InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
Express the angular measurement of the angle of a regular decagon in degrees, grades and radians. |
|
Answer» We know that the angle of an n sided regular Polygon is equal to \((\frac{2n-4}{n})\) right angles. Let θ be the angle of a regular decagon. Then, \(θ=(\frac{2\times10-4}{10})=\frac{8}{5}\) right angles \(\therefore θ=(\frac{8}{5}\times90)^°=144^°\) [∴ 1 right angle = 90°] Also, \(\thereforeθ=(\frac{8}{5}\times100)=160^g\) [∴ 1 right angle = 100g ] And \(θ=(\frac{8}{5}\times\frac{\pi}{2})^c=(\frac{4\pi}{2})^c\) [∴ 1 right angle = \((\frac{\pi}{2})^c\) ] |
|
| 102. |
Write the radian measure of 5° 37’30”. |
|
Answer» We know that, 60” = 1’ ⇒ 30” = \(\frac{30}{60}\) = 0.5′ Now, we have 5° 37’30” = 5° 37.5’ We know that, 60’ = 1° ⇒ 37.5’ = \(\frac{37.5}{60}\) = 0.625 Now, we have 5° 37.55’ = 5.625° We know that 180° = π radian ⇒ 5.625° = 0.03125π radian. |
|
| 103. |
What is the radian measure of – 37°30’? |
|
Answer» – 37° 30’ = – 37.5° [∵ 1° = 60′ ⇒ 0.5° = 30′] Now, \(-37.5^°=-(37.5\times\frac{\pi}{180})\) radian [∴ \(1^°=\frac{\pi}{180}\) radian ] = − ( \(\frac{375}{1800}\times\pi\)) radian = − \(\frac{5\pi}{24}\) radian |
|
| 104. |
What is the value of sin(– 1125°)? |
|
Answer» sin (– 1125°) = – sin(1125°) = – sin (3 × 360° + 45°) = – sin 45° = − \(\frac{1}{\sqrt{2}}\) |
|
| 105. |
The value of tan 3A – tan 2A – tan A is equal to(A) tan 3A tan 2A tan A(B) – tan 3A tan 2A tan A(C) tan A tan 2A – tan 2A tan 3A – tan 3A tan A(D) None of these |
|
Answer» Answer is (A) 3A= A+ 2A => tan 3A = tan (A + 2A) => tan 3 A = (tanA + tan2A)/( 1 – tan A . tan 2A) => tan A + tan 2A = tan 3A – tan 3A• tan 2A . tan A => tan 3 A – tan 2A – tan A = tan 3A . tan 2A . tan A |
|
| 106. |
Prove that cot x cot2x – cot2x cot3x – cot3x cotx = 1. |
|
Answer» Consider cot 3x = cot(2x + x) = (cos2xcotx - 1)/(cot2x + cotx) ⇒ cot 3x(cot 2x+cot x) – cot 2x cot x -1 ⇒ 1 = cot 2x cot x – cot 3x cot 2x – cot 3x cot x |
|
| 107. |
If sin-1 4/5 + cos-1 12/13 = sin-1 ∝, then ∝ = ______.(a) 63/65(b) 62/65(c) 61/65(d) 60/65 |
|
Answer» Correct option is: (a) 63/65 |
|
| 108. |
If A = 2 sin2 x – cos 2x, then A lies in the intervalA. [-1, 3]B. [1, 2]C. [-2, 4]D. None of these |
|
Answer» Correct answer is A. Given A = 2 sin2 x – cos 2x [using cos 2x = 1 – 2 sin2 x] so A = 2 sin2 x – cos 2x = 2 sin2 x –[ 1 – 2 sin2 x] = 2 sin2 x -1 + 2 sin2 x] = 4 sin2 x – 1 Now A = 2 sin2 x – cos 2x = 4 sin2 x – 1 As we know sin x lies between -1 and 1 -1 ≤ sin x ≤ 1 0 ≤ sin2x ≤ 1 Multiplying the inequality by 4 0 ≤ 4 sin2 x ≤ 4 Subtracting 1 from the inequality -1 ≤ (4 sin2 x – 1) ≤ 3 From the above inequation, we can say that A = (4 sin2 x – 1) belongs to the closed interval [-1, 3] |
|
| 109. |
If tan x + sec x = √3, 0 < x < π, then x is equal toA. \(\cfrac{5\pi}6\)B. \(\cfrac{2\pi}3\)C. \(\cfrac{\pi}6\)D.\(\cfrac{\pi}3\) |
|
Answer» Correct option is C. \(\cfrac{\pi}6\) Given: tan x + sec x = √3 squaring on both sides (tan x + sec x)2 = √32 tan2x+sec2x + 2 tan x sec x = 3 Also, sec2x - tan2x = 1 tan2x + 1+ tan2x+ 2tan x sec x = 3 2tan2x + 2tan x sec x = 3 - 1 tan2x + tan x sec x = 2/2 tan2x + tan x sec x = 1 tan x sec x = 1 - tan2x again, squaring on both sides tan2x sec2x = 1 + tan4x - 2 tan2 x (1+ tan2x) tan2x = 1 + tan4x - 2 tan2x Tan4x + tan2x = 1 + tan4x - 2 tan2x 3 tan2x = 1 tan x = 1/√3 x = π/6. |
|
| 110. |
Find the angle in radius between the hands of a clock at 7: 20 p. m. |
|
Answer» We know that the hour hand completes one rotation in 12 hours while the minute hand completes one rotational in 60 minutes. ∴ Angle traced by the hour hand in 7 hours 20 minutes i.e., \(\frac{22}{3}\) Hours \(= (\frac{360}{12}\times\frac{22}{3})\)° = 220° Also, the angle traced by the minute hand in 60 minutes = 360° ⇒ The angle traced by the minute hand in 20 minutes = \( (\frac{360}{60}\times20)\)= 120° Hence, the required angle between two hands = 220° - 120° = 100° |
|
| 111. |
Write the minimum value of cos(cos x) |
|
Answer» The maximum and minimum value of cos x is 1 or – 1. Hence, cos (cos x) has minimum value at x = 0° i. e., cos (cos 0°) = cos (1) = cos 1 |
|
| 112. |
One value of θ which satisfies the equation sin4 θ – 2sin2 θ – 1 lies between 0 and 2π. |
|
Answer» Answer is False |
|
| 113. |
If sin θ + cos θ = 1, then the value of sin 2θ is equal to(A) 1 (B)1/2 (C) 0 (D) –1 |
|
Answer» Answer is (C) Given, sin θ + cos θ = 1 Sq. both side (sin θ + cos θ)2 = 12 sin2 θ + cos2 θ + 2sin θ .cos θ = 1 1 + 2sin θ .cos θ = 1 2sin θ .cos θ = 1 -1 = 0 sin 2θ = 0 (sin 2θ = 2sin θ .cos θ ) |
|
| 114. |
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A. |
|
Answer» sin 4A = sin (2A + 2A) We know that, sin(A + B) = sin A cos B + cos A sin B Therefore, sin 4A = sin 2A cos 2A + cos 2A sin 2A ⇒ sin 4A = 2 sin 2A cos 2A From T-ratios of multiple angle, We get, sin 2A = 2 sin A cos A and cos 2A = cos2A – sin2A ⇒ sin 4A = 2(2 sin A cos A)(cos2A – sin2A) ⇒ sin 4A = 4 sin A cos3A – 4 cos A sin3A Hence, sin 4A = 4 sin A cos3A – 4 cos A sin3A |
|
| 115. |
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A. |
|
Answer» L.H.S. = sin 4A = 2 sin 2A- cos 2A = 2(2 sin A cosA)(cos2 A – sin2 A) = 4 sin A • cos3 A – 4 cos A sin3 A = R.H.S. |
|
| 116. |
Prove that sin(π/2 - x) = cosx |
|
Answer» sin(π/2 - x) = cos[π/2 - (π/2 - x)] ∵ cos(π/2 - x) = sinx = cosx |
|
| 117. |
Prove that :cos 570° sin 510°+ sin (-330°) cos (-390°) = 0 |
|
Answer» LHS = cos 570° sin 510°+ sin (-330°) cos (-390°) We know that sin (-x) = -sin (x) and cos (-x) = +cos (x). = cos 570° sin 510°+ [sin (-330°)] cos (-390°) = cos 570° sin 510° - sin (-330°) cos (-390°) = cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°) We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin. = -cos 30° cos 60° - [-cos 60°] cos 30° = -cos 30° cos 60° + cos 60° cos 30° = 0 = RHS Hence proved. |
|
| 118. |
Prove that :tan (-225°) cot (-405° ) – tan (-765° ) cot (675° ) = 0 |
|
Answer» LHS = tan (-225°) cot (-405°) – tan (-765°) cot (675°) We know that tan (-x) = -tan (x) and cot (-x) = -cot (x). = [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°) = tan (225°) cot (405°) + tan (765°) cot (675°) = tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) = tan 45° cot 45° + tan 45° [-tan 45°] = 1 × 1 + 1 × (-1) = 1 – 1 = 0 = RHS Hence proved. |
|
| 119. |
Prove that cos 510° cos 330° + sin 390° cos 120° = -1. |
|
Answer» The vales must be following: Cos 510° = cos (90° × 5 + 60° = - sin 60°) = \(\frac{-\sqrt 3}{2}\) Cos 330° = cos (90° × 3 + 60° = sin 60°) = sin 60° = \(\frac{-\sqrt 3}{2}\) Sin 390° = sin (90° × 4 + 30°) = sin 30° = \(\frac{1}{2}\) Cos 120° = cos (90° × 1 + 30°) = – sin 30° = \(\frac{-1}{2}\) Now, L.H.S = cos 510° cos 330° + sin 390° cos 120° = \((\frac{-\sqrt 2}{2})\)\((\frac{\sqrt 3}{2})\)+\((\frac{1}{2})\)\((\frac{-1}{2})\) = \((\frac{-3}{4})+(\frac{-1}{4})\) = \((\frac{-3}{4}+\frac{-1}{4})\) = − 1 = R. H. S |
|
| 120. |
In any ΔABC, prove thatasin(B - C) + bsin(C – A) + csin(A - B) = 0 |
|
Answer» LHS = ksinAsin(B - C) + ksinBsin(C – A) + ksinCsin(A – B) = k[sin(B + C)sin(B – C)+sin(C + A)sin(C – A) + sin(A + B) sin(A – B)] = K[sin2B – sin2C + sin2 C -sin2A + sin2A – sin2B] = k x 0 =0 = RHS. |
|
| 121. |
Which of the following is correct?(A) sin1° > sin 1 (B) sin 1° < sin 1(C) sin 1° = sin 1 (D) sin 1° = (π/18°)sin 1 |
|
Answer» Answer is (B) We know that, in first quadrant if θ is increasing, then sin θ is also increasing. ∴sin 1° < sin 1 [∵ 1 radian = 57◦30′] |
|
| 122. |
If tan θ = 1/2 and tan φ = 1/3 , then the value of θ + φ is(A) π/6(B) π(C) 0(D) π/4 |
|
Answer» Answer is (D) π/4 |
|
| 123. |
The minimum value of 3 cosx + 4 sinx + 8 is(A) 5 (B) 9 (C) 7 (D) 3 |
|
Answer» Answer is (D) 3 cos x + 4sin x + 8 = 5 (3/5 cos x + 4/5sin x) + 8 = 5(sin α cos x + cos α sin x) + 8 = 5 sin(α + x) + 8, where tan α = 3/4 |
|
| 124. |
If for real values of x, cos θ =x + 1/x, then (A) θ is an acute angle (B) θ is right angle(C) θ is an obtuse angle (D) No value of θ is possible |
|
Answer» Answer is (D) No value of θ is possible |
|
| 125. |
Find the minimum value of p for which cos (p sin x) = sin (p cos x) has solution in [0, 2π]. |
|
Answer» Given, cos (p sinx) = sin (p cosx) ⇒ sin (\(\frac{\pi}{2}\)− p sinx ) = sin (p cosx) ⇒ \(\frac{\pi}{2}\) − p sinx = πcosx ⇒ p (sinx + cosx) = \(\frac{\pi}{2}\) ⇒ \(\sqrt{2 }\) p (sinx \(\frac{1}{\sqrt{2}}\) + cosx \(\frac{1}{\sqrt{2}}\) ) =\(\frac{\pi}{2}\) ⇒ \(\sqrt{2 }\) p [sinx cos\(\frac{\pi}{4 }\)+ cosx sin \(\frac{\pi}{4 }\) ] = \(\frac{\pi}{2}\) ⇒ \(\sqrt{2 }\) p [sin (x + \(\frac{\pi}{4 }\) )] = \(\frac{\pi}{2}\) ⇒ sin (x + \(\frac{\pi}{4 }\)) = \(\frac{\pi}{2\sqrt{2}p}\) = \(\frac{\pi}{(2)\frac{1}{2^p}}\) Since, sine lies between – 1 and 1 Therefore, − 1 ≤ \(\frac{\pi}{(2)\frac{1}{2^p}}\) ≤ 1 Hence, the minimum value of p is \(\frac{\pi}{(2)\frac{1}{2}}\) [∴ Positive value of p is to taken] |
|
| 126. |
Find the range of 5 cosx – 12 sinx + 7. |
|
Answer» Given, 5 cosx – 12 sinx + 7 = 13 (\(\frac{5}{13}cosx - \frac{12}{13}sinx\)) + 7 Using formula, sin (A + B) = sin A cos B + cos A sin B Suppose, sin A = \(\frac{5}{13}\) and cos A = \(\frac{12}{13}\) = 13 (sin A cosx – cos A sinx) + 7 = 13 sin (A – x) + 7 We know the range of sin x is [– 1, 1] so, the range of 13 sin (A – x) + 7 is [– 1 × 13 + 7, 1 × 13 + 7] = [– 6, 20] |
|
| 127. |
Show that sin 100° – sin 10° is positive. |
|
Answer» Suppose f(x) = sin 100° – sin 10° On dividing and multiplying by √(12 + 12) i.e. by √2, f(x) = √2(1/√2 sin 100° – 1/√2 sin 10°) f(x) = √2(cos π/4 sin (90 + 10)° – sin π/4 sin 10°) (since, 1/√2 = cos π/4 and 1/√2 = sin π/4) f(x) = √2(cos π/4 cos 10° – sin π/4 sin 10°) As we know that cos A cos B – sin A sin B = cos (A + B) f(x) = √2 cos (π/4 + 10°) |
|
| 128. |
Prove that (2√3 + 3) sin x + 2√3 cos x lies between – (2√3 + √15) and (2√3 + √15). |
|
Answer» Suppose f(x) = (2√3 + 3)sin x + 2√3 cos x Here, A = 2√3, B = 2√3 + 3 and C = 0 – √[(2√3)2 + (2√3 + 3)2] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[(2√3)2 + (2√3 + 3)2] – √[33 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[33 + 12√3] – √[15 + 12 + 6 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[15 + 12 + 6 + 12√3] As we know that (12√3 + 6 < 12√5) because the value of √5 – √3 is more than 0.5 Therefore, if we replace, (12√3 + 6 with 12√5) the above inequality still holds. Therefore by rearranging the above expression √(15+12+12√5)we get, 2√3 + √15 – 2√3 + √15 ≤ (2√3 + 3) sin x + 2√3 cos x ≤ 2√3 + √15 Thus proved. |
|
| 129. |
Which of the following is correct? A. sin 1°> sin 1 B. sin 1°< sin 1 C. sin 1° = sin 1 D. sin 1° = π/18° sin 1[Hint: 1 radian = 180°/π = 57°30’ approx.] |
|
Answer» B. sin 1°< sin 1 We know that, 1 radian = 180°/π = 57°30’ approx. 57° lies between 0 and 90 degrees and since in first quadrant sin θ increases when θ increases. ⇒ sin 1°< sin 1 |
|
| 130. |
Solve: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\) |
|
Answer» We have: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\) Dividing both sides by 2, we get \(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ =\frac{\sqrt{2}}{2}\) ⇒ \(cosθ.cos\frac{\pi}{6}+sinv.sin\frac{\pi}{6}=\frac{1}{\sqrt{2}}\) ⇒ \(cos(θ-\frac{\pi}{6})=cos\frac{\pi}{4}\) ⇒ \(θ-\frac{\pi}{6}=2n\pi +\frac{\pi}{4},n∈z\) ⇒ \(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6} n∈z\) ⇒ \(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6}\) or \(θ=2n\pi -\frac{\pi}{4}+\frac{\pi}{6},n∈z\) ⇒ \(θ=2n\pi +\frac{5\pi}{12}\) or \(θ=2n\pi -\frac{\pi}{12},n∈z\) |
|
| 131. |
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2. |
|
Answer» Given, a cos θ + b sin θ = m …(1) a sin θ – b cos θ = n …(2) Squaring and adding equation 1 and 2, we get – (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2 ⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2 ⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2 ⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2 Using: sin2θ + cos2θ = 1, we get – ⇒ a2 + b2 = m2 + n2 |
|
| 132. |
The value of 2 sin 5π/12 cos π/12 will be:(A) 1(B) √3/2(C) √3/2 - 1(D) √3/2 + 1 |
|
Answer» Answer is (D) √3/2 + 1 2 sin 5π/12 cos π/12 = 2 sin 75° cos 15° = 2 sin (90° – 15°) cos 15° = 2 cos 15° cos 15° = 2 cos2 15° = cos2 × 15° + 1 = cos 30° + 1 = √3/2 + 1 |
|
| 133. |
If cos θ = 1/2 then value of θ will be:(A) 2π/3(B) π/3(C) –2π/3(D) 3π/4 |
|
Answer» Answer is (A) 2π/3 |
|
| 134. |
Prove that cos(π/4 + x) + cos(π/4 - x) = √2cosx |
|
Answer» LHS = cos(π/4)cosx - sin(π/4)sinx + cos(π/4)cosx + sin(π/4)sinx = 2cos(π/4)cosx = 2(1/√2)cosx = √2cosx = RHS |
|
| 135. |
Find the value of \(\sqrt{3}\) cosec 20° − sec 20° |
|
Answer» We have \(\sqrt{3}\) cosec 20° − sec 20° = \(\frac{\sqrt{3}}{sin20°}-\frac{1}{cos20°}\) = \(\frac{\sqrt{3}\space cos20°-sin20°}{sin20°cos20°}\) = 4 \(\bigg(\frac{\frac{\sqrt{3}}{2}cos20°-\frac{1}{2}sin20°}{2sin20°cos20°}\bigg)\) = 4 \(\bigg(\frac{sin60°cos20°-cos60°sin20°}{sin40°}\bigg)\) = 4 \(\bigg(\frac{sin(60°-20)}{sin40°}\bigg)\) = 4 |
|
| 136. |
What is the meaning of trigonometry? |
|
Answer» The literal meaning of the word trigonometry is the science of measuring the sides and the angles of triangles. |
|
| 137. |
Find the values of the following trigonometric ratios: sin 17 π |
|
Answer» Given sin 17π ⇒ sin 17π = sin 3060° ⇒ 3060° = 90° × 34 + 0° 3060° is in negative direction of x - axis i.e. on boundary line of II and III quadrants. ∴ sin (3060°)= sin(90° × 34 + 0°) = -sin 0° = 0 |
|
| 138. |
Find the values of the following trigonometric ratios:cosec (-\(\cfrac{20\pi}3\)) |
|
Answer» Given cosec (-\(\cfrac{20\pi}3\)) ⇒ cosec (-\(\cfrac{20\pi}3\)) = cosec(-1200°) ⇒ cosec (-1200°) = cosec (1200°) = cosec (90° × 13 + 30) 1200° lies in second quadrant in which cosec function is positive. ∴ cosec (-1200°) = -cosec (90° × 13 + 30°) = -sec 30° = \(-\cfrac{2}{\sqrt3}\) |
|
| 139. |
Find the values of the following trigonometric ratios:tan(\(-\cfrac{13\pi}4\)) |
|
Answer» Given tan(\(-\cfrac{13\pi}4\)) ⇒ tan \(-\cfrac{13\pi}4\) = tan -585° ⇒ -tan 585° = -tan (90° × 6 + 45°) 585° lies in the third quadrant in which the tangent function is positive. ∴ tan (-585)° = -tan (90° × 6 + 45°) = - (tan 45°) = -1 |
|
| 140. |
Find the values of the following trigonometric ratios:sin(\(\cfrac{41\pi}4\)) |
|
Answer» Given sin(\(\cfrac{41\pi}4\)) ⇒ sin(\(\cfrac{41\pi}4\)) = sin 1845° ⇒ sin 1845° = 90° × 20 + 45° 1845° lies in the first quadrant in which the sine function is positive. ∴ sin 1845° = sin (90° × 20 + 45°) = sin 45° = \(\cfrac1{\sqrt2}\) |
|
| 141. |
Find the value of tan(19π/3) |
|
Answer» tan(19π/3) = tan(6π + π/3) = tan(π/3) = √3 |
|
| 142. |
Find the values of the following trigonometric ratios:cos \(\cfrac{19\pi}4\) |
|
Answer» Given cos \(\cfrac{19\pi}4\) ⇒ cos \(\cfrac{19\pi}4\) = cos 855° ⇒ 855° = 90° × 9 + 45° 855° lies in the second quadrant in which the cosine function is negative. ∴ cos 855° = cos (90° × 9 + 45°) = -sin 45° = \(\cfrac{-1}{\sqrt2}\) |
|
| 143. |
Find the values of the following trigonometric ratios:cos \(\cfrac{19\pi}6\) |
|
Answer» Given cos \(\cfrac{19\pi}6\) ⇒ cos \(\cfrac{19\pi}6\) = cos 570° ⇒ 570° = (90° × 6 + 30°) 570° lies in third quadrant in which cosine function is negative. ∴ cos (570°) = cos (90° × 6 + 30°) = -cos (30°) = \(-\cfrac{\sqrt3}2\) |
|
| 144. |
Find the value of sin 405° |
|
Answer» To find: Value of sin 405° We have, sin 405° = sin [90° × 4 + 45°] = sin 45° [Clearly, 405° is in Ist Quadrant and the multiple of 90° is even] = \(\frac{1}{\sqrt{2}}\) [∵ sin45° = \(\frac{1}{\sqrt{2}}\)] |
|
| 145. |
Find the value of sin 765°. |
|
Answer» sin765° = sin(720° + 45°) = sin45° = 1/√2 |
|
| 146. |
Find the value of sin 765° |
|
Answer» we know that values of sin x repeats after an interval of 2π So, sin (765°) = sin (720° + 45°) = sin (2 x 360° + 45°) = sin 45° (∵ After repetition it will comes in 1st quardrant) = 1/√2 Hence, sin 765° = 1/√2 |
|
| 147. |
If secx = 13/5, x lies in fourth quadrant, find the values of other five trigonometric functions. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Answer»
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 148. |
Which trigonometric function is positive in third quadrant:(A) sin θ(B) tan θ(C) cos θ(D) sec θ |
|
Answer» Answer is (B) tan θ |
|
| 149. |
Evaluate the following:(i) sin 78° cos 18° – cos 78° sin 18° (ii) cos 47° cos 13° – sin 47° sin 13°(iii) sin 36° cos 9° + cos 36° sin 9° (iv) cos 80° cos 20° + sin 80° sin 20° |
|
Answer» (i) As we know that sin (A – B) = sin A cos B – cos A sin B sin 78° cos 18° – cos 78° sin 18° = sin(78 – 18)° = sin 60° = √3/2 (ii) As we know that cos A cos B – sin A sin B = cos (A + B) cos 47° cos 13° – sin 47° sin 13° = cos (47 + 13)° = cos 60° = 1/2 (iii) As we know that sin (A + B) = sin A cos B + cos A sin B sin 36° cos 9° + cos 36° sin 9° = sin (36 + 9)° = sin 45° = 1/√2 (iv) As we know that cos A cos B + sin A sin B = cos (A – B) cos 80° cos 20° + sin 80° sin 20° = cos (80 – 20)° = cos 60° = 1/2 |
|
| 150. |
Prove that: cos 7π/12 + cos π/12 = sin 5π/12 – sin π/12 |
|
Answer» As we know that, 7π/12 = 105°, π/12 = 15°; 5π/12 = 75° Let us consider the LHS: cos 105° + cos 15° cos (90° + 15°) + sin (90° – 75°) -sin 15° + sin 75° sin 75° – sin 15° = RHS ∴ LHS = RHS Thus proved. |
|