2x tan2y + tan2x tan2y - tan2x sec2 y = sec2x (sec2y - tan2y) + tan2x (tan2y - sec2y) = sec2x (sec2y - tan2y) - tan2x (sec2y - tan2y) We know that sec2x – tan2x = 1. = sec2x × 1 – tan2x × 1 sec2x – tan2x = 1 = RHS Hence proved. |
|
| 207. |
If any ∆ABC, if a cos B = b cos A, then the triangle is ________. (a) Equilateral triangle (b) Isosceles triangle (c) Scalene (d) Right angled |
|
Answer» Correct option is: (b) Isosceles triangle |
|
| 208. |
Define principal solutions of trigonometric equations. |
|
Answer» The solutions of a trigonometric equation for which 0 ≤ x ≤ 2π are called principal solutions. |
|
| 209. |
cos[tan-1 1/3 + tan-1 1/2 ] = ________.(a) 1/√2(b) √3/2(c) 1/2(d) π/4 |
|
Answer» Correct option is: (a) 1/√2 |
|
| 210. |
Prove the following identities(1 + tan α tan β)2 + (tan α – tan β)2 = sec2α sec2β |
|
Answer» LHS = (1 + tan α tan β)2 + (tan α – tan β)2 = 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β = 1 + tan2 α tan2 β + tan2 α + tan2 β = tan2 α (tan2 β + 1) + 1 (1 + tan2 β) = (1 + tan2 β) (1 + tan2 α) We know that 1 + tan2 θ = sec2 θ = sec2 α sec2 β = RHS Hence proved. |
|
| 211. |
If cot α = \(\frac{1}{2}\),sec β = \(\frac{-5}{3}\),where π < α < \(\frac{3\pi}{2}\) and \(\frac{\pi}{2}\) < β < π. Find value of tan (α + β). |
|
Answer» Given, sec β = \(\frac{-5}{3}\) sec2β = \(\frac{25}{9}\) tan2β = \(\frac{25}{9}\)-1 = \(\frac{16}{9}\) tan β = ±\(\frac{4}{3}\) tan β = \(\frac{-4}{3}\) (\(\frac{\pi}{2}\)< β < π) And, cot α = \(\frac{1}{2}\) ∴ tan α = 2, (∵ \(\frac{\pi}{2}\)< α <\(\frac{3\pi}{2}\)) Now, tan (α + β) = \(\frac{tanα+tanβ}{1-tanα\,tanβ}\) \(= \frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}\) = \(\frac{6-4}{3+8}\) = \(\frac{2}{11}\) |
|
| 212. |
Prove that: sin 5x = 5 sin x – 20 sin3 x + 16 sin5 x |
|
Answer» Let us consider the LHS sin 5x Then, sin 5x = sin(3x + 2x) But as we know, Sin(x + y) = sin x cos y + cos x sin y…..(i) Therefore, = sin(2x + x) cos 2x + cos (2x + x) sin 2x……..(ii) And cos(x + y) = cos x cos y – sin x sin y……(iii) Then, substituting equation (i) and (iii) in equation (ii), we get sin 5x = (sin 2x cos x + cos 2x sin x) cos 2x + (cos 2x cos x – sin 2x sin x) sin 2x = sin 2x cos 2x cos x + cos2 2x sin x + (sin 2x cos 2x cos x – sin2 2x sin x) = 2sin 2x cos 2x cos x + cos2 2x sin x – sin2 2x sin x …….(iv) Then sin 2x = 2sin x cos x………(v) And cos 2x = cos2x – sin2x………(vi) By substituting equation (v) and (vi) in equation (iv), we get sin 5x = 2(2sin x cos x) (cos2x – sin2x) cos x + (cos2x – sin2x)2 sin x – (2sin x cos x)2 sin x = 4(sin x cos2 x) ([1 – sin2x] – sin2x) + ([1 – sin2x] – sin2x)2 sin x – (4sin2 x cos2 x)sin x (as cos2x + sin2x = 1 ⇒ cos2x = 1 – sin2x) sin 5x = 4(sin x [1 – sin2x]) (1 – 2sin2x) + (1 – 2sin2x)2 sin x – 4sin3 x [1 – sin2x] = 4sin x (1 – sin2x) (1 – 2sin2 x) + (1 – 4sin2x + 4sin4x) sin x – 4sin3 x + 4sin5x = (4sin x – 4sin3x) (1 – 2sin2x) + sin x – 4sin3x + 4sin5x – 4sin3 x + 4sin5x = 4sin x – 8sin3x – 4sin3x + 8sin5x + sin x – 8sin3x + 8sin5x = 5sin x – 20sin3x + 16sin5x = RHS Thus proved. |
|
| 213. |
The principal of solutions equation sin θ = are ________.a. \(\cfrac{5\pi}{6}\),\(\cfrac{\pi}{6}\)b. \(\cfrac{7\pi}{6}\),\(\cfrac{11\pi}{6}\)c. \(\cfrac{\pi}{6}\), \(\cfrac{7\pi}{6}\)d. \(\cfrac{7\pi}{6}\), \(\cfrac{\pi}{3}\) |
|
Answer» Correct option is: b. \(\cfrac{7\pi}{6}\),\(\cfrac{11\pi}{6}\) |
|
| 214. |
Find the value of cosec (-750°) |
|
Answer» To find: Value of cosec (-750°) We have, cosec (-750°) = - cosec(750°) [∵ cosec(-θ) = -cosec θ] = - cosec [90° × 8 + 30°] Clearly, 405° is in Ist Quadrant and the multiple of 90° is even = - cosec 30° = -2 [∵ cosec 30° = 2] |
|
| 215. |
What is the maximum value of 3 – 7 cos 5x? |
|
Answer» For maximum value of 3 – 7 cos 5x, cos 5x must be minimum so minimum value is – 1 and hence maximum value = 3 – 7 (– 1) = 3 + 7 = 10 |
|
| 216. |
Write the general solution of sin \((x+\frac{\pi}{12})\) = 0 |
|
Answer» We know that, general solution of \(sinx=0\) is \(x=n\pi\) ∴ \(sin(x+\frac{\pi}{12})=0\) ⇒ \(x+\frac{\pi}{12}=n\pi\) ⇒ \(x=n\pi-\frac{\pi}{12}\) |
|
| 217. |
Express sin 12θ + sin 4θ as the product of sines and cosines. |
|
Answer» Given, \(sin12θ+sin4θ\) = \(2sin(\frac{12θ+4θ}{2})cos(\frac{12θ-4θ}{2})\) = \(sin8θcos4θ\) [Using the formulae \(sinC+sinD\) \(=2sin(\frac{C+D}{2})cos(\frac{C-D}{2})\)] |
|
| 218. |
Express 2 cos 4x sin 2x as an algebraic sum of sines and cosines. |
|
Answer» Using, 2 cos A sin B = sin (A + B) – sin (A – B) We get 2 cos 4x sin 2x = sin (4x + 2x) – sin (4x - 2x) = sin 6x – sin 2x |
|
| 219. |
Express each of the following as an algebraic sum of sines or cosines :(i) 2sin 6x cos 4x(ii) 2cos 5x din 3x(iii) 2cos 7x cos 3x(iv) 2sin 8x sin 2x |
|
Answer» (i) 2sin 6x cos 4x = sin (6x+4x) + sin (6x-4x) = sin 10x + sin 2x Using, 2sinAcosB = sin (A+ B) + sin (A - B) (ii) 2cos 5x sin3x = sin (5x + 3x) – sin (5x – 3x) = sin8x – sin2x Using, 2cosAsinB = sin(A + B) – sin (A - B) (iii) 2cos7xcos3x = cos (7x+3x) + cos (7x – 3x) = cos10x + cos 4x Using, 2cosAcosB = cos (A+ B) + cos (A - B) (iv) 2sin8 x sin2 x = cos (8x - 2x) – cos (8x + 2x) = cos6x – cos10x Using, 2sinAsinB = cos (A - B) – cos (A+ B) |
|
| 220. |
If sinx = √5/3 and 0 < x < π/2, find the values of cos 2x |
|
Answer» Given: sinx = \(\frac{\sqrt{5}}{3}\) To find: cos2x We know that, cos2x = 1 – 2sin2x Putting the value, we get cos2x = 1 - 2\((\frac{\sqrt{5}}{3})^{2}\) cos2x = 1 - 2 x \(\frac{5}{9}\) cos2x = 1 - \(\frac{10}{9}\) cos2x = \(\frac{9\,-\,10}{9}\) ∴ cos2x = -\(\frac{1}{9}\) |
|
| 221. |
Prove that(i) sin80° cos20° - cos80° sin20° = √3/2(ii) cos45° cos15° - sin45° sin15° = 1/2(iii) cos75° cos15° + sin75° sin15° = 1/2(iv) sin40° cos20° + cos40° sin20° = √3/2(v) cos130° cos40° + sin130° sin40° = 0 |
|
Answer» (i) sin80°cos20° - cos80°sin20° = sin(80° - 20°) (using sin(A - B) = sinAcosB - cosAsinB) = sin60° = \(\frac{\sqrt{3}}2{}\) (ii) cos45°cos15° - sin45°sin15° = cos(45° + 15°) (Using cos(A + B) = cosAcosB - sinAsinB) = cos60° = \(\frac{1}{2}\) (iii) cos75°cos15° + sin75°sin15° = cos(75° - 15°) (using cos(A - B) = cosAcosB + sinAsinB) = cos60° = \(\frac{1}{2}\) (iv) sin40°cos20° + cos40°sin20° = sin(40° + 20°) (using sin(A + B) = sinAcosB + cosAsinB) = sin60° (v) cos130°cos40° + sin130°sin40° = cos(130° - 40°) (using cos(A - B) = cosAcosB + sinAsinB) = cos90° = 0 |
|
| 222. |
cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ) is equal toA. sin 2(θ + ϕ)B. cos 2(θ + ϕ)C. sin 2(θ–ϕ)D. cos 2(θ–ϕ)[Hint: Use sin2A – sin2B = sin (A + B) sin (A – B)] |
|
Answer» B. cos 2(θ + ϕ) Given that, cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ) = cos 2θ cos 2ϕ + sin(θ–ϕ+ θ + ϕ)sin(θ–ϕ- θ – ϕ) [∵sin2A – sin2B = sin (A + B) sin (A – B)] = cos 2θ cos 2ϕ + sin 2θ. sin(- 2ϕ) = cos 2θ cos 2ϕ - sin 2θ. Sin 2ϕ [∵ sin(-θ) = -sin θ] = cos 2(θ + ϕ) [∵ cos x cos y – sin x sin y = cos(x + y)] |
|
| 223. |
Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15°. |
|
Answer» Let s be the length of the arc subtending an angle θc at the center of a circle of radius r. Then, θ = \(\frac{s}{r}\) Here, r = 5 and θ = 15° = \((15\times\frac{\pi}{180})^c\) = \((\frac{\pi}{12})^c\) θ = \(\frac{s}{r}\) ⇒ \(\frac{\pi}{12}=\frac{s}{5}\) ⇒ s = \(\frac{5\pi}{12}\) cm |
|
| 224. |
If A + B + C = π, then \(\frac{tanA +tanB+tanC}{tanA\,tanB\,tanC}\) is equal toA. tan A tan B tan C B. 0 C. 1 D. None of these |
|
Answer» A + B = π - C \(\frac {tanA+tanB}{1-tanAtanB}\) = - tan C tan A + tan B + tan C = tanA tanB tanC \(\frac{tanA +tanB+tanC}{tanA\,tanB\,tanC}\) = 1 |
|
| 225. |
If cos p = \(\frac{1}7\) and cos Q = \(\frac{13}{14}\),where P and Q both are acute angles. Then, the value of P – Q isA. \(\frac{π}6\)B. \(\frac{π}3\)C. \(\frac{π}4\)D.\(\frac{5π}{12}\) |
|
Answer» cos p = \(\frac{1}7\),sin P = \(\frac{\sqrt{48}}7\) cos Q = \(\frac{13}{14}\),sin Q = \(\frac{\sqrt{27}}{14}\) Cos(p-q) = cos(p)cos(q) + sin(p)sin(q) cos P -Q = \(\frac{1}2\) P - Q = \(\frac{π}3\) |
|
| 226. |
If cot (α + β) = 0, then sin (α + 2 β) is equal to A. sin α B. cos 2 β C. cos α D. sin 2 α |
|
Answer» cot (α + β) = 0 (α + β) = \(\frac{π}2\) sin (α + 2 β)= sin (α +β) cos(β) + sin(β) cos (α +β) put (α + β) = \(\frac{π}2\) sin (α + 2 β) = cos(β) |
|