Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Express the angular measurement of the angle of a regular decagon in degrees, grades and radians.

Answer»

We know that the angle of an n sided regular Polygon is equal to \((\frac{2n-4}{n})\) right angles. 

Let θ be the angle of a regular decagon. Then, 

\(θ=(\frac{2\times10-4}{10})=\frac{8}{5}\)  right angles 

 \(\therefore θ=(\frac{8}{5}\times90)^°=144^°\)         [∴ 1 right angle = 90°] 

Also, \(\thereforeθ=(\frac{8}{5}\times100)=160^g\)      [∴ 1 right angle = 100g ]

And \(θ=(\frac{8}{5}\times\frac{\pi}{2})^c=(\frac{4\pi}{2})^c\) 

[∴ 1 right angle = \((\frac{\pi}{2})^c\) ]

102.

Write the radian measure of 5° 37’30”.

Answer»

We know that, 60” = 1’ ⇒ 30” = \(\frac{30}{60}\) = 0.5′ 

Now, we have 5° 37’30” = 5° 37.5’ 

We know that, 60’ = 1° 

⇒ 37.5’ = \(\frac{37.5}{60}\) = 0.625 

Now, we have 5° 37.55’ = 5.625° 

We know that 180° = π radian 

⇒ 5.625° = 0.03125π radian.

103.

What is the radian measure of – 37°30’?

Answer»

– 37° 30’ = – 37.5°          [∵ 1° = 60′ ⇒ 0.5° = 30′] 

Now, \(-37.5^°=-(37.5\times\frac{\pi}{180})\) radian 

[∴ \(1^°=\frac{\pi}{180}\) radian ]

= − ( \(\frac{375}{1800}\times\pi\)) radian 

= − \(\frac{5\pi}{24}\) radian

104.

What is the value of sin(– 1125°)?

Answer»

sin (– 1125°) = – sin(1125°) 

= – sin (3 × 360° + 45°) 

= – sin 45° 

= − \(\frac{1}{\sqrt{2}}\)

105.

The value of tan 3A – tan 2A – tan A is equal to(A) tan 3A tan 2A tan A(B) – tan 3A tan 2A tan A(C) tan A tan 2A – tan 2A tan 3A – tan 3A tan A(D) None of these

Answer»

Answer is (A) 

3A= A+ 2A

=> tan 3A = tan (A + 2A)

=> tan 3 A = (tanA + tan2A)/( 1 – tan A . tan 2A)

=> tan A + tan 2A = tan 3A – tan 3A• tan 2A . tan A

=> tan 3 A – tan 2A – tan A = tan 3A . tan 2A . tan A

106.

Prove that cot x cot2x – cot2x cot3x – cot3x cotx = 1.

Answer»

Consider cot 3x = cot(2x + x)

= (cos2xcotx - 1)/(cot2x + cotx)

⇒ cot 3x(cot 2x+cot x) – cot 2x cot x -1 

⇒ 1 = cot 2x cot x – cot 3x cot 2x – cot 3x cot x

107.

If sin-1 4/5 + cos-1 12/13 = sin-1 ∝, then ∝ = ______.(a) 63/65(b) 62/65(c) 61/65(d) 60/65

Answer»

Correct option is: (a) 63/65

108.

If A = 2 sin2 x – cos 2x, then A lies in the intervalA. [-1, 3]B. [1, 2]C. [-2, 4]D. None of these

Answer»

Correct answer is A.

Given A = 2 sin2 x – cos 2x

[using cos 2x = 1 – 2 sin2 x]

so A = 2 sin2 x – cos 2x = 2 sin2 x –[ 1 – 2 sin2 x]

= 2 sin2 x -1 + 2 sin2 x]

= 4 sin2 x – 1

Now A = 2 sin2 x – cos 2x = 4 sin2 x – 1

As we know sin x lies between -1 and 1

-1 ≤ sin x ≤ 1

0 ≤ sin2x ≤ 1

Multiplying the inequality by 4

0 ≤ 4 sin2 x ≤ 4

Subtracting 1 from the inequality

-1 ≤ (4 sin2 x – 1) ≤ 3

From the above inequation, we can say that

A = (4 sin2 x – 1) belongs to the closed interval [-1, 3]

109.

If tan x + sec x = √3, 0 < x < π, then x is equal toA. \(\cfrac{5\pi}6\)B. \(\cfrac{2\pi}3\)C. \(\cfrac{\pi}6\)D.\(\cfrac{\pi}3\)

Answer»

Correct option is C. \(\cfrac{\pi}6\) 

Given: tan x + sec x = √3

squaring on both sides

(tan x + sec x)2 = √32

tan2x+sec2x + 2 tan x sec x = 3

Also, sec2x - tan2x = 1

tan2x + 1+ tan2x+ 2tan x sec x = 3

2tan2x + 2tan x sec x = 3 - 1

tan2x + tan x sec x = 2/2

tan2x + tan x sec x = 1

tan x sec x = 1 - tan2x

again, squaring on both sides

tan2x sec2x = 1 + tan4x - 2 tanx

(1+ tan2x) tan2x = 1 + tan4x - 2 tan2x

Tan4x + tan2x = 1 + tan4x - 2 tan2x

3 tan2x = 1

tan x = 1/√3

x = π/6.

110.

Find the angle in radius between the hands of a clock at 7: 20 p. m.

Answer»

We know that the hour hand completes one rotation in 12 hours while the minute hand completes one rotational in 60 minutes.

∴ Angle traced by the hour hand in 7 hours 20 minutes i.e., \(\frac{22}{3}\) Hours

\(= (\frac{360}{12}\times\frac{22}{3})\)° = 220°

Also, the angle traced by the minute hand in 60 minutes = 360°

⇒ The angle traced by the minute hand in 20 minutes = \( (\frac{360}{60}\times20)\)= 120°

Hence, the required angle between two hands = 220° - 120°

= 100°

111.

Write the minimum value of cos(cos x)

Answer»

The maximum and minimum value of cos x is 1 or – 1. 

Hence, cos (cos x) has minimum value at x = 0° 

i. e., cos (cos 0°) = cos (1) = cos 1

112.

One value of θ which satisfies the equation sin4 θ – 2sin2 θ – 1 lies between 0 and 2π.

Answer»

Answer is False

113.

If sin θ + cos θ = 1, then the value of sin 2θ is equal to(A) 1 (B)1/2 (C) 0 (D) –1

Answer»

Answer is (C)

Given,

 sin θ + cos θ = 1

Sq. both side

(sin θ + cos θ)2 = 12

sin2 θ + cos2 θ + 2sin θ .cos θ = 1

1 + 2sin θ .cos θ = 1

2sin θ .cos θ = 1 -1 = 0

sin 2θ = 0   (sin 2θ = 2sin θ .cos θ )

114.

Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A.

Answer»

sin 4A = sin (2A + 2A)

We know that,

sin(A + B) = sin A cos B + cos A sin B

Therefore, sin 4A = sin 2A cos 2A + cos 2A sin 2A

⇒ sin 4A = 2 sin 2A cos 2A

From T-ratios of multiple angle,

We get,

sin 2A = 2 sin A cos A and cos 2A = cos2A – sin2A

⇒ sin 4A = 2(2 sin A cos A)(cos2A – sin2A)

⇒ sin 4A = 4 sin A cos3A – 4 cos A sin3A

Hence, sin 4A = 4 sin A cos3A – 4 cos A sin3A

115.

Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A.

Answer»

L.H.S. = sin 4A

= 2 sin 2A- cos 2A 

= 2(2 sin A cosA)(cos2 A – sin2 A)

= 4 sin A • cos3 A – 4 cos A sin3 A = R.H.S.

116.

Prove that sin(π/2 - x) = cosx

Answer»

 sin(π/2 - x)

= cos[π/2 - (π/2 - x)]

∵ cos(π/2 - x) = sinx

= cosx 

117.

Prove that :cos 570° sin 510°+ sin (-330°) cos (-390°) = 0

Answer»

LHS = cos 570° sin 510°+ sin (-330°) cos (-390°)

We know that sin (-x) = -sin (x) and cos (-x) = +cos (x).

= cos 570° sin 510°+ [sin (-330°)] cos (-390°)

= cos 570° sin 510° - sin (-330°) cos (-390°)

= cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)

We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin.

= -cos 30° cos 60° - [-cos 60°] cos 30°

= -cos 30° cos 60° + cos 60° cos 30°

= 0

= RHS

Hence proved.

118.

Prove that :tan (-225°) cot (-405° ) – tan (-765° ) cot (675° ) = 0

Answer»

LHS = tan (-225°) cot (-405°) – tan (-765°) cot (675°) 

We know that  tan (-x) = -tan (x) and cot (-x) = -cot (x).

= [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°)

= tan (225°) cot (405°) + tan (765°) cot (675°)

= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°) 

= tan 45° cot 45° + tan 45° [-tan 45°]

= 1 × 1 + 1 × (-1)

= 1 – 1

= 0

= RHS

Hence proved.

119.

Prove that cos 510° cos 330° + sin 390° cos 120° = -1.

Answer»

The vales must be following:

Cos 510° = cos (90° × 5 + 60° = - sin 60°) = \(\frac{-\sqrt 3}{2}\)

Cos 330° = cos (90° × 3 + 60° = sin 60°) = sin 60° = \(\frac{-\sqrt 3}{2}\)

Sin 390° = sin (90° × 4 + 30°) = sin 30° = \(\frac{1}{2}\)

Cos 120° = cos (90° × 1 + 30°) = – sin 30° = \(\frac{-1}{2}\)

Now,

L.H.S = cos 510° cos 330° + sin 390° cos 120°

\((\frac{-\sqrt 2}{2})\)\((\frac{\sqrt 3}{2})\)+\((\frac{1}{2})\)\((\frac{-1}{2})\)

\((\frac{-3}{4})+(\frac{-1}{4})\)

\((\frac{-3}{4}+\frac{-1}{4})\)

= − 1 = R. H. S

120.

In any ΔABC, prove thatasin(B - C) + bsin(C – A) + csin(A - B) = 0

Answer»

LHS = ksinAsin(B - C) + ksinBsin(C – A) + ksinCsin(A – B) 

= k[sin(B + C)sin(B – C)+sin(C + A)sin(C – A) + sin(A + B) sin(A – B)] 

= K[sin2B – sin2C + sin2  C -sin2A + sin2A – sin2B] 

= k x 0 =0

= RHS.

121.

Which of the following is correct?(A) sin1° > sin 1 (B) sin 1° < sin 1(C) sin 1° = sin 1 (D) sin 1° = (π/18°)sin 1

Answer»

Answer is (B) 

We know that, in first quadrant if θ is increasing, then sin θ is also increasing.

sin 1° < sin 1 [∵ 1 radian = 57◦30′]

122.

If tan θ = 1/2 and tan φ = 1/3 , then the value of θ + φ is(A) π/6(B) π(C) 0(D) π/4

Answer»

Answer is (D) π/4

123.

The minimum value of 3 cosx + 4 sinx + 8 is(A) 5 (B) 9 (C) 7 (D) 3

Answer»

Answer is (D) 

3 cos x + 4sin x + 8 = 5 (3/5 cos x + 4/5sin x) + 8

= 5(sin α cos x + cos α sin x) + 8

= 5 sin(α + x) + 8, where tan α = 3/4

124.

If for real values of x, cos θ =x + 1/x, then (A) θ is an acute angle (B) θ is right angle(C) θ is an obtuse angle (D) No value of θ is possible

Answer»

Answer is (D) No value of θ is possible

125.

Find the minimum value of p for which cos (p sin x) = sin (p cos x) has solution in [0, 2π].

Answer»

Given, cos (p sinx) = sin (p cosx) 

⇒ sin (\(\frac{\pi}{2}\)− p sinx ) = sin (p cosx) 

\(\frac{\pi}{2}\) − p sinx = πcosx 

⇒ p (sinx + cosx) = \(\frac{\pi}{2}\)

\(\sqrt{2 }\) p (sinx \(\frac{1}{\sqrt{2}}\) + cosx \(\frac{1}{\sqrt{2}}\) ) =\(\frac{\pi}{2}\)

\(\sqrt{2 }\) p [sinx cos\(\frac{\pi}{4 }\)+ cosx sin \(\frac{\pi}{4 }\) ] = \(\frac{\pi}{2}\)

\(\sqrt{2 }\) p [sin (x + \(\frac{\pi}{4 }\) )] = \(\frac{\pi}{2}\)

⇒ sin (x + \(\frac{\pi}{4 }\)) = \(\frac{\pi}{2\sqrt{2}p}\) = \(\frac{\pi}{(2)\frac{1}{2^p}}\) 

Since, sine lies between – 1 and 1 

Therefore, − 1 ≤ \(\frac{\pi}{(2)\frac{1}{2^p}}\) ≤ 1 

Hence, the minimum value of p is \(\frac{\pi}{(2)\frac{1}{2}}\)

[∴ Positive value of p is to taken]

126.

Find the range of 5 cosx – 12 sinx + 7.

Answer»

Given, 5 cosx – 12 sinx + 7 

= 13 (\(\frac{5}{13}cosx - \frac{12}{13}sinx\)) + 7 

Using formula, sin (A + B) = sin A cos B + cos A sin B 

Suppose, sin A = \(\frac{5}{13}\) and cos A = \(\frac{12}{13}\)

= 13 (sin A cosx – cos A sinx) + 7 

= 13 sin (A – x) + 7 

We know the range of sin x is [– 1, 1] 

so, the range of 13 sin (A – x) + 7 is [– 1 × 13 + 7, 1 × 13 + 7] 

= [– 6, 20]

127.

Show that sin 100° – sin 10° is positive.

Answer»

Suppose f(x) = sin 100° – sin 10°

On dividing and multiplying by √(12 + 12) i.e. by √2,

f(x) = √2(1/√2 sin 100° – 1/√2 sin 10°)

f(x) = √2(cos π/4 sin (90 + 10)° – sin π/4 sin 10°) (since, 1/√2 = cos π/4 and 1/√2 = sin π/4)

f(x) = √2(cos π/4 cos 10° – sin π/4 sin 10°)

As we know that cos A cos B – sin A sin B = cos (A + B)

f(x) = √2 cos (π/4 + 10°)
∴ f(x) = √2 cos 55°

128.

Prove that (2√3 + 3) sin x + 2√3 cos x lies between – (2√3 + √15) and (2√3 + √15).

Answer»

Suppose f(x) = (2√3 + 3)sin x + 2√3 cos x

Here, A = 2√3, B = 2√3 + 3 and C = 0

– √[(2√3)2 + (2√3 + 3)2] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[(2√3)2 + (2√3 + 3)2]
– √[12 + 12 + 9 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[12 + 12 + 9 + 12√3]

– √[33 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[33 + 12√3]

– √[15 + 12 + 6 + 12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[15 + 12 + 6 + 12√3]

As we know that (12√3 + 6 < 12√5) because the value of √5 – √3 is more than 0.5

Therefore, if we replace, (12√3 + 6 with 12√5) the above inequality still holds.

Therefore by rearranging the above expression √(15+12+12√5)we get, 2√3 + √15

– 2√3 + √15 ≤ (2√3 + 3) sin x + 2√3 cos x ≤ 2√3 + √15

Thus proved.

129.

Which of the following is correct? A. sin 1°&gt; sin 1  B. sin 1°&lt; sin 1 C. sin 1° = sin 1 D. sin 1° = π/18° sin 1[Hint: 1 radian = 180°/π = 57°30’ approx.]

Answer»

B. sin 1°< sin 1

We know that, 1 radian = 180°/π = 57°30’ approx.

57° lies between 0 and 90 degrees and since in first quadrant sin θ increases when θ increases.

⇒ sin 1°< sin 1

130.

Solve: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\)

Answer»

We have: \(\sqrt{3}cosθ+sinθ=\sqrt{2}\) 

Dividing both sides by 2, we get 

\(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ =\frac{\sqrt{2}}{2}\)

\(cosθ.cos\frac{\pi}{6}+sinv.sin\frac{\pi}{6}=\frac{1}{\sqrt{2}}\)

\(cos(θ-\frac{\pi}{6})=cos\frac{\pi}{4}\)

⇒ \(θ-\frac{\pi}{6}=2n\pi +\frac{\pi}{4},n∈z\) 

\(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6} n∈z\) 

\(θ=2n\pi +\frac{\pi}{4}+\frac{\pi}{6}\)  or  \(θ=2n\pi -\frac{\pi}{4}+\frac{\pi}{6},n∈z\)

\(θ=2n\pi +\frac{5\pi}{12}\)  or   \(θ=2n\pi -\frac{\pi}{12},n∈z\)

131.

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2.

Answer»

Given,

a cos θ + b sin θ = m …(1)

a sin θ – b cos θ = n …(2)

Squaring and adding equation 1 and 2, we get –

(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2

⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2

⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2

⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2

Using: sin2θ + cos2θ = 1, we get –

⇒ a2 + b2 = m2 + n2

132.

The value of 2 sin 5π/12 cos π/12 will be:(A) 1(B) √3/2(C) √3/2 - 1(D) √3/2 + 1

Answer»

Answer is (D) √3/2 + 1

2 sin 5π/12  cos π/12

= 2 sin 75° cos 15°

= 2 sin (90° – 15°) cos 15°

= 2 cos 15° cos 15°

= 2 cos2 15°

= cos2 × 15° + 1

= cos 30° + 1

= √3/2 + 1 

133.

If cos θ = 1/2 then value of θ will be:(A) 2π/3(B) π/3(C) –2π/3(D) 3π/4

Answer»

Answer is (A) 2π/3

134.

Prove that cos(π/4 + x) + cos(π/4 - x) = √2cosx

Answer»

LHS = cos(π/4)cosx - sin(π/4)sinx + cos(π/4)cosx + sin(π/4)sinx

= 2cos(π/4)cosx = 2(1/2)cosx = 2cosx

= RHS

135.

Find the value of \(\sqrt{3}\) cosec 20° − sec 20°

Answer»

We have 

\(\sqrt{3}\) cosec 20° − sec 20° 

= \(\frac{\sqrt{3}}{sin20°}-\frac{1}{cos20°}\) 

= \(\frac{\sqrt{3}\space cos20°-sin20°}{sin20°cos20°}\)

= 4 \(\bigg(\frac{\frac{\sqrt{3}}{2}cos20°-\frac{1}{2}sin20°}{2sin20°cos20°}\bigg)\)

= 4 \(\bigg(\frac{sin60°cos20°-cos60°sin20°}{sin40°}\bigg)\)

= 4 \(\bigg(\frac{sin(60°-20)}{sin40°}\bigg)\) 

= 4

136.

What is the meaning of trigonometry?

Answer»

The literal meaning of the word trigonometry is the science of measuring the sides and the angles of triangles.

137.

Find the values of the following trigonometric ratios: sin 17 π

Answer»

Given sin 17π

⇒ sin 17π = sin 3060°

⇒ 3060° = 90° × 34 + 0°

3060° is in negative direction of x - axis i.e. on boundary line of II and III quadrants.

∴ sin (3060°)= sin(90° × 34 + 0°)

= -sin 0°

= 0

138.

Find the values of the following trigonometric ratios:cosec (-\(\cfrac{20\pi}3\))

Answer»

Given cosec (-\(\cfrac{20\pi}3\))

⇒ cosec (-\(\cfrac{20\pi}3\)) = cosec(-1200°)

⇒ cosec (-1200°) = cosec (1200°)

= cosec (90° × 13 + 30)

1200° lies in second quadrant in which cosec function is positive.

∴ cosec (-1200°) = -cosec (90° × 13 + 30°)

= -sec 30°

\(-\cfrac{2}{\sqrt3}\)

139.

Find the values of the following trigonometric ratios:tan(\(-\cfrac{13\pi}4\))

Answer»

Given tan(\(-\cfrac{13\pi}4\))

⇒ tan \(-\cfrac{13\pi}4\) = tan -585°

⇒ -tan 585° = -tan (90° × 6 + 45°)

585° lies in the third quadrant in which the tangent function is positive.

∴ tan (-585)° = -tan (90° × 6 + 45°)

= - (tan 45°)

= -1

140.

Find the values of the following trigonometric ratios:sin(\(\cfrac{41\pi}4\))

Answer»

Given sin(\(\cfrac{41\pi}4\))

⇒ sin(\(\cfrac{41\pi}4\)) = sin 1845°

⇒ sin 1845° = 90° × 20 + 45°

1845° lies in the first quadrant in which the sine function is positive.

∴ sin 1845° = sin (90° × 20 + 45°)

= sin 45°

\(\cfrac1{\sqrt2}\)

141.

Find the value of tan(19π/3)

Answer»

tan(19π/3) = tan(6π + π/3) = tan(π/3) = 3

142.

Find the values of the following trigonometric ratios:cos \(\cfrac{19\pi}4\)

Answer»

Given cos \(\cfrac{19\pi}4\)

⇒  cos \(\cfrac{19\pi}4\) = cos 855°

⇒ 855° = 90° × 9 + 45°

855° lies in the second quadrant in which the cosine function is negative.

∴ cos 855° = cos (90° × 9 + 45°)

= -sin 45°

\(\cfrac{-1}{\sqrt2}\)

143.

Find the values of the following trigonometric ratios:cos \(\cfrac{19\pi}6\)

Answer»

Given cos \(\cfrac{19\pi}6\)

⇒  cos \(\cfrac{19\pi}6\) = cos 570°

⇒ 570° = (90° × 6 + 30°)

570° lies in third quadrant in which cosine function is negative.

∴ cos (570°) = cos (90° × 6 + 30°)

= -cos (30°)

\(-\cfrac{\sqrt3}2\)

144.

Find the value of sin 405°

Answer»

To find: Value of sin 405°

We have,

sin 405° = sin [90° × 4 + 45°]

= sin 45°

[Clearly, 405° is in Ist Quadrant and the multiple of 90° is even]

\(\frac{1}{\sqrt{2}}\) [∵ sin45° = \(\frac{1}{\sqrt{2}}\)]

145.

Find the value of sin 765°.

Answer»

sin765° = sin(720° + 45°) = sin45° = 1/2

146.

Find the value of sin 765°

Answer»

we know that values of sin x repeats after an interval of 2π

So, sin (765°) = sin (720° + 45°)

= sin (2 x 360° + 45°)

= sin 45°

(∵ After repetition it will comes in 1st quardrant)

= 1/√2

Hence, sin 765° = 1/√2

147.

If secx = 13/5, x lies in fourth quadrant, find the values of other five trigonometric functions.

Answer»
Measure of anglesincostancosecseccot
– sinθcosθ-tanθ– cosecθsecθ-cotθ
π/2 - θcosθ-sinθcot θsecθcosecθtanθ
π/2 + θcosθ– sinθ-cotθ– secθ-cosecθ-tanθ
π - θsinθ-cosθ-tanθcosec θ-secθ-cotθ
π + θ– sinθ-cosθtanθ-cosccθ- secθcotθ
3π/2 - θ– cosθ-sinθcotθ– secθ-cosecθtanθ
3π/2 + θ– cosθ-sinθcotθ– secθcosecθtanθ
2π - θ-sinθcosθ-tanθ– cosccθsecθ-cotθ
2π + θsinθcos θtanθcosecθsecθcosθ
148.

Which trigonometric function is positive in third quadrant:(A) sin θ(B) tan θ(C) cos θ(D) sec θ

Answer»

Answer is (B) tan θ

149.

Evaluate the following:(i) sin 78° cos 18° – cos 78° sin 18° (ii) cos 47° cos 13° – sin 47° sin 13°(iii) sin 36° cos 9° + cos 36° sin 9° (iv) cos 80° cos 20° + sin 80° sin 20°

Answer»

(i) As we know that sin (A – B) = sin A cos B – cos A sin B

sin 78° cos 18° – cos 78° sin 18° = sin(78 – 18)°

= sin 60°

= √3/2

(ii) As we know that cos A cos B – sin A sin B = cos (A + B)

cos 47° cos 13° – sin 47° sin 13° = cos (47 + 13)°

= cos 60°

= 1/2

(iii) As we know that sin (A + B) = sin A cos B + cos A sin B

sin 36° cos 9° + cos 36° sin 9° = sin (36 + 9)°

= sin 45°

= 1/√2

(iv) As we know that cos A cos B + sin A sin B = cos (A – B)

cos 80° cos 20° + sin 80° sin 20° = cos (80 – 20)°

= cos 60°

= 1/2

150.

Prove that: cos 7π/12 + cos π/12 = sin 5π/12 – sin π/12

Answer»

As we know that, 7π/12 = 105°, π/12 = 15°; 5π/12 = 75°

Let us consider the LHS: cos 105° + cos 15°

cos (90° + 15°) + sin (90° – 75°)

-sin 15° + sin 75°

sin 75° – sin 15°

= RHS

∴ LHS = RHS

Thus proved.